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Introduction
We are going to explain a theorem proven by Deligne-Mumford, so called Stable Re-
duction Theorem. Roughly speaking, we extend an algebraic variety V defined over a
number field K to a scheme ν over the ring of integer OK of K, while trying to preserve
as many good properties of V as possible. The reduction of V modulo a maximal ideal
p is the fiber ν over the point of S pec OK corresponding to p.
The first part is devoted to some definitions and facts about elliptic curves, as a special
case. There, we wish to explain the criterion of Neron-Ogg-Shafarevich on reduction
of an elliptic curve.
Then in the second part, by introducing models of a curve, we get back to the notion
of reduction in a more general setting. In the third part, we show how to construct
étale cohomology and the sheaf of vanishing cycles which helps us to investigate on
the behavior of a scheme around its singularities and eventually in the last part, we give
a purely cohomolgical proof of the stable reduction theorem and its local version.
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Chapter 1

Required Algebraic Geometry

We begin with some basic definitions and facts 1 which are necessary for study the
geometry of curves.

1.1 Varieties and Curves
Definition 1.1.1. Affine n-space (over a field K) is the set of n-tuples

An(K̄) =
{
P = (x1, ..., xn) ∈ An : xi ∈ K̄

}
.

Also, the set of K-rational points in An is the set

An(K) = {P = (x1, ..., xn) ∈ An : xi ∈ K} .

Notice that the Galois group GK̄/K acts on An for σ ∈ GK̄/K and P ∈ An

Pσ = (xσ1 , ..., x
σ
n ).

Then An(K) may be characterized by

An(K) =
{
P ∈ An : Pσ = P f or all σ ∈ GK̄/K

}
.

Definition 1.1.2. Projective n-space (over K), denoted by Pn or Pn(K̄) is the set of
all (n+1)-tuples (x0, ..., xn) ∈ An+1 such that at least one xi is non-zero, modulo the
equivalence relation given by

(x0, ..., xn) ∼ (y0, ..., yn)

if there exists a λ ∈ K̄∗ with xi = λyi f or all i The set of K-rational points in Pn is
the set Pn(K) = {[x0, ..., xn] ∈ Pn : all xi ∈ K} where [x0, ..., xn] is an equivalence class
{(λx0, ..., λxn)}

1The elementary facts are not poven in this chapter. For the proofs refer to [?].
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Definition 1.1.3. A (Projective) algebraic set is any set of the form

V I = {P ∈ Pn : f (p) = 0 f or all homogeneous f ∈ I} .

in which I is a homogeneous ideal in K̄[X] = K̄[X0, ..., Xn]. If V is a projective algebraic
set, the (homogeneous) ideal of V , denoted I(V), is the ideal in K̄[X] generated by{

f ∈ K̄[X] : f is ho jmogeneous and f (p) = 0 f or all P ∈ V
}
.

Definition 1.1.4. A projective algebraic set is called a (projective) variety if its homo-
geneous ideal I(V) is a prime ideal in K̄[X].

Definition and Fact 1.1.5. Let V be an affine algebraic set with ideal I(V), and con-
sider Vas a subset of Pn via a map V ⊂ An ϕi

−→ Pn.
The projective closure of V , denoted V̄ , is the projective algebraic set whose homoge-
neous ideal I(V̄) is generated by { f ∗(X) : f ∈ I(V)}.

1. Let V be an affine variety. Then V̄ is a projective variety, and V = V̄ ∩ An.

2. Let V be a projective variety. Then V ∩ An = ∅ or V = V ∩ An.

3. If an affine (respectively, projective) variety V is defined over K, then V̄ (respec-
tively, V ∩ An) is defined over K.

Definition 1.1.6. Let V1 and V2 ⊂ Pn be projective varieties. A rational map from V1
to V2 is a map of the form

ϕ : V1 → V2

ϕ = [ f 0, ..., f n]

where f0, ..., fn ∈ K̄(V1) have the property that for every point P ∈ V1 at which f0, ..., fn
are all defined, ϕ(P) = [ f0(P), ..., fn(P)] ∈ V2

Definition 1.1.7. A rational map ϕ = [ f0, ..., fn] : V1 → V2 is regular at P ∈ V1 if there
is a function g ∈ K̄(V1) such that

1. each g fi is regular at P; and

2. for some i, (g fi)(P) , 0.

Definition and Fact 1.1.8. Let V be a variety, P ∈ V and f1, ..., fm ∈ K̄[X] a set
of generators for I(V). Then V is non-singualr (or smooth) at P if m × n matrix
(∂ fi/∂X j(P))1≤i≤m,1≤ j≤n has rank n − dim(V). If V is non-singualr at every point, then
we say that V is non-singualr (or smooth).

P is non-singualr if and only if dimK̄ Mp/M2
P = dim V where

MP = { f ∈ K̄[V] : f (P) = 0}.

Note: Here by a curve we will mean a projective variety of dimension 1.
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Definition and Fact 1.1.9. Let C be a curve and P ∈ C a smooth point. Then K̄[C]P

is a discrete valuation ring. The (normalized) valuation on K̄[C]P is given by

ordp : K̄[C]P → {0, 1, 2, ...} ∪ {∞}

ordp( f ) = max{d ∈ Z : f ∈ Md
P}

Using ordp( f /g) = ordp( f ) − ordp(g), we extend ordp to K̄(C), so
ordp : K̄(C) → Z ∪ {∞}. A uniformizer for C at P is a function t ∈ K̄(C) with
ordp(t) = 1. (i.e. a generator for MP).

Definition 1.1.10. Let C and P be as above and f ∈ K̄(C). Then order of f at P is
ordP( f ). If ordP( f ) > 0, then f has a zero at P; if ordP( f ) < 0, then f has a pole at P.
If ordP( f ) ≥ 0, then f is regular (or defined) at P.

1.2 Maps between curves
Fact 1.2.1. 1. Let C be a curve, V ⊂ PN a variety, P ∈ C a smooth point, and

ϕ : C → V a rational map. Then ϕ is regular at P. In particular, if C is smooth,
then ϕ is a morphism.

2. Let ϕ : C1 → C2 be a morphism of curves. Then ϕ is either constant or surjective.

Fact 1.2.2. Let C1/K and C2/K be curves and ϕ : C1 → C2 a non-constant rational
maps defined over K. Then composition with ϕ induces an injection of function fields
fixing K,

ϕ∗ : K(C2)→ K(C1)
ϕ∗ f = f ◦ ϕ

Definition 1.2.3. Let ϕ : C1 → C2 be a map of curves defined over K. If ϕ is constant,
we define the degree of ϕ to be 0; otherwise we say that ϕ is finite, and define its
degree by degϕ = [K(C1) : ϕ∗(C2)]. We say that ϕ is separable (inseparable, purely
inseparable) if the extension K(C1)/ϕ∗K(C2) has the corresponding property, and we
denote the separable and inseparable degrees of the extension by degs ϕ and degi ϕ.

Definition 1.2.4. Let ϕ : C1 → C2 be a non-constant map of smooth curves, and let P ∈
C1. The ramification index of ϕ at P, denoted eϕ(P) is given by eϕ(P) = ordP(ϕ∗tϕ(P))
where tϕ(P) ∈ K(C2) is a uniformizer at ϕ(P). Note that eϕ(P) ≥ 1. It is said that ϕ is
unramified at P, if eϕ(P) = 1; and ϕ is unramified if it is unramified at every point C1.

Fact 1.2.5. Let ϕ : C1 → C2 be a non-constant map of smooth curves.

1. For every Q ∈ C2,
∑

P∈ϕ−1(Q)
eϕ(P) = degϕ

2. For all but finitely many Q ∈ C2, #ϕ−1(Q) = degs ϕ

3. Let ψ : C2 → C3 be another non-constant map. Then for all P ∈ C1, eψ◦ϕ(P) =

eϕ(P)eψ(ϕP)

Hence, a map ϕ : C1 → C2 is unramified if and only if #ϕ−1(Q) = deg(ϕ) for all
Q ∈ C2.
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1.3 The Frobenius Map
Definition 1.3.1. Suppose that Char(K) = P > 0 and let q = pr. For any polynomial
f ∈ K[X], let f (q) be the polynomial obtained from f by raising each coefficient of f to
the qth power. Then for any curve C/K we can define a new curve C(q)/K by describing
its homogeneous ideal as follow:

I(C(q)) = ideal generated by f (q) : f ∈ I(C).

Furthermore there is a natural map from C to C(q), called qth - power Frobenius
morphism, given by

ϕ : C → C(q)

ϕ([x0, ..., xn]) = [xq
0, ..., x

q
n]

Fact 1.3.2. Let K be a field of characteristic p > 0, q = pr, C/K a curve, and ϕ : C →
C(q) the qth-power Frobenius morphism described above.

1. ϕ∗K(C(q)) = K(C)q (= { f q : f ∈ K(C)}).

2. ϕ is purely inseparable.

3. degϕ = q.

1.4 Divisor group of a curve
Definition 1.4.1. The divisor group of a curve C, denoted Div(C), is the free abelian
group generated by the points of C. Thus a divisor D ∈ Div(C) is a formal sum

D =
∑
P∈C

nP(P)

where nP ∈ Z and nP = 0 for all but finitely many P ∈ C. the degree of D is defined by
deg D =

∑
P∈C

nP.

The divisors of degree 0 form a subgroup of Div(C), which we denote by

Div0(C) = {D ∈ Div(C) : degD = 0}

Assume now that the curve C is smooth, and let f ∈ K̄(C)∗. Then we can associate to
f the divisor div( f ) given by div( f ) =

∑
P∈C

ordP( f )(P).

Definition 1.4.2. A divisor D ∈ Div(C) is principal if it has the form
D = div( f ) for some f ∈ K̄(C)∗. Two divisors D1 and D2 are linearly equivalent,
denoted D1 ∼ D2, if D1 − D2 is principal. The divisor group (or Picard group) of C,
denoted Pic(C), is the quotient of Div(C) by the subgroup of principal divisors. We let
PicK(C) be the subgroup of Pic(C) fixed by GK̄/K .

Pic0(C) =
Div0(C)

< subgroup o f principal divisors >
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1.5 Differential Forms on Curves
Definition 1.5.1. Let C be a curve. the space of (meromorphic) differential forms
on C, denoted ΩC is the K̄(C)-vector space generated by symbols of the form dx for
x ∈ K̄(C), subject to the usual relations:

1. d(x + y) = dx + dy for all x, y ∈ K̄(C);

2. d(xy) = xdy + ydx for all x, y ∈ K̄(C);

3. da = 0 for all a ∈ K̄.

Let ϕ : C1 → C2 be a non-constant map of curves. Then the natural map ϕ∗ :
K̄(C2)→ K̄(C1) induces a map on differentials

ϕ∗ : ΩC2 → ΩC1

ϕ∗(
∑

fidxi) =
∑

(ϕ∗ fi)d(ϕ∗xi).

Fact 1.5.2. 1. Let ϕ : C1 → C2 be a non-constant map of curves. Then ϕ is sepa-
rable if and only if the map ϕ∗ : ΩC2 → ΩC1 is injective (equivalently, non-zero).

2. Let P ∈ C, and let t ∈ K̄(C) be a uniformizer at P.
For every ω ∈ Ω, there exists a unique function g ∈ K̄(C), depending on ω and t,
such that ω = gdt. we denote g by ω/dt.

3. The quantity ordP(ω/dt) depends only on ω and P, independent of the choice of
uniformizer t. We call this valuse the order of ω at P, and denote it by ordP(ω).

4. For all but finitely many P ∈ C, ordP(ω) = 0.

Definition 1.5.3. Let ω ∈ ΩC . The divisor associated to ω is

div(ω) =
∑
P∈C

ordP(ω)(P) ∈ Div(C)

A differential ω is regular (or holomorphic) if ordP(ω) ≥ 0 for all P ∈ C. It is
non-vanishing if ordP(ω) ≤ 0 for all P ∈ C.

Definition 1.5.4. The canonical divisor on C is the image in Pic(C) of div(ω) for any
non-zero differential ω ∈ ΩC . Any divisor in this divisor class is called canonical
divisor.

Definition 1.5.5. A divisor D =
∑

nP(P) ∈ Div(C) is positive (or effective), denoted
by D ≥ 0 if nP ≥ 0 for every P ∈ C. Similarly, if D1, D2 ∈ Div(C), then we write
D1 ≥ D2 to indicate that D1 − D2 is positive.

Definition 1.5.6. Let D ∈ Div(C). We associate to D the set of functions

L(D) = { f ∈ K̄(C)∗ : div( f ) ≥ −D} ∪ {0}

It is easily seen that L(D) is a finite dimensional K̄-vector space, and denote its
dimension by l(D) = dimK̄ L(D).
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Reimann-Roch Theorem for curves
Theorem 1.5.7. Let C be a smooth curve and KC a canonical divisor on C. There is an
integer g ≥ 0, called the genus of C, such that for every divisor D ∈ Div(C),

l(D) − l(KC − D) = deg D − g + 1

1.6 Weierstrass Equations
Here we are going to study elliptic curves, which are curves of genus 1 having a special
basepoint. It can be shown that every such curve can be written as the locus in the
projective plan P2 of a cubic equation with only one point (the basepoint) on the line at
∞; i.e., an equation of the form

Y2Z + a1XYZ + a3YZ2 = X3 + a2X2Z + a4XZ2 + a6Z3

.
Here O = [0, 1, 0] is the basepoint and a1, ..., a6 ∈ K̄. These equations are called

weierstrass equations.

1.6.1 Discriminant and j-invariant of a Weierstrass equation
In order to ease notations, it is better to write the Weierstrass equation for our elliptic
curve using non-homogeneous coordinators x = X/Z and y = Y/Z, then

E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6.

We always remember that there is the extra point O = [0, 1, 0] in infinity. Now put,

b2 = a2
1 + 4a2

b4 = 2a4 + a1a3

b6 = a2
3 + 4a6

The quantity ∆ = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6 is called the discriminant, and

j = c3
4/∆ is called the j-invariant of the given Weierstrass equation.

ω = dx/(2y + a1x + a3) = dy/(3x2 + 2a2x + a4 − a1y).

is the invariant differential associated with the Weierstrass equation.
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1.6.2 Some Basic Facts about Weierstrass equations
1. The curve given by a Weierstrass equation is classified as follows,

(a) It is non-singualr if and only if ∆ , 0.

(b) It has a node if and only if ∆ = 0 and c4 , 0.

(c) It has a cusp if and only if ∆ = c4 = 0.

2. Two elliptic curves are isomorphic (over K̄) if and only if they have the same
j-invariant.

3. Let j0 ∈ K̄. Then there exists an elliptic curve (defined over K( j0)) with j-
invariant equal to j0.

1.6.3 The Group Law on points of a curve given by a Weierstrass
equation

Let E be an elliptic curve given by a Weierstrass equation. We know that E ⊂ P2

consists of the points P = (x, y) satisfying the equation together with the point O =

[0, 1, 0] at infinity.
Let L ⊂ P2 be a line. Then since the equation has degree three, L intersects E at exactly
3 points, taken the multiplicaties, by Bezout’s theorem.

Let P,Q ∈ E and L the line connecting P and Q (tangant line to E if P = Q), and R
the third point of intersection of L and E. Let L′ be the line connecting R and O. Then
P ⊕ Q is the point such that L′ intersects E at R, Q and P ⊕ Q. This composition law
makes E into an abelian group with the identity element O.

Notation
For m ∈ Z and P ∈ E, we let,

P = P + ... + P (m terms) f or m > 0,
[0]P = O

[m]P = [−m](−P) f or m < 0.
I f m , 0, E[m] = {P ∈ E : [m]P = O} (it is called m − torsion subgroup of E).

Etors =

∞⋃
m=1

E[m] (it is called the torsion subgroup of E).

1.6.4 Singularity of a curve given by a Weierstrass equation
We explained that if E, which is a curve given by a Weierstrass equation, is singular,
then there are two possibilities for the singularity, namely a node or a cusp (determined
by whether c4 is equal to zero or not).
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Let E be a curve given by a Weierstrass equation with discriminant ∆ = 0, so E has
a singular point S . Then the composition law makes Ens (the set of non-singular points
of E) into an abelian group. So we have two cases according to the quantity of c4,

1. Suppose E has a node c4 , o, and let

y = α1x + β1

and
y = α2x + β2

be the two distinct tangant lines to E at S . Then the map

Ens → K̄∗

(x, y)→
y − α1x − β1

y − α2x − β2

is isomorphic of abelian groups.

2. Suppose E has a cusp (so c4 = 0), and let y = αx + β be the tangant line to E as
S . Then the map

Ens → K̄+

(x, y)→
x − x(S )

y − αx − β

is an isomorphism of (additive) groups.

1.7 Decomposition, Inertia and Ramification
Here, we fix a base field K which is henselian with respect to a nonarchimedean val-
uation ν or | |. We denote the valuation ring, the maximal ideal and the residue class
field by o, ρ, κ, respectively. If L|K is an algebraic extension, then the corresponding
invariants are labelled ω, O, β, λ, respectively. An especially important role among
these extensions is played by the unramified extensions, which are defined as follow.

Definition (Unramified Extension) 1.7.1. A finite extension L|K is called unramified
if the extension λ|κ of the residue class field is separable and one has

[L : K] = [λ : κ]

. An arbitrary algebraic extension L|K is called unramified if it is a union of finite
unramified subextensions.

Fact 1.7.2. Let L|K and K′|K be two extensions inside an algebraic closure K̄|K and
let L′ = LK′. Then one has

L|K unrami f ied ⇒ L′|K′ unrami f ied

Each subextension of an unramified extension is unramified. In particular, the compos-
ite of two unramified extensions of K is again unramified.
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Definition (Maximal Unramified Extension) 1.7.3. Let L|K be an algebraic exten-
sion. Then the composite T |K of all unramified subextensions is called the maximal
unramified subextension of L|K.

If the characteristic p = char(κ) of the residue class field is positive, then one has
the following weaker notion accompanying that of an unramified extension.

Definition (Tamely Ramified Extension) 1.7.4. An algebraic extension L|K is called
tamely ramified if the extension λ|κ of the residue class fields is separable and one has
([L : T ], p) = 1, in which T is the maximal unramified subextension of K in L. In
the infinite case this latter condition is taken to mean that the degree of each finite
subextension of L|T is prime to p.

As an immediate fact, if L|K and K′|K be two extensions inside the algebraic clo-
sure K̄|K, and L′ = LK′. Then we have

L|K tamelyrami f ied ⇒ L′|K′ tamelyrami f ied

. Every subextension of a tamely ramified extension is tamely ramified. In particular,
the composite of tamely ramified extensions is tamely ramified.

Definition (Maximal Tamely Ramified Extension) 1.7.5. Let L|K be an algebraic
extension. Then the composite V |K of all tamely ramified subextensions is called the
maximal tamely ramified subextension of L|K.

Definition (Wildly Ramified Extension) 1.7.6. Let L|K be an algebraic extension.
Let T and V be its maximal unramified and its maximal tamely ramified subextension,
respectively. Then trivially, we have

K ⊆ T ⊆ V ⊆ L

. If T = K we say that the extension L|K is totally (or purely) ramified, and if V , L,
we call it wildly ramified extension.

Definition 1.7.7. Let A → B be an injective homomorphism of discrete valuation
rings. Let t (resp. π) denote a uniformizing parameter (= uniformizer) for A (resp. B).
Let us recall that the ramification index of B over A is the integer eB/A ≥ 1 such that
tB = πeB/A B (we put eB/A = 1 if t = 0). We say that B is tamely ramified over A if B/πB
is separable over A/tA, and if eB/A is prime to char(A/tA) when the latter is non-zero.
Let us moreover suppose that A → B is finite, and that L := Frac(B) is separable over
K := Frac(A). Let us recall that HomA(B, A) can canonically be identified with the
codifferent

WB/A = {β ∈ L| TrL/K(βB) ⊆ A}

We are going to estimate the length of WB/A/B over B.

It is well-known that if A and B are discrete valuation rings and A → B is a finite
injective homomorphism between them such that Frac(A) → Frac(B) is separable.
Then

lengthB(WB/A/B) ≥ eB/A − 1

Furthermore, equality holds if and only if A→ B is tamely ramified.
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Definition (The scheme-theoretic definition of ramification) 1.7.8. Let f : X → Y
be a finite morphism of normal projective curves over a field k. For any closed point
x ∈ X, let ex denote the ramification index of OY, f (x) → OX,x. We will say that f is ram-
ified at x or that x is a ramification point of f if f is not etale at x (which is equivalent
to ex ≥ 2 or k(x) inseparable over k( f (x))).

It can be seen that the set of ramification points of f is finite and we call it ramifi-
cation locus of f . Its image by f is called the branch locus of f .

We say that f is tamely ramified at x if OY, f (x) → OX,x is tamely ramified.

The following theorem of Hurwitz’s related the genus of X to that of Y in terms of
the ramification indices of f .

Theorem (Hurwitz) 1.7.9. Let f : X → Y be a finite morphism of normal projective
curves over k. We suppose that f is separable of degree n. Then we have an equality

2pa(X) − 2 = n(2pa(Y) − 2) +
∑

x

(e′x − 1)[k(x) : k],

where the sum is taken over the closed point x ∈ X, e′x is an integer ≥ ex, and e′x = ex if
and only if f is tamely ramified at x.

As two immediate corollaries of Hurwitz’s theorem;

If f : X → Y is a finite separable morphism of normal projective curves over k, with
pa(X) ≥ 0. Then pa(X) ≥ pa(Y).

Now instead, let f : X → Y be a finite etale morphism of smooth, geometrically
connected, projective curves and g(Y) = 0. Then f must already be an isomorphism.

1.7.1 Galois Theory of Valuations
Now, we would like to consider Galois extensions L|K and study the effect of the Galois
action on the extended valuations ω|3. We know that in the case of a Galois extension
L|K of infinite degree, the main theorem of ordinary Galois theory, concerning the 1-1
correspondence between the intermediate fields of L|K and the subgroups of the Galois
group G(L|K) ceases to hold; there are more subgroups than intermediate fields.
The correspondence can be salvaged, however, by considering a canonical topology on
the group G(L|K), the Krull topology. It is given by defining, for every σ ∈ G(L|K), as
a basis of neighbourhoods the cosets σG(L|M), where M|K varies over the finite Galois
subextensions of L|K.
G(L|K) is thus turned into a compact, Hausdorff topological group. The main theorem
of Galois theory then has to be modified in the infinite case by condition that the in-
termediate fields of L|K correspond 1-1 to the closed subgroups of G(L|K). Otherwise,
everything goes through as in the finite case. So one tacitly restricts attention to closed
subgroups, and accordingly to continious homomorphisms of G(L|K).
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So let L|K be an arbitrary, finite or infinite, Galois extension with Galois group G =

G(L|K). If 3 is an (archimedean or nonarchimedean) valuation of K and ω an extension
to L, then, for every σ ∈ G, ω ◦ σ also extends 3, so that the group G acts on the set of
extensions ω|3.

It can easily be seen that the group G acts transitively on the set of extensions ω|3,
i.e., every two extensions are conjugate.

Definition (Decomposition Group) 1.7.10. The decomposition group of an extension
ω of 3 to L is defined by

Gω = Gω(L|K) = {σ ∈ G(L|K) | ω ◦ σ = ω}.

If 3 is a nonarchimedean valuation, then the decomposition group contains two futher
canonical subgroups

Gω ⊇ Iω ⊇ Rω

which are defined as follow. Let o, resp. O be the valuation ring, ρ,resp. β, the maximal
ideal, and let κ = o/ρ, resp. λ = O/β, be the residue class field of 3, resp. ω.

Definition (Inertia and Ramification Group) 1.7.11. The inertia group of ω|3 is de-
fined by

Iω = Iω(L|K) = {σ ∈ Gω | σx = x mod β f or all x ∈ O}

and the ramification group by

Rω = Rω(L|K) = {σ ∈ Gω | σx/x ≡ 1 mod β f or all x ∈ L∗}

Observe in this definition that, for σ ∈ Gω, the identity ω ◦ σ = ω implies that one
always has σO = O and σx/x ∈ O, for all x ∈ L∗.

The Groups Gω, Iω, Rω of G = G(L|K), are closed in the Krull topology.

Fact 1.7.12. For the extensions K ⊆ M ⊆ L, one has

Gω(L|M) = Gω(L|K) ∩G(L|M)

Iω(L|M) = Iω(L|K) ∩G(L|M)

Rω(L|M) = Rω(L|K) ∩G(L|M)

The inertia group Iω is defined only if ω is a nonarchimedean valuation of L. It is
the kernel of a canonical homomorphism of Gω. For if O is the valuation ring of ω
and β themaximal ideal, then, since σO = O and σβ = β, every σ ∈ Gω induces a
κ-automorphism

σ̄ : O/β→ O/β

x (mod β)→ σx (mod β)

of the residue class field λ, and we obtain a homomorphism

Gω → Autκ(λ)
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with kernel Iω. That is, we have the following exact sequence of groups,

1→ Iω → Gω → G(λ|κ)→ 1

Like the inertia group, the ramification group Rω is the kernel of a canonical homo-
morphism

Iω → χ(L|K),

where
χ(L|K) = Hom(∆/Γ, λ∗),

where ∆ = ω(L∗), and Γ = 3(K∗). If σ ∈ Iω, then the associated homomorphism

χσ : ∆/Γ→ λ∗

is given as follow: for δ̄ = δ mod Γ ∈ ∆/Γ, choose an x ∈ L∗ such that ω(x) = δ and
put

χσ(δ̄) =
σx
x

mod β.

Note that, this definition is independent of the choice of the representative δ ∈ δ̄
and of x ∈ L∗. Because if x′ ∈ L∗ is an element such that ω(x′) ≡ ω(x) mod Γ, then
ω(x′) = ω(xa), a ∈ K∗. Then x′ = xau, u ∈ O∗, and since σu/u ≡ 1 mod β (because
σ ∈ Iβ), one gets σx′/x′ ≡ σx/x mod β.

Fact 1.7.13. Rω is the unique p-Sylow subgroup of Iω and also we have the following
exact sequence

1→ Rω → Iω → χ(L|K)→ 1.
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Chapter 2

Elliptic Curve

2.1 Definition
Definition 2.1.1. An elliptic curve is a pair of (E,O), where E is a curve of genus 1
and O ∈ E. The elliptic curve E is defined over K, written E/K, if E is defined over K
as a curve and O ∈ E(K).
By using the Riemann-Roch theorem, it is easy to show that every elliptic curve can be
written as a plane cubic; and conversely, every smooth Weierstrass plan cubic curve is
an elliptic curve.

2.2 How can one make an elliptic curve into an abelian
group with the identity O?

It can easily be seen that there is an isomophism

κ : E
∼
−→ Pic0(E)

P→ class (P) − (O)

Note that if E is given by a Weierstrass equation, then the “geometric group law”
on E and the group law induced from Pic0(E) through the isomorphism above are the
same.

Definition 2.2.1. Let E1 and E2 be elliptic curves. An isogeny between E1 and E2 is a
morphism ϕ : E1 → E2 satisfying ϕ(O) = O

Some Basic Facts about Isogenies
1. Let E1 and E2 be elliptic curves. Then the group of isogenies Hom(E1, E2) is a

torsion free Z-module.

2. Let E be an elliptic curve. Then the endomorphism ring End(E) is an integral
domain of characteristic 0.
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3. Let ϕ : E1 → E2 be an isogeny. Then ϕ(P + Q) = ϕ(P) + ϕ(Q) for all P, Q ∈ E1.

4. Let E/K be an elliptic curve and let m ∈ Z, m , 0. Then the multiplication by m
map [m] : E → E is non-constant.

5. Kerϕ = ϕ−1(O) is a finite subgroup.

Theorem 2.2.2. Let E be an elliptic curve and m ∈ Z, m , 0.

1. deg[m] = m2.

2. If char(K) = 0 or if m is prime to char(K), then E[m] � (Z/mZ) × (Z/mZ).

3. If char(K) = p, then either

E[pe] � {0} for all e = 1, 2, 3, ... ; or
E[pe] � Z/peZ for all e = 1, 2, 3, ... .

2.3 Tate Module
Motivation of the definition

Let E/K be an elliptic curve and m ≥ 2 an integer (prime to char(K) if char(K) >
0). By theorem above, E[m] � (Z/mZ) × (Z/mZ).

The group E[m] has more structures. Namely, each elements of the Galois group
GK̄/K acts on E[m], since if [m]P = O then [m](Pσ) = ([m]P)σ = O. So we have

GK̄/K → Aut(E[m]) � GL2(Z/mZ),

where the later isomorphism is based on choosing a basis for E[m].
As the matrices of representations above have coefficients in a ring not having char-

acteristic 0, it is not usually easy to deal with. So the natural way of achieving this aim
is to fit together all such representations when m varies.

Definition 2.3.1. Let E be an elliptic curve and l ∈ Z a prime. The (l-adic) Tate module
of E is the group

Tl(E) = lim
←−

n

E[ln]

Pay attention to the fact that each E[ln] is Z/lnZ-module, so the Tate module is nat-
urally a Zl-module and also, since multiplication-by-l maps are surjective, the inverse
limit topology on Tl(E) is equivalent to the l-adic topology given by being Zl-module.

Fact 2.3.2. As a Zl-module, the Tate module is,

1. Tl(E) � Zl × Zl if l , char(K)

2. Tp(E) � {0} or Zp if p = char(K) > 0.
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2.3.1 Action of Galois Group on the Tate Module
In above, we saw that GK̄/K acts on E[ln]. This action commutes with multiplication-
by-l maps, which was used to form the inverse limit. Therefore in a well-defined man-
ner, GK̄/K acts on Tl(E) and also this action is continuous. (Because the pro-finite group
GK̄/K acts continuously on each finite (discrete) group E[ln]).

2.3.2 Serre’s Theorem
The l-adic representations (of GK̄/K on E)

It is the map
ρl : GK̄/K → Aut(Tl(E))

given by the action of GK̄/K on Tl(E), as we showed above.

Theorem(Serre) 2.3.3. Let K be a number field and E/K an elliptic curve without
complex multiplication (namely, End(E) � Z)

1. ρl(GK̄/K) is of finite index in Aut(Tl(E)) for all prime l.

2. ρl(GK̄/K) = Aut(Tl(E)) for all but finitely many primes l.
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Chapter 3

Reduction of an Elliptic Curve

Notations: Suppose K is a local field, complete with respect to a discrete valuation ν
and R is its ring of integers (namely, R = {x ∈ K : ν(x) ≥ 0})
We also put M = {x ∈ K : ν(x) > 0} to be the maximal ideal of R, π is a uniformizer
for R (i.e. M = πR) and k = R/M is the residue field of R.

3.1 Minimal Weierstrass Equation
Definition of Minimal Weierstrass Equation 3.1.1. Let E/K be an elliptic curve, and
let

y2 + a1xy + a3y = x3 + a2x2 + a4x + a6

be a Weierstrass equation for E/K. Since replacing (x, y) by (u−2x, u−3y) causes each
ai to become uiai, if we choose u divisible by a large power of π, then we can find
a Weierstrass equation with all coefficients ai ∈ R. Then the discriminant ∆ satisfies
ν(∆) ≥ 0; and since we can look for an equation with ν(∆) as small as possible. Such
an equation is called a minimal (Weierstrass) equation for E at ν (means when ν(∆) is
minimalized subject to the condition a1, a2, a3, a4, a6 ∈ R). The ν(∆) is the valuation of
the minimal discriminant of E at ν.

Reduction modulo π
Let the operation of “reduction modulo π be denoted by a tilde (∼). For example, the
natural reduction map R→ k = R/πR is denoted by t → t̃.
If we choose a minimal Weierstrass equation for E/K, we can reduce its coefficients
modulo π to obtain a (possibly singular) curve over k, namely

Ẽ : y2 + ã1xy + ã3y = x3 + ã2x2 + ã4x + ã6
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The curve Ẽ/K is called the reduction of E modulo π.
Let P ∈ E(K). We can find homogeneous coordinates P = [x0, y0, z0] with x0, y0, z0 ∈ R
and at least one of x0, y0, z0 in R∗. Then the reduction point P̃ = [x̃0, ỹ0, z̃0] is in Ẽ(k).

E(K)→ Ẽ(k)
P→ P̃

Now the curveẼ/K may or may not be singular. In any case, we denote its set of
non-singular points by Ẽns(k), which forms a group.

Two subsets of E(K)

1. E0(K) = {P ∈ E(K) : P ∈ Ẽns(k)}

2. E1(K) = {P ∈ E(K) : tildeP = Õ}

(In fact, E0(K) is the set of points with non-singular reduction, and E1(K) is the kernel
of reduction).

An exact sequence
There is an important exact sequence of abelian groups

0→ E1(K)→ E0(K)→ Ẽns(k)→ 0

where the right-hand map is reduction modulo π.

Proposition (Points of finite order) 3.1.2. It is an easy proposition, which provide a
crucial ingredient in the proof of the weak Mordell-Weil theorem (The group E(K)/mE(K)
is a finite group when K is a number field and m ≥ 2).

Let E/K be an elliptic curve and m ≥ 1 and integer relatively prime to char(k).

1. The subgroup E1(K) has no non-trivial points of order m.

2. If the reduced curve Ẽ/K is non-singular, then the reduction map

E(K)[m]→ Ẽ(k)

is injective. (E(K)[m] denotes the set of points of order m in E(K)).

Proof. From the exact sequence above, and our general knowledge on formal groups,
we have, E1(K) ' Ê(M ) where Ê as mentioned, is the formal group associated to E.
But Ê(M ) has no non-trivial elements of order m.
This proves (1).

Now if Ẽ is non-singular, then E0(K) = E(K) and Ẽns(k) = Ẽ(k), so the m-torsion
in E(K) injects into Ẽ(k), which proves (2). �
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Example 3.1.3. Let E/Q be the elliptic curve.

E : y2 + y = x3 − x + 1

Its discriminant ∆ = −643 is prime, so Ẽ (modulo 2) is non-singular. One easily can
check that Ẽ(F2) = {O}, hence from the proposition above, we conclude that E(Q) (the
set of rational points of the curve E) has no non-zero torsion points.

3.2 The Action of Inertia
We want to re-explain the injectivity of torsion (proposition above (b)) in terms of the
action of Galois. First, we set the following notations:

Knr the maximal unramified extension of K,
Iν the inertia subgroup of GK̄/K .

We know that the unramified extensions of K correspond to the extensions of the
residue field k, GK̄/K has a decomposition

1→ GK̄/Knr → GK̄/K → GKnr/K → 1
‖ ‖

Iν Gk̄/k

In fact, the inertia group Iν is the set of all elements of GK̄/K which act trivially on the
residue field k̄.

Definition 3.2.1. Let Σ be the set on which GK̄/K acts. We say that Σ is unramified at
ν if the action of Iν on Σ is trivial.

Recall that if E/K is an elliptic curve, then we saw that GK̄/K acts on torsion sub-
group E[m] and the Tate modules Tl(E) of E.

Theorem 3.2.2. Let E/K be an elliptic curve, and suppose that reduced curve Ẽ/k is
non-singual.

1. Let m ≥ 1 be an integer relatively prime to char(k) (i.e. ν(m) = 0). Then E[m] is
unramified at ν.

2. Let l , char(k) be a prime. Then Tl(E) is unramified at ν.

Proof. (1) We can choose a finite extension K′/K so that E[m] ⊂ E(K′), and let

R′= ring of integers of K′

M ′= maximal ideal of R′

k′= residue field of R′ = R′/M ′

ν′= valuation on K′.
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By assumption, if we take a minimal Weierstrass equation for E at ν, then its dis-
criminant ∆ satisfies ν(∆) = 0 (since Ẽ/k is non-singular.) But the restriction of ν′ on
K is just a multiple of ν, so ν′(∆) = 0. Hence the Weierstrass equation is also minimal
at ν′, and Ẽ/k′ is non-singular. Now proposition 2.4.2 (2) shows that the reduction map
E[m]→ Ẽ(k′) is injective.

Let σ ∈ Iν and P ∈ E[m]. We must show that Pσ = P. By the definition of iner-
tia group, σ acts trivially on Ẽ(k′), so P̃σ − P = P̃σ − P̃ = Õ. But Pσ − P is in E[m], so
from the injectivity we have Pσ − P = O.

(2) The second part of the theorem follows from the first part immediately and the
definition Tl(E) = lim

←−−
E[ln]. �

The converse of the theorem above is known as the criterion of Neron-Ogg-Shafarevich.

3.3 Good and Bad Reduction
Definition 3.3.1. Let E/K be an elliptic curve, and let Ẽ be the reduced curve for a
minimal Weierstrass equation.

1. E has good (or stable) reduction over K if Ẽ is non-singular.

2. E has multiplicative (or semi-stable) reduction over K of Ẽ has a node.

3. E has additive (or unstable) reduction over K if Ẽ has a cusp.

In the case (2) and (3), E is naturally said to have bad reduction.
If E has multiplicative reduction, then the reduction is said to be split (respectively
non-split) if the slopes of the tangant lines at the node are in k (respectively, no in k.)
Take a look at section 1.6.4.

Theorem (Recognizing the reduction type from a minimal Weierstrass equation)
3.3.2. Let E/K be an elliptic curve with minimal Weierstrass equation

y2 + a1xy + a3y = x3 + a2x2 + a4x + a6.

Let ∆ be the discriminant of this equation and c4 the usual combination of the ai’s.

1. E has good reduction if and only if ν(∆) = 0 (i.e. ∆ ∈ R∗). In this case Ẽ/k is an
elliptic curve.

2. E has multiplicative reduction if and only if ν(∆) > 0 and ν(c4) = 0 (i.e. ∆ ∈M
and c4 ∈ R∗). In this case Ẽns is the multiplicative group,

Ẽns(k̄) � k̄∗.

3. E has additive reduction if and only if ν(∆) > 0 and ν(c4) > 0 (i.e. ∆, c4 ∈M ).
In this case Ẽns is the additive group,

Ẽns(k̄) � k̄+.
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Proof. The theorem directly follows from 1.6.4. �

Example 3.3.3. Let p ≥ 5 be a prime. Then the elliptic curve

E1 : y2 = x3 + px2 + 1

has good reduction over Qp, while

E2 : y2 = x3 + x2 + p

has (split) multiplicative reduction over Qp, and

E3 : y2 = x3 + p

has additive reduction over Qp.

Definition 3.3.4. Let E/K be an elliptic curve. E has potential good reduction over K
if there is a finite extension K′/K so that E has good reduction over K′.

Theorem (semi-stable reduction theorem) 3.3.5. Let E/K be an elliptic curve.

1. Let K′/K be an unramified extension. Then the reduction type of E over K (i.e.
good, multiplicative, or additive) is the same as the reduction type of E over K′.

2. Let K′/K be any finite extension. If E has either good or multiplicative reduction
over K, then it has the same type of reduction over K′.

3. There exists a finite extension K′/K so that E has either good or (split) multi-
plicative reduction over K′. (That is the reason why we call them semi-stable
and unstable reduction.)

Proof. (1) This follows from Tate’s algorithm. We will assume that char(k) ≥ 5, so E
has a minimal Weierstrass equation over K of the form

E : y2 = x3 + Ax + B

Let R′ be the ring of integers in K′, ν′ the valuation on K′ extending ν, and

x = (u′)2x′ y = (u′)3y′

a change of coordinates producing a minimal equation for E over K′. Since K′/K is
unramified, we can find u ∈ K with (u/u′) ∈ (R′)∗. Then the substitution

x = u2x′ y = u3y′

also gives a minimal equation for E/K′, since

ν′(u−12∆) = ν′((u′)−12∆)

But this new equation has coefficients in R, so by the minimality of the original equa-
tion over K, we have ν(u) = 0. Hence the original equation is also minimal over K′.
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Since ν(∆) = ν′(∆) and ν(c4) = ν′(c4), using proposition above we deduce that E has
the same reduction type over K and K′.

(2) Take a minimal Weierstrass equation for E over K, with corresponding quantities ∆

and c4. Let R′ be the ring of integers in K′, ν′ the valuation on K′ extending ν,

x = u2x′ + r y = u3y′ + su2x′ + t

by change of coordinates we get a minimal Weierstrass equation for E over K′. For
this new equation the associated ∆′ and (c4)′ satisfy

0 ≤ ν′(u) ≤ min{
1
2
ν′(∆),

1
4
ν′(c4)}

But for good (resp. multiplicative) reduction from proposition above (1) and (2), we
have ν(∆) = 0 (resp. ν(c4) = 0), so in both cases ν′(u) = 0. Hence

ν′(∆′) = ν′(∆) and ν′(c′4) = ν′(c4),

again using the previous proposition, E has good (resp. multiplicative) reduction over
K′.

(3) We assume char(k) , 2 and extend K so that E has a Weierstrass equation in
Legendre normal form

E : y2 = x(x − 1)(x − λ), λ , 0, 1.

For this equation,

c4 = 16(λ2 − λ + 1) and ∆ = 16λ2(λ − 1)2.

We consider three cases.

Case 1. λ ∈ R, λ . 0, 1(modM ). Then ∆ ∈ R∗, so the given equation has good re-
duction.

Case 2. λ ∈ R, λ ≡ 0 or 1 (modM ). Then ∆ ∈ M and c4 ∈ R∗, so the given equation
has (split) multiplicative reduction.

Case 3. λ < R. Choose the integer r ≥ 1 so that πrλ ∈ R∗. Then the substitution
x = π−r x′, y = π−3r/2y′ (where we replace K by K(π1/2) if necessary) gives a Weier-
strass equation

(y′)2 = x′(x′ − πr)(x′ − πrλ)

for E with integral coefficients, ∆′ ∈ M , and c′4 ∈ R∗, so E has (split) multiplicative
reduction. �
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3.4 The Group E/E0

Recall that the group E0(K) consists of those points of E(K) whose reduction to Ẽ(k)
is not a singular point.

Theorem (Kodaira, Neron) 3.4.1. Let E/K be an elliptic curve. If E has split multi-
plicative reduction over K, then E(K)/E0(K) is a cyclic group of order ν(∆) = −ν( j).
In all other cases, E(K)/E0(K) is a finite group of order at most 4.

Proof. The finiteness of E(K)/E0(K) follows from the existence of the Neron model,
which is a group scheme over S pec(R) whose generic fiber is E/K. The specific de-
scription of E(K)/E0(K) comes from the complete classification of the possible special
fibers of a Neron model. �

Corollary 3.4.2. The subgroup E0(K) is of finite index in E(K).

Proof. It is clear from the theorem. �

3.5 The Criterion of Neron-Ogg-Shafarevich
If an elliptic curve E/K has a good reduction,and m ≥ 1 is an integer prime to char(k),
we saw that the torsion subgroup E[m] is unramified. Now its converse.

Theorem (Criterion of Neron-Ogg-Shafarevich) 3.5.1. Let E/K be an elliptic curve.
The following are equivalent.

1. E has good reduction over K.

2. E[m] is unramified at ν for all integers m ≥ 1 relatively prime to char(k).

3. The Tate module Tl(E) is unramified at ν for some (all) primes l with l , char(k).

4. E[m] is unramified at ν for infinitely many integer m ≥ 1 relatively prime to
char(k).

Proof. We have already proven (1)⇒ (2) in 2.5.5.
Also (2)⇒ (3)⇒ (4) clearly.

Pay attention to the fact that Tl(E) is unramified if and only if E[ln] is unramified
for all n ≥ 1.) It remains to prove that (4) implies (1).
Assume (4) holds. Let Knr be the maximal unramified extension of K.
Choose an integer m satisfying

1. m is relatively prime to char(k);

2. m > #E(Knr)/E0(Knr);

3. E[m] is unramified at ν.
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Such an m exists, since we are assuming (4), and E(Knr)/E0(Knr) is finite from the
previous theorem.

Now consider the two exact sequences

0→ E0(Knr)→ E(Knr)→ E(Knr)/E0(Knr)→ 0
0→ E1(Knr)→ E0(Knr)→ Ẽns(k̄)→ 0

(Note that k̄ is the residue field of the ring of integers in Knr.) Since E[m] ⊂ E(Knr),
we see that E(Knr) has a subgroup isomorphic to (Z/mZ)2. But from choice of m (2),
E(Knr)/E0(Knr) has order strictly less than m. It follows from the first exact sequence
that we can find a prime l dividing m so that E0(Knr) contains a subgroup (Z/lZ)2.

Now suppose that E has bad reduction over Knr. If the reduction is multiplicative,
then from theorem 2.6.2 (2),

Ẽns(k̄) = (k̄)∗;

but then the l-torsion in Ẽns(k̄) would be Z/lZ. Hence this type of reduction cannot
occur. Similarly, if E has additive reduction over Knr, then again from theorem 2.6.2
(3),

Ẽns(k̄) = k̄ (taken additively),

which has no l-torsion at all. This eliminates multiplicative and additive reduction as
possibilities, so it remains the case that E has good reduction over Knr. Finally, since
Knr/K is unramified, we conclude 2.6.4 (1) that E has good reduction over K and
therefore we are done. �

Corollary 3.5.2. Let E1, E2/K be elliptic curves which are isogenous (namely, there
is a non-constant isogenous between them) over K. Then either they both have good
reduction over K or neither one does.

Proof. Let φ : E1 → E2 be a non-zero isogeny defined over K, and m ≥ 2 be an integer
relatively prime to both char(k) and degφ. Then the induced map

φ : E1[m]→ E2[m]

is an isomorphism of GK̄/K-modules, so in particular either both are unramified are ν
or neither one is. Now, the result deduces from the theorem ((1)⇔ (4)). �

Corollary 3.5.3. Let E/K be an elliptic curve. Then E has potential good reduction if
and only if the inertia group Iν acts on the Tate module Tl(E) through a finite quotient
for some (all) prime(s) l , char(k).

Proof. Suppose E has potential good reduction. Therefore there is a finite extension
K′/K so that E has good reduction over K′. Extending K′, we may assume K′/K is
Galois. Let ν′ be the valuation on K′ and I′ν the inertia group of K′. From the theorem,
I′ν acts trivially on Tl(E) for any l , char(k). Hence the action of Iν on Tl(E) factors
through the finite quotient Iν/I′ν. This proves one implication.
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Assume now that for some l , char(k), Iν acts one Tl(E) through a finite quotient,
say Iν/J. Then the fixed field of J, which we denote K̄J , is a finite extension of Knr =

K̄ Iν . Hence we can find a finite extension K′/K so that K̄J is the compositum

K̄J = K′Knr

Then the inertia group of K′ is equal to J, and by assumption J acts trivially on Tl(E).
Now again from the theorem E has good reduction over K′. �
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Chapter 4

Models and General Theory of
Reduction

Basically, the main aim of defining models is the classification of nonsingular projec-
tive surfaces within a given birational equivalence class. In this case one knows that

• Every birational equivalence class of surfaces has a nonsingular projective sur-
face in it.

• The set of nonsingular projective surfaces with a given function field K/k is a
partially ordered set under the relation given by the existence of a birational
morphism.

• Any birational morphism f : X → Y can be factored into a finite number of
steps, each of which is a blowing-up of a point.

• Unless K is rational (i.e., K = K(P2) or ruled (i.e., Kis the function field of
a product P1 × C, where C is a curve), there is a unique minimal model of the
function field K. (In fact, in the rational and ruled cases, there are infinitely many
minimal elements, and their structure is also well-known.)

First of all, we define some basic notions required for introducing different types of
models.

4.1 Basic Definitions
Definition 4.1.1. An integral domain A is called normal if it is integrally closed in
Frac(A), that is α ∈ Frac(A) integral over A implies that α ∈ A.

Definition 4.1.2. Let X be a scheme. We say that X is normal at x ∈ X or that x is
normal point of X if OX,x is normal. We say that X is normal if it is irreducible and
normal at all of its points.
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Definition 4.1.3. In commutative algebra, a normal noetherian integral domain of di-
mension 1 is called a Dedekind domain. (Sometimes, in this definition we assume that
the dimension of a Dedekind domain can also be zero so that we are able to make the
class of Dedekind domains stable by localization.)

Definition 4.1.4. In scheme theory, we call a normal locally noetherian scheme of
dimension 0 or 1 a Dedekind scheme.

Definition 4.1.5. Let (A,m) be a noetherian local ring. We say that A is regular if
dimk m/m2 = dim A. By Nakayama’s lemma, A is regular if and only if m is generated
by dim A elements.

Definition 4.1.6. We say that a scheme is regular if its local rings are local regular.

Example 4.1.7. The spectrum of a Dedekind domain is a Dedekind scheme. (In fact,
if X is a noetherian integral scheme, then X is a Dedekind scheme if and only if OX(U)
is a Dedekind domain for every open subset U of X.

As you have already considered, we wish to study relative curves over a Dedekind
scheme. We start by introducing fibered surface.

Definition of a fibered surface 4.1.8. Let S be a Dedekind scheme. We call an inte-
gral, projective, flat S -scheme π : X → S of dimension 2, a fibered surface over S .

We call Xη the generic fiber of X. A fiber Xs with s ∈ S is called a closed fiber.
When dim S = 1, X is also called projective flat S -curve.

(Note that the flatness of π is equivalent to the surjectivity of π.)
In other words, a fibered surface is a nonsingular projective surface S , a non singular
curve C, and a surjective morphism π : S → C. For any t ∈ C, the fiber of S lying over
t is the curve S t = π−1(t). Note that S t will be a nonsingular curve for all but finitely
many t ∈ S . We say that X is normal (respectively, regular) fibered surface if X is
normal (respectively, regular).

It is quite well-known that a fibered surface is essentially determined by its points
of codimension 1.

Fact 4.1.9. Let S be a Dedekind scheme of dimension 1, with generic point η. Let
X → S be a fibered (normal fibered) surface. Then Xη is an integral (normal) curve
over K(S ). For any s ∈ S , Xs is a projective curve over k(s).

Definition 4.1.10. We call a regular fibered surface X → S over a Dedekind scheme S
of dimension 1 an arithmetic surface.

4.2 Arithmetic Surface
Arithmetic surfaces are one of the most important objects in the study of surfaces. Let’s
take a look at them a little bit closer.
Let R be a Dedekind domain. An arithmetic surface over Spec(R) is the arithmetic
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analogue of the fibered surfaces. Spec(R) plays the role of the base curve in here, and
arithmetic surface is an R-scheme C → Spec(R) whose fibers are curves. For example
if R is a discrete valuation ring, then there will be two fibers. The generic fiber will be
a curve over the fraction field of R and the special fiber will be a curve over the residue
field of R.
Exactly similar to the case of fibered surfaces, an arithmetic surface C may be regular
(nonsingular) even if it has singular fibers.

Theorem 4.2.1. Let π : C → Spec(R) be a regular arithmetic surface over a Dedekind
domain R, and let p ∈ Spec(R).
Let x ∈ Cp ⊂ C be a closed point on the fiber of C over p. Then

Cp is nonsingular at x⇔ π∗(p) *M 2
C ,x.

The following important corollary says that the smooth part of a proper regular
arithmetic surface is large enough to contain all of the rational points on the generic
fiber. In turn, this also shows that the regularity condition is necessary for finding a
“nice” model.
Recall that if π : X → S be an S -scheme, then a section of X was a morphism of
S -scheme σ : S → X. This amounts to saying that π ◦ σ = IdS . The set of sections of
X is denoted by X(S ) (and also by X(A) if S = spec A.)
Now, let X be a scheme over a field k. Then we can identify X(k) with the set of points
x ∈ X such that k(x) = k. Indeed, let σ ∈ X(k), and let x be the image of the point of
Spec(k). The homomorphism σ#

x induces a field homomorphism k(x) → k. As k(x) is
a k-algebra, this implies that k(x) = k.
Conversely, if x ∈ X verifies k(x) = k, there exists a unique section Spec(k)→ X whose
image is x.

We call the points of X(k), (k−) rational points of X. The notion of rational points
is fundamental in arithmetic geometry.

Corollary 4.2.2. Let R be a Dedekind domain with fractional field K, let C /R be an
arithmetic surface, and let C/K be the generic fiber of C .

1. If C is proper pver R, then
C(K) = C (R)

2. Suppose that the scheme C is regular, and let C 0 ⊂ C be the largest subscheme
of C such that the map C 0 → Spec(R) is a smooth morphism. Then

C (R) = C 0(R)

3. In particular, if C is regular and proper over R, then

C(K) = C (R) = C 0(R)

.
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Proof. The case (1) is really just a special case of the valuation criterion of proper-
ness. Any point in C (R) can be specialized to the generic fiber to give a point in C(K),
so there is a natural map C (R) → C(K). This map is clearly one-to-one, since two
morphisms Spec(R) → C which agrees generically (i.e., one a dense open set) are the
same. Thus C (R)� C(K).
Let P ∈ C(K) be a point. We are given that C is proper over R, so the valuation crite-
rion says that there is a morphism σP : Spec(R) → C making the following diagram
commute:

C = C ×R K → C

↑ P ↑ σP

Spec(K) → Spec(R).

This proves that every point in C(K) comes from a point in C (R), so C (R) = C(K).

(2) As theorem above says, every point in C (R) intersects each fiber at a nonsingu-
lar point of the fiber. But, by definition, C 0, is the complement in C of the singular
points on the fibers. Therefore the natural inclusion C 0 → C (R) is a bijection.

(3) is immediate from (1) and (2) �

At the end of this section, let us roughly explain the aim of finding several so-called
nice models for an elliptic curve over a function field.
Like always, let R be a discrete valuation ring with maximal ideal p and fractional field
K, and let E/K be an elliptic curve given by a Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6

, say with coefficients a1, a2, a3, a4, a6 ∈ R. This equation can be used to define a
closed subscheme W ⊂ P2

R. An elementary property of closed subschemes of projec-
tive space says that every point of E(K) extends to give a point of W (R), that is, a
section Spec(R)→ W .
An important property of the elleptic curve E is that it has the structure of a group
variety, which means that there is a group law given by a morphism E × E → E. This
group law will extend to a rational map W ×R W → W , but in general it will not be
a morphism, so W will not be a group scheme over R. However, if we discard all of
the singular points on the special fiber of W (i.e., the singular points on the reduction
of E modulo p) and call the resulting scheme W 0, then we will prove that the group
law on E does extend to a morphism W 0 ×R W 0 → W 0. This makes W 0 into a group
scheme over R, but unfortunately, we may have lost the point extension property. In
orther words, not every point of E(K) will extend to give a point in W 0(R).

Here, a Neron model for E/K is a scheme E /R which has both of these desirable
properties. Thus every point in E(K) extends to a point in E (R), and further the group
law on E extends to a morphism E ×R E → E which makes E into a group scheme
over R however it is by no means clear that such a scheme exists.
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4.3 Neron model for a curve
We begin this section with an important theorem showing the existence of a unique
minimal proper regular model for an elliptic curve.

Theorem and Definition 4.3.1. Let R be a Dedekind domain with fraction field K, and
let C/K be a nonsingular projective curve of genus g

1. (Resolution of Singularities for Arithmetic Surfaces, Abhyankar - Lipman) There
exists a regular arithmetic surface C /R, proper over R, whose generic fiber is iso-
morphic to C/K. We call C /R a proper regular model for C/K.

2. (Minimal Models Theorem, Lichtenbaum - Shafarevich) Assume that g ≥ 1.
Then there exists a proper regular model C min/R for C/K with the following
minimality property;

Let C /R be any other proper regular model for C/K. Fix an isomorphism from
the generic fiber of C to the generic fiber C min. Then the induced R-birational
map

C → C min

is an R-isomorphism. We call C min/R the minimal proper regular model for
C/K. It is unique up to unique R-isomorphism.

Definition of a Neron model 4.3.2. Let R be a Dedekind domain with fraction field K,
and let E/K be an elliptic curve. A Neron model for E/K is a (smooth) group scheme
E /R whose generic fiber is E/K and which satisfies the following universal property,
which is usually called Neron Mapping Property

Let X /R be a smooth R-scheme (i.e., X is smooth over R) with the generic fiber
X/K, and let φK : X/K → E/K be a rational map defined over K. Then there exists a
unique R-morphism φR : X/R → E/R extending φK .

The most important instance of the Neron mapping property is the case that X =

Spec(R) and X = Spec(K). Then the set of K-maps X/K → E/K is precisely the group
of K-rational points E(K), and the set of R-morphisms X/R → E/R is the group of
sections E (R). So in this situation the Neron mapping property says that the natural
inclusion

E (R)→ E(K)

is a bijection. If R is a complete discrete valuation ring with algebraically closed residue
field, then one can show that the equality E (R) = E(K) suffices to ensure that the group
scheme E /R is a Neron model for E/K.

Theorem (Kodaira - Neron) 4.3.3. Let E/K be an elliptic curve over the fraction field
K of a Dedekind domain R.

1. There is a regular projective two dimensional scheme C /Spec(R) whose generic
fiber C ×Spec(R) Spec(K) is isomorphic (over K) to E/K. Suppose further that C is
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minimal (i.e., the map C → Spec(R) cannot be factored as C → C ′ → Spec(R)
in such a way that C ×Spec(R) Spec(K)→ C ′×Spec(R) Spec(K) is an isomorphism.)
Then C is unique.

2. Let E ⊂ C be the subscheme of C obtained by discarding all of the singular
points of the special fiber C̃ = C ×Spec(R) Spec(k). (i.e., we discard all multiple
fibral components and all intersections of fibral components. Note that these are
not singular points of C itself, which is regular.) Then E is a group scheme over
Spec(R) whose generic fiber E ×Spec(R) Spec(K) is isomorphic, as a group variety,
to E/K. E is called the Neron minimal model of E/K.

3. The natural map E (R)→ E(K) is an isomorphism. (i.e., every section Spec(K)→
E on the generic fiber extends to a section Spec(R)→ E .)

4. Let Ẽ = E ×Spec(R) Spec(k) be the special fiber of E . Then Ẽ is an algebraic
group over k, and we let Ẽ 0/k be its identity component (so Ẽ is an extension of
Ẽ 0 by a finite group.) Note that there is a reduction map E (R) → Ẽ (k). Then
with the identification E (R) � E(K) from (3) above,

Ẽ 0(k) � Ẽns(k) � E0(K)/E1(K).

Ẽ (k)/Ẽ 0(k) � E(K)/E0(K).

As the proof is not directly connected to our main goal of this thesis, we will not
prove it here. Refer to “Quasi-fonctions et hauteurs sur les varietes abeliennes. Ann of
Math. 82 (1965), 249-331” for the complete proof of this theorem.

4.4 A short note on Divisors

4.4.1 Weil Divisor
Definition 4.4.1. Let X be a noetherian scheme. A prime cycle on X is an irreducible
closed subset of X. A cycle on X is an element of the direct sum Z(X).
Thus any cycle Z can be written in a unique way as a finite sum

Z =
∑
x∈X

nx[x]

As we have a canonical bijection between X and the set of its irreducible closed subsets
via the map x→ {x}, we rather write Z as a finite sum

Z =
∑
x∈X

nx[{x}].

The (finite) union of the {x} such that nx , 0 is called the support of Z, and is denoted
Supp(Z). (Note that Supp(Z) is closed subset of X. By convention, the support of 0 is
the empty set.)

We say that a cycle is of codimension 1 if the irreducible components of Supp(Z) are
of codimension 1 in X. (Note that {x} is of codimension 1 if and only if dim OX,x = 1.)
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The cycles of codimension 1 form a subgroup Z1(X) of the group of cycles on X.

Example 4.4.2. Let X be a curve over a field k. Then a cycle of codimension 1 on X is
simply a finite sum

∑
i

ni[xi] with ni ∈ Z and where the xi are closed points of X.

Definition (Weil Divisor) 4.4.3. Let X be a noetherian integral scheme. A cycle of
codimension 1 on X is called a Weil divisor on X.

4.4.2 Cartier Divisor
Let A be a ring and Frac(A) be the total ring of fraction of A, which is the localization
of A, with respect to the multiplicatively closed subset of regular elements (those ele-
ments of A which are not zero divisor) of A and we know that it is a ring containing A
as a subring, we denote the presheaf Frac(OX(U)) by K′X (that is K′X(U) = Frac(OX(U)).

Let the sheaf of algebra associated to the presheaf K′X above be denoted by KX , it is
obvious that OX is a subsheaf of KX . We also denote the subsheaf of invertible elements
of KX by K∗X .

Definition (Cartier Divisor) 4.4.4. Let X be a scheme. We denote the group H0(X,K∗X/O
∗
X)

by Div(X). The elements of Div(X) are called Cartier divisors on X. We denote the
group of all such, so that

Div(X) = Γ(X,K ∗
X /O

∗
X)

Conversely, then, a divisor D ∈ Div(X) is represented by data (Ui, fi) consisting of
an open covering Ui of X together with elements fi ∈ Γ(Ui,K ∗

X ), having the property
that Ui j = Ui ∩ U j one can write

fi = gi j f j f or some gi j ∈ Γ(Ui j,O∗X).

fi is called a local equation for D at any point x ∈ Ui. Two such collections determine
the same Cartier divisor if there is a common refinement {Vk} of the open coverings on
which they are defined so that they are given by data {(Vk, fk)} and {(Vk, f ′k )} with

fk = hk f ′k on Vk f or some hk ∈ Γ(Vk,O∗X).

The group operation on Div(X) is always written additively: if D,D′ ∈ Div(X) are
represented respectively by data {(Ui, fi)} and {(Ui, f ′i )}, then D + D′ is given by by
{(Ui, fi f ′i )}.

The support of divisor D = {(Ui, fi)} is the set of points x ∈ X at which a local equation
of D at x is not a unit in OxX. D is effective if fi ∈ Γ(Ui,OX) is regular on Ui: this is
written D < 0.
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We fix a regular, Noetherian, connected scheme X of dimension 2. Let us recall that
the Cartier divisor on X can be identified with the Weil divisor on X. For any Cartier
divisor D, we let OX(D) denote the invertible sheaf associated to D. If D is effective,
then OX(−D) is a sheaf of ideals of OX . Consequently, D is naturally endowed with the
closed subscheme structure V(OX(−D)) of X.

Normal Crossing Divisor 4.4.5. Let Y be a regular Noetherian scheme, and let D be
an effective Cartier divisor on Y . We say that D has normal crossings at a point y ∈ Y if
there exist a system of parameters f1, ..., fn of Y at y, an integer 0 ≤ m ≤ n, and integers
r1, ..., rm ≥ 1 such that OY (−D)y is generated by f r1

1 , ..., f rm
m . We say that D has normal

crossings if it has normal crossings at every point y ∈ Y .
We say that the prime divisors D1, ...,Dl meet transversally at y ∈ Y if they are pairwise
distinct and if the divisor D1 + ... + Dl has normal crossings at y.

The irreducible divisors on a fibered surface naturally divide into two differentsorts,
those that lie in a single fiber and those that cover C.
More precisely, let Γ ⊂ S be an irreducible curve lying on a fibered surface π : S → C.
Then π induces a map of curves π : Γ→ C that is either constant or surjective.
If it is constant, say π(Γ) = t, then Γ lies entirely in the fiber S t, and we call Γ fibral
or vertical. If not, then π : Γ → C is a finite map of positive degree, and we call Γ

horizontal. Now the formal definition;

Definition(Horizontal and Vertical Divisor) 4.4.6. Let π : X → S be a fibered sur-
face over a Dedekind scheme S . Let D be an irreducible Weil divisor. We say that D
is horizontal if dim S = 1 and if π|D : D → S is surjective (hence finite). If π(D) is
reduced to a point, we say that D is vertical. An arbitrary Weil divisor is called hori-
zontal (vertical) if its components are horizontal (vertical).

We will say that a Cartier divisor is horizontal (vertical) if its associated Weil divi-
sor [D] is horizontal (vertical). (Recall that [D] =

∑
x∈X, dim OX,x=1

multx(D)[{x}] ∈ Z1(X).)

Definition (Contraction) 4.4.7. Let X → S be a normal fibered surface. Let ε be a
set of integral vertical curves on X. A normal fibered surface Y → S together with a
projective birational morphism f : X → Y such that for every integral vertical curve E
on X, the set f (E) is a point if and only if E ∈ ε is called a contraction of the E ∈ ε.

Definition (Exceptional Divisor) 4.4.8. Let X → S be a regular fibered surface.
A prime divisor E on X (a closed integral subscheme of X which is of codimension
one.) is called an exceptional divisor if there exists a regular fibered surface Y → S
and a morphism f : X → Y of S -scheme such that f (E) is reduced to a point, and
f : X\E → Y\ f (E) is an isomorphism.

In other words, an exceptional divisor is an integral curve that can be contracted to
a regular point. Note that as f (E) is a closed point, its image in S is also a closed point,
hence E is vertical divisor.
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4.5 Regular models in general
Definition (Relatively Minimal) 4.5.1. We say that a regular fibered X → S is rela-
tively minimal if it does not contain any exceptional divisor.

By a theorem, this is equivalent to saying that every birational morphism of regular
fibered surface f : X → Y is an isomorphism.

Definition (Minimal) 4.5.2. It is said that X → S is minimal if every birational map of
regular fibered S -surfaces Y → X is a birational morphism. (Note that, every minimal
surface is relatively minimal.)

Fact 4.5.3. Let X → S be an arithmetic surface. Then there exist only a finite number
of fibers of X → S containing exceptional divisors.

Definition 4.5.4. Let S be a Dedekind scheme of dimension 1, with function field K.
Let C be a normal, connected, projective curve over K. We call a normal fibered surface
C → S together with an isomorphism f : Cη ' C a model of C over S .

Definition 4.5.5. In general case, if X → S is a normal fibered surface, we will call a
regular fibered surface Y → S together with a birational map Y → X a (regular) model
of X over S . (Note that if dim S = 1, then Yη → Xη is a birational map of projective
normal curves, therefore it is an isomorphism.)

Definition (Regular Model) 4.5.6. A regular model of C is a model C of C over S
such that C is regular.

Definition (Weierstrass Model) 4.5.7. Let S =Spec A be an affine Dedekind scheme
of dimension 1 and let E be an elliptic curve over K = K(S ), endowed with a privilege
rational point O ∈ E(K). By definition, E admits a homogeneous equation (Weierstrass
equation)

v2z + (a1u + a3z)vz = u3 + a2u2z + a4uz2 + a6z3

with O corresponding to the point (0, 1, 0), we then associate the S -scheme

W = Proj A[u, v, z]/(v2z + (a1u + a3z)vz − (u3 + a2u2z + a4uz2 + a6z3))

to it. We call the surface W → S the Weierstrass model of E over S associated to it.

Note that, if we start with equation above, by a suitable change of coordinators we
will obtain an integral equation for E. The Weierstrass model associated to this new
equation admits a desingularization W̃ since E is smooth.

Fact 4.5.8. Let us S is affine. Let C be a smooth projective curve of genus (geometric
genus) g ≥ 1 over K. Then C admits a unique minimal regular model Cmin.

Definition (Minimal Regular Model of an Elliptic Curve) 4.5.9. Let E be an elliptic
curve over K. We call the minimal arithmetic surface X → S with generic fiber iso-
morphic to E the minimal regular model of E. (Such a model exists and it is unique by
the definition of minimality.)

Example (Model of a curve) 4.5.10. If C is an elliptic curve over K, then the Weier-
strass models of C over K are models of C over S .
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4.6 Reduction of a normal projective curve
In this section, S will be again a Dedekind scheme of dimension 1, and we set
K = K(S ).

Definition 4.6.1. Let C be a normal projective curve over K. Let us fix a closed point
s ∈ S . We call the fiber Cs of a model C of C a reduction of C at s.

Naturally, if S is the spectrum of a Dedekind ring A, and if p is the maximal ideal
of A corresponding to s, we also call Cs a reduction of C modulo p.

Definition (Good Reduction and Bad Reduction) 4.6.2. Let C be as above. We say
that C has good reduction at s ∈ S if it admits a smooth model over Spec OS ,s. We say
that C has good reduction over S if it has good reduction at every s ∈ S . If C does not
have good reduction at s, we will say that C has bad reduction at s.

Note if C has a non-smooth model over Spec OS ,s, this does not necessarily imply
that C has bad reduction at s.

Example 4.6.3. Let p be a prime number , 3. Then the curve

C = Proj Q[x, y, z]/(x3 + y3 + p3z3)

admits a model C over Z by taking the same equation over Z. The reduction Cp is a
singular curve. Meanwhile, C = Proj Q[x, y,w]/(x3 + y3 + w3), where w = pz is also a
model of C over Z, but is smooth over p. Hence C has good reduction at p.

The following theorem is corresponded to the semi-stable reduction theorem (3.3.5)

Theorem 4.6.4. Let S be a Dedekind scheme of dimension 1, C a smooth projective
curve over K = K(S ) of genus g ≥ 1.

1. The curve C has good reduction at s ∈ S except perhaps for a finite number of s.

2. Assume that S is affine. Then C has good reduction over S if and only if the
minimal regular model Cmin of C over S is smooth. Furthermore, this implies
that Cmin is a unique smooth model C over S .

3. (Etale base change) Let S ′ be a Dedekind scheme of dimension 1 that is etale
over S , S ′ → S . Let s′ ∈ S ′ and let s be its image in S . Then CK′ has good
reduction at s′ if and only if C has good reduction at s.

Theorem 4.6.5. Let E be an elliptic curve over K = K(S ). Let s ∈ S , let W be the
minimal Weierstrass model of E over Spec OS ,s and ∆ the discriminant of W. Then the
following properties are equivalent:

1. E has good reduction at s;

2. Ws is smooth over k(s);
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3. ∆ ∈ O∗S ,s.

So far, we know that a curve that has bad reduction will have bad reduction after
etale base change. However, if we admit ramified base change, the situation is different.

Definition 4.6.6. Let C be a smooth projective curve over K = K(S ). We say that
C has potential good reduction at s ∈ S if there exist a morphism S ′ → S from a
Dedekind scheme S ′ to S and a point s′ ∈ S ′ lying above s such that CK(S ′) has good
reduction at s′. If C has good reduction at s, then it has potential good reduction at s.

4.7 A Short Note on Algebraic Curve
By Algebraic Curve, we always mean an algebraic variety over a field k whose irre-
ducible components are of dimension 1. Similarly, if all irreducible components are of
dimension 2, we call the variety, an algebraic surface over k.

Let X be a reduced curve over a field k, and let π : X′ → X be the normalization
morphism. We know that π is a finite morphism. Take a look at the exact sequence of
coherent sheaves on X,

0→ OX → π∗OX′ → S → 0

The support of S is a closed set not containing any generic point of X; it is therefore a
finite set, containing of the singular points of X.

For any x ∈ X, we have S x = O′X,x/OX,x where O′X,x is the integral closure of OX,x

in Frac(OX,x), because normalization commutes with localization.

We set δx := lengthOX,x S x

Note that by the definition above, δx = 0 if and only if x is a normal (and hence
regular) point of X.

Definition (ordinary multiple and ordinary double point) 4.7.1. Again, let X be a
reduced curve over an algebrically closed field k and π : X′ → X be the normalization
morphism. We say that a closed point x ∈ X is an ordinary multiple if δx = mx − 1,
where mx is the number of π−1(x) (which we know it is finite.) If mx = 2, we say that x
is an ordinary double point or a node.

Definition (Euler-Poincare characteristic) 4.7.2. Let X be a projective variety over a
field k. Let F be a coherent sheaf on X. We call the alternating sum

χk(F) =
∑
i>0

(−1)i dimk Hi(X, F)

The Euler-Poincare characteristic of F. It is finite integer (note that Hi(X, F) = 0 if
i > dim X.)
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Definition (Arithmetic genus) 4.7.3. Let X be a projective curve over a field k. The
arithmetic genus of X is defined to be the integer

pa(X) := 1 − χk(OX)

If X is geometrically connected and geometrically reduced, so that we have H0(X,OX) =

k, then pa(X) = dimk H1(X,OX).

In general, if X is a projective nonsingular curve, H1(X,OX) and H0(X, ωX) are dual
vector spaces. Hence the arithmetic genus pa = dim H1(X,OX) and the geometric
genus pg = dim Γ(X, ωX) are equal.
If X is a projective nonsingular surface, then H0(X, ω) is dual to H2(X,OX), so pg =

dim H2(X,OX). One the other hand pa = dim H2(X,OX) − dim H1(X,OX). Thus
pg ≥ pa. The difference, pg − pa = dim H1(X,OX) is usually denoted by q, and is
called the irregularity of X.

4.8 Stable Reduction of Algebraic Curve
Definition (Semi-stable and Stable) 4.8.1. Let C be an algebraic curve over an alge-
brically closed field k. We say that C is semi-stable if it is reduced and if its singular
points are ordinary double points (node). We say that C is stable if moreover, the
following conditions are varified:

1. C is connected and projective, of arithmetic genus pa(C) ≥ 2.

2. Let γ be an irreducible component of C that is isomorphism to P1
k . Then it inter-

sects the other irreducible components at at least three points.

Naturally, we say that a curve C over a field k is semi-stable (respectively stable) if its
extension Ck̄ to the algebraic closure k̄ of k is semi-stable (resp. stable) over k̄.
As an example; a smooth curve over a field k is semi-stable.

Definition (Rational Point of a scheme) 4.8.2. Let X be a scheme over a field k. We
call x ∈ X a rational point of X if k(x) = k.

Definition (Split Ordinary Point) 4.8.3. Let C be a semi-stable curve over a field k,
let π : C′ → C be the normalization morphism, and x ∈ C a singular point. We will say
that x is a split ordinary double point (or simply that x is split) if the points of π−1(x)
are all rational over k.

Definition 4.8.4. Let f : X → S be a morphism of finite type to a scheme S . We
say that f is semi-stable, or that X is a semi-stable curve over S , if f is flat and if for
any s ∈ S , the fiber Xs is a semi-stable curve over k(s). We say that f is stable of
genus g ≥ 2, or that X is a stable curve over S , if f is proper, flat, with stable fibers of
arithmetic genus g.

Now, let S be a Dedekind scheme of dimension 1. Let C be a smooth projective curve
over K(S ). We say that C has semi-stable reduction (resp. stable reduction) at s ∈ S if
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there exists a model C of C over Spec OS ,s that is semi-stable (resp. stable) over Spec
OS ,s. The special fiber Cs of a stable model over Spec OS ,s is called the stable reduc-
tion of C at s. (It can be seen that stable model -and therefore the stable reduction- is
unique.)

We also say that C has semi-stable (resp. stable) reduction over S if the property is
true for every s ∈ S . A model C of C over S is called a stable model if C → S is a
stable curve. For instance, if C has good reduction at s, then it has stable (and a fortiori
semi-stable) reduction.

Here we explain two theorems about semi-stable reduction of an algebraic curve
over a Dedekind scheme of dimension 1.

Theorem 4.8.5. Let S be an affine Dedekind scheme of dimension 1. Let C be a
smooth projective scheme over K = K(S ) of genus g ≥ 1. Let us suppose that C has
semi-stable reduction over S , then

1. The minimal regular model Cmin of C over S is semi-stable over S .

2. The curve C admits a semi-stable model over S . If C has stable reduction over
S , then it admits a stable model over S .

Example 4.8.6. Let E be an elliptic curve over K(S ). If E has semi-stable reduction at
a point s ∈ S if and only if it has good reduction at s or multiplicative reduction at s.

Theorem 4.8.7. Let S be a Dedekind scheme of dimension 1, C a smooth projective
curve over K(S ) with pa(C) ≥ 1, and S ′ a Dedekind scheme of dimension 1 that
dominates S (roughly, means S is dense in S ′.). Let K′ = K(S ′).

1. If C has semi-stable (resp. stable) reduction over S , then CK′ has semi-stable
(resp. stable) reduction over S ′. If C is a semi-stable (resp. stable) model of C
over S , then C ×S S ′ is a semi-stable (resp. stable) model of CK′ over S ′.

2. Let Cs be the stable reduction (of which we suppose the existence) of C at a
point s ∈ S . Let s′ ∈ S ′ lie above s. Then the stable reduction of CK′ at s′ is
isomorphic to Cs ×Spec k(s) Spec k(s′).

3. Let us moreover suppose that S ′ → S is etale surjective. If CK′ has semi-stable
(resp. stable) reduction over S ′, then C has semi-stable (resp. stable) reduction
over S .
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Chapter 5

Stable Reduction Theorem

First of all, we note that if C is a smooth projective curve over a discrete valuation field
K, it does not always have semi-stable reduction over OK . This naturally motivates the
definition below.

Definition 5.0.1. Let C be a smooth, projective, geometrically connected curve over
K(S ), where S is a Dedekind scheme of dimension 1. Let L be a finite extension of
K(S ) and S ′ the normalization of S in L. This is a Dedekind scheme of dimension one.
We say that C has semi-stable (resp. stable) reduction over S ′ if CL has semi-stable
(resp. stable) reduction over S ′.

Let’s take a look at some special cases right here. Suppose g(C) = 0 and L|K be
a finite separable extension such that C(L) , ∅. (We know that in general if X is a
geometrically reduced algebraic variety over a field k, and if ks is the separable closure
of k, then X(ks) , ∅.). Hence CL ' P

1
L, which, has good reduction over OL. Hence C

has semi-stable reduction over Spec(OL). If C is of genus 1, then after separable exten-
sion, we can suppose that C(K) , ∅, and hence C is an elliptic curve. We have already
seen that there exists a finite extension L|K such that CL has semi-stable reduction over
Spec(OL).

There are several equivalent versions of the stable reduction theorem of Deligne
- Mumford. Here we would like to state some of them without showing their coinci-
dence.

5.1 1
Stable Reduction Theorem (Deligne – Mumford) 5.1.1. Let S be a Dedekind scheme
of dimension 1, C a smooth, projective, geometrically connected curve of genus g ≥ 2
over K(S ). Then there exists a Dedekind scheme S ′ that is finite flat over S such that
CK(S ′) has a unique stable model over S ′. Moreover, we can take K(S ′) separable over
K(S ).
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5.2 2
Stable Reduction Theorem (Deligne - Mumford) 5.2.1. Let R be a discrete valuation
ring, and let X be a smooth, projective, geometrically connected curve of genus g(X) ≥
2 over K = Frac(R). Then there exists a finite, separable extension K ⊂ L such that
X ⊗K L has stable reduction over RL, the integral closure of R in L. that is, there exists
a stable curve χL over Spec(RL) such that the generic fiber is isomorphic to X ⊗K L.

The following version of the theorem is more generalized.

5.3 3
Stable Reduction Theorem (Deligne - Mumford) 5.3.1. Let R be a discrete valuation
ring with quotient field K. Let A be an abelian variety over K. Then there exists a finite
algebraic extension L of K such that, if RL= integral closure of R in L, and if AL is
the Neron model of A ×K L over RL, then the closed fiber AL,s of AL has no unipotent
radical.

This theorem was first proven by Deligne and Mumford using the theorem of
Grothendieck on the semi-abelian reduction of abelian varieties, and a theorem of Ray-
naud that links the reduction of a regular model of C over S to that of the Neron model
of Jac(C) over S .

Mumford had previously given a proof in characteristic , 2 using the theta function.
Afterwards, there were different proofs: Artin - Winters, Bosch - Lutkebohmert and
van der Put using rigid analytic geometry, Saito with the theory of vanishing cycle,
which we are going to present in this thesis. Saito’s proof gives, moreover a character-
ization of the case when S ′ → S is wildly ramified (in which S is local).

As we mentioned above, Deligne and Mumford proved this fact using Picard schemes.
However, Saito’s proof is purely cohomological one.
More precisely, Saito’s new proof of the stable reduction theorem uses l-adic cohomol-
ogy and theory of vanishing cycles, relating the monodromy action of the Galois group
Gal(Ksep/K) on H1(XKsep ,Ql) with the geometry of certain normal crossing models for
X over R.

5.4 4
Stable Reduction Theorem (Deligne - Mumford) 5.4.1. Assume X is a flat and sep-
arated S -scheme of finite type purely of relative dimention 1, (S is the spectrum of a
strictly local discrete valuation ring with algebrically closed residue field of ch = p ≥
0) µ (resp. s) is the generic point (resp. the closed point) of S . Suppose also Xµ is a
proper smooth geometrically connected curve over µ of genus ≥ 2, and X is its minimal
regular model. Then the following conditions are equivalent.
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1. The action of I on H1(Xµ̄,Λ) is unipotent.

2. Xs is a normal crossing divisor in X.

Also the more general version of the theorem above holds which is as follows,

Stable Reduction Theorem 5.4.2. Suppose X is a normal S -curve, x is a closed point
of Xs such that X − {x} is smooth over S (i.e., x is an isolated singularity of X → S )
and Y is a minimal regular model of X. Then the following conditions are equivalent.

1. The action of I on R1ψΛx (the sheaf of vanishing cycles) is unipotent.

2. Ys is a normal crossing divisor in Y.

In the next chapter, we explain the important notions of Etale cohomology and also
briefly construct the theory of vanishing cycles, which are the main tools in Saiot’s new
approach to the stable reduction theorem.
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Chapter 6

Étale cohomology and the
theory of vanishing cycles

For a variety X over the complex numbers, X(C) acquires a topology from that on C,
and so one can apply the machinery of algebraic topology to its study. For example,
one can define the Betti numbers βr(X) of X to be the dimensions of the vector spaces
Hr(X(C),Q), and such theorems as the Lefschetz fixed point formula are available.
For a variety X over an arbitrary algebraically closed field k, there is only the Zariski
topology, which is too coarse (i.e., has too few open subsets) or the methods of alge-
braic topology to be useful. For example, if X is irreducible, then the groups Hr(X,Z),
computed using the Zariski topology, are zero for all r > 0.

In the 1940s, Weil observed that some of his results on the numbers of points on certain
varieties (curves, abelian varieties, diagonal hypersurfaces . . . ) over finite fields would
be explained by the existence of a cohomology theory giving vector spaces over a field
of characteristic zero for which a Lefschetz fixed point formula holds. His results pre-
dicted a formula for the Betti numbers of a diagonal hypersurface in Pd+1 over C which
was later verified by Dolbeault.

About 1958, Grothendieck defined the étale “topology” of a scheme, and the theory
of étale cohomology was worked out by him with the assistance of M. Artin and J.-L.
Verdier. The whole theory is closely modelled on the usual theory of sheaves and their
derived functor cohomology on a topological space. For a variety X over C, the étale
cohomology groups Hr(Xet,Λ) coincide with the complex groups Hr(X(C),Λ) when
Λ is finite, the ring of l-adic integers Zl, or the field Ql of l-adic numbers (but not for
Λ = Z). When X is the spectrum of a field K, the étale cohomology theory for X coin-
cides with the Galois cohomology theory of K. Thus étale cohomology bridges the gap
between the first case, which is purely geometric, and the second case, which is purely
arithmetic.

Let us briefly review the origins of the theory on which etale cohomology is modelled.
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Algebraic topology had its origins in the late 19th century with the work of Rie-
mann, Betti, and Poincaré on “homology numbers”. After an observation of Emmy
Noether, the focus shifted to “homology groups”.

By the 1950s there were several different methods of attaching (co)homology groups to
a topological space, for example, there were the singular homology groups of Veblen,
Alexander, and Lefschetz, the relative homology groups of Lefschetz, the Vietoris ho-
mology groups, the Cech homology groups, and the Alexander cohomology groups.

The situation was greatly clarified by Eilenberg and Steenrod 1953, which showed
that for any “admissible” category of pairs of topological spaces, there is exactly one
cohomology theory satisfying a certain short list of axioms. Consider, for example, the
category whose objects are the pairs (X,Z) with X a locally compact topological space
and Z a closed subset of X, and whose morphisms are the continuous maps of pairs. A
cohomology theory on this category is a contravariant functor attaching to each pair a
sequence of abelian groups and maps

· · · → Hr−1(U)→ Hr
Z(X)→ Hr(X)→ Hr(U)→ . . . , U = X\Z

satisfying the following axioms:

1. (exactness axiom) the above sequence is exact;

2. (homotopy axiom) the map f ∗ depends only on the homotopy class of f ;

3. (excision) if V is open in X and its closure is disjoint from Z, then the inclusion
map (X\V,Z)→ (X,Z) induces an isomorphisms Hr

Z(X)→ Hr
Z(X\V);

4. (dimension axiom) if X consists of a single point, then Hr(P) = 0 for r , 0.

The topologists usually write Hr(X,U) for the group Hr
Z(X). The axioms for a ho-

mology theory are similar to the above except that the directions of all the arrows are
reversed. If (X,Z) → Hr

Z(X) is a cohomology theory such that the Hr
Z(X) are locally

compact abelian groups (e.g., discrete or compact), then (X,Z) → Hr
Z(X)∨ (Pontrya-

gin dual) is a homology theory. In this approach there is implicitly a single coefficient
group.

In the 1940s, Leray attempted to understand the relation between the cohomology
groups of two spaces X and Y for which a continuous map Y → X is given. This
led him to the introduction of sheaves (local systems of coefficient groups), sheaf co-
homology, and spectral sequences (about the same time as Roger Lyndon, who was
trying to understand the relations between the cohomologies of a group G, a normal
subgroup N, and the quotient group G/N).

Derived functors were used systematically in Cartan and Eilenberg 1956, and in his
1955 thesis a student of Eilenberg, Buchsbaum, defined the notion of an abelian cate-
gory and extended the Cartan-Eilenberg theory of derived functors to such categories.
(The name “abelian category” is due to Grothendieck).
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Finally Grothendieck, showed that the category of sheaves of abelian groups on a topo-
logical space is an abelian category with enough injectives, and so one can define the
cohomology groups of the sheaves on a space X as the right derived functors of the
functor taking a sheaf to its abelian group of global sections. One recovers the co-
homology of a fixed coefficient group Λ as the cohomology of the constant sheaf it
defines. This is now the accepted definition of the cohomology groups, and it is the
approach we follow to define the étale cohomology groups. Instead of fixing the coeffi-
cient group and having to consider all (admissible) pairs of topological spaces in order
to characterize the cohomology groups, we fix the topological space but consider all
sheaves on the space.

6.1 Review of sheaf cohomology
Let X be a topological space. We make the open subsets of X into a category with the
inclusions as the only morphisms, and define a presheaf to be a contravariant functor
from this category to the category Ab of abelian groups. Thus, such a presheaf F
attaches to every open subset U of X an abelian group F (U) and to every inclusion
V ⊂ U a restriction map ρU

V : F (U) → F (V) in such way that ρU
V = idF (U) and,

whenever W ⊂ V ⊂ U,
ρU

W = ρV
W ◦ ρ

U
V .

For historical reasons, the elements of F (U) are called the sections of F over U, and
the elements of F (X) the global sections of F . Also, one sometimes writes Γ(U,F )
for F (U) and s|V for ρU

V (s).
A presheaf F is said to be a sheaf if

1. a section f ∈ F (U) is determined by its restrictions ρUi
U ( f ) to the sets of an open

covering (Ui)i∈I of U;

2. a family of sections fi ∈ F (Ui) for (Ui)i∈I an open covering of U arises by
restriction from a section f ∈ F (U) if fi|Ui ∩ U j = f j|Ui ∩ U j for all i and j.

In other words, F is a sheaf if, for every open covering (Ui)i∈I of an open subset U
of X, the sequence

F (U)→
∏
i∈I

F (Ui)⇒
∏

(i, j)∈I×I

F (Ui ∩ U j)

is exact by definition, this means that the first arrow maps F (U) injectively onto
the subset of

∏
F (Ui) on which the next two arrows agree. The first arrow sends

f ∈ F (U) to the family ( f |Ui)i∈I , and the next two arrows send ( fi)i∈I to the families
fi|Ui ∩ U j(i, j)∈I×I and ( f j|Ui ∩ U j)(i, j)∈I×I respectively. Since we are considering only
(pre)sheaves of abelian groups, we can restate the condition as: the sequence
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0→ F (U)→
∏
i∈I

F (Ui)→
∏

(i, j)∈I×I

F (Ui ∩ U j)→ 0

f → ( f |Ui)
( fi)→ ( f j|Ui ∩ U j − fi|Ui ∩ U j)

is exact. When applied to the empty covering of the empty set, the condition implies
that F (∅) = 0.

For example, if Λ is a topological abelian group (e.g., R or C), then we can define
a sheaf on any topological space X by setting F (U) equal to the set of continuous
maps U → Λ and taking the restriction maps to be the usual restriction of functions.
When Λ has the discrete topology, every continuous map f : U → Λ is constant on
each connected component of U, and hence factors through π0(U1), the space of con-
nected components of U. When this last space is discrete, F (U) is the set of all maps
π0(U)→ Λ, i.e., F (U) = Λπ0(U). In this case, we call F the constant sheaf defined by
the abelian group Λ.

Grothendieck showed that, with the natural structures, the sheaves on X form an abelian
category. Thus, we have the notion of an injective sheaf: it is a sheaf I such that for
any subsheaf F ′ of a sheaf F , every homomorphism F ′ → I extends to a homo-
morphism F → I . Grothendieck showed that every sheaf can be embedded into an
injective sheaf. The functor F 7→ F (X) from the category of sheaves on X to the cat-
egory of abelian groups is left exact but not (in general) right exact. We define Hr(X, .)
to be its rth right derived functor. Thus, given a sheaf F , we choose an exact sequence

0→ F → I 0 → I 1 → I 2 → . . .

with each I r injective, and we set Hr(X,F ) equal to the rth cohomology group of the
complex of abelian groups

I 0(X)→ I 1(X)→ I 2(X)→ . . .

While injective resolutions are useful for defining the cohomology groups, they are not
convenient for computing it. Instead, one defines a sheaf F to be flabby (or flasque)
if the restriction maps F (U) → F (V) are surjective for all open U ⊃ V , and shows
that Hr(X,F ) = 0 if F is flabby. Thus, resolutions by flabby sheaves can be used to
compute cohomology.

6.2 Why is the Zariski topology inadequate?
As we noted above, for many purposes, the Zariski topology has too few open subsets.
We list some situations where this is evident.
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The cohomology groups are zero Recall that a topological space X is said to be ir-
reducible if any two nonempty open subsets of X have nonempty intersection, and that
a variety (or scheme) is said to be irreducible if it is irreducible as a(Zariski) topologi-
cal space.
Theorem (GROTHENDIECKS Theorem) If X is an irreducible topological space, then
Hr(X,F ) = 0 for all constant sheaves and all r > 0.
PROOF. Clearly, any open subset U of an irreducible topological space is connected.
Hence, if F is the constant sheaf defined by the group Λ, then F (U) = Λ for every
nonempty open U. In particular, F is flabby, and so Hr(X,F ) = 0 for r > 0.

REMARK The Cech cohomology groups are also zero. Let U = (Ui)i∈I be an open
covering of X. Then the Cech cohomology groups of the covering U are the cohomol-
ogy groups of a complex whose rth group is∏

(i0,...,ir)∈Ir+1 Ui0∩...∩Uir,∅

Λ

with the obvious maps. For an irreducible space X, this complex is independent of the
space X; in fact, it depends only on the cardinality of I (assuming the Ui are nonempty).
It is easy to construct a contracting homotopy for the complex, and so deduce that the
complex is exact.

The inverse mapping theorem fails A C∞ map φ : N → M of differentiable manifolds
is said to be étale at n ∈ N if the map on tangent spaces dφ : Tgtn(N) → Tgtφ(n)(M) is
an isomorphism.

Theorem (Inverse Mapping Theorem) A C∞ map of differentiable manifolds is a lo-
cal isomorphism at any point at which it is étale, i.e., if ’φ : M → N is étale at n ∈ N,
then there exist open neighbourhoods V and U of n and φ(n) respectively such that φ
restricts to an isomorphism V → U.

Let X and Y be nonsingular algebraic varieties over an algebraically closed field k.
A regular map φ : Y → X is said to étale at y ∈ Y if dφ : Tgty(Y) → Tgtφ(y)(X) is an
isomorphism.

For example, as we shall see shortly, x→ xn : A1
k → A

1
k is étale except at the origin

(provided n is not divisible by the characteristic of k). However, if n > 1 this map is
not a local isomorphism at any point; in fact, there do not exist nonempty open subsets
V and U of A1

k such that map x→ xn sends V isomorphically onto U. To see this, note
that x → xn corresponds to the homomorphism of k-algebras T → T n : k[T ] → k[T ].
If x → xn sends V into U, then the corresponding map k(U) → k(V) on the function
fields is T → T n : k(T )→ k(T ) If V → U were an isomorphism, then so would be the
map on the function fields, but it is not.
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6.3 Étale topology
Let X and Y be smooth varieties over an algebraically closed field k. A regular map
φ : Y → X is said to be étale if it is étale at all points y ∈ Y . An étale map is quasifinite
(its fibres are finite) and open.
The étale “topology” on X is that for which the “open sets” are the étale morphisms
U → X. A family of étale morphisms (Ui → U)I∈I over X is a covering of U if
U = ∪φi(Ui).
An étale neighbourhood of a point x ∈ X is an étale map U → X together with a point
u ∈ U mapping to x.
Define Et/X to be the category whose objects are the étale maps U → X and whose
arrows are the commutative diagrams

V → U

↘ ↙

X

with the maps V → X and U → X étale (then V → U is also automatically étale).
A presheaf for the étale topology on X is a contravariant functor F : Et/X :→ Ab. It
is a sheaf if the sequence

F (U)→
∏
i∈I

F (Ui)⇒
∏

(i, j)∈I×I

F (Ui ×U U j)

is exact for all étale coverings Ui → U. One shows, much as in the classical case,
that the category of sheaves is abelian, with enough injectives. Hence one can define
étale cohomology groups Hr(Xet,F ) exactly as in the classical case, by using the de-
rived functors of F → F (X).

6.4 The Étale Fundamental Group
The étale fundamental group classifies the finite étale coverings of a variety (or scheme)
in the same way that the usual fundamental group classifies the covering spaces of a
topological space. We begin by reviewing the classical theory from a functorial point
of view.

The topological fundamental group Let X be a connected topological space. In order to
have a good theory, we assume that X is pathwise connected and semi-locally simply
connected (i.e., every P ∈ X has a neighbourhood U such that every loop in U based at
P can be shrunk in X to P).
Fix an x ∈ X. The fundamental group π1(X, x) is defined to be the group of homotopy
classes of loops in X based at x.
A continuous map π : Y → X is a covering space of X if every P ∈ X has an open
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neighbourhood U such that π−1(U) is a disjoint union of open sets Ui each of which is
mapped homeomorphically onto U by π. A map of covering spaces (Y, π) → (Y ′, π′)
is a continuous map α : Y → Y ′ such that π′ ◦ α = π. Under our hypotheses, there
exists a simply connected covering space π̃ : X̃ → X. Fix an x̃ ∈ X̃ mapping to x ∈ X.
Then (X̃, x̃) has the following universal property: for any covering space Y → X and
y ∈ Y mapping to x ∈ X, there is a unique covering space map X̃ → Y sending x̃ to
y. In particular, the pair (X̃, x̃) is unique up to a unique isomorphism; it is called the
universal covering space of (X, x).

Let AutX(X̃) denote the group of covering space maps X̃ → X̃, and let α ∈ AutX(X̃).
Because α is a covering space map, αx̃ also maps to x ∈ X. Therefore, a path from x̃ to
αx̃ is mapped by π̃ to a loop in X based at x. Because X̃ is simply connected, the ho-
motopy class of the loop does not depend on the choice of the path, and so, in this way,
we obtain a map AutX(X̃)→ π1(X, x). It can be shown that this map is an isomorphism.

Let Cov(X) be the category of covering spaces of X with only finitely many connected
components the morphisms are the covering space maps. We define F : Cov(X) →
S ets to be the functor sending a covering space π : Y → X to the set π−1(x). This
functor is representable by X̃, i.e.,

F(Y) ' HomX(X̃,Y) f unctorially in Y

Indeed, we noted above that to give a covering space map X̃ → Y is the same as to give
a point y ∈ π−1(x).
If we let AutX(X̃) act on X̃ on the right, then it acts on HomX(X̃,Y) on the left:

α f
de f
= f ◦ α α ∈ AutX(X̃), f : X̃ → Y

Thus, we see that F can be regarded as a functor from Cov(X) to the category of
AutX(X̃) (or π1(X, x)) sets.
That π1(X, x) classifies the covering spaces of X is beautifully summarized by the fol-
lowing statement:

The functor F defines an equivalence from Cov(X) to the category of π1(X, x)-sets
with only finitely many orbits.

Now, we would like to construct the étale fundamental group.
Let X be a connected variety (or scheme). We choose a geometric point x̄ → X, i.e.,
a point of X with coordinates in a separably algebraically closed field. When X is a
variety over an algebraically closed field k, we can take x̄ to be an element of X(k). For
a scheme X, choosing x̄ amounts to choosing a point x ∈ X together with a separably
algebraically closed field containing the residue field k(x) at x.

Recall that a finite étale map π : Y → X is open (because it is étale) and closed (because
it is finite) and so it is surjective (provided Y , ∅). If X is a variety over an algebraically
closed field and π : Y → X is finite and étale, then each fibre of π has exactly the same
number of points. Moreover, each x ∈ X has an étale neighbourhood (U, u) → (X, x)
such that Y ×X U is a disjoint union of open subvarieties (or subschemes) Ui each of
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which is mapped isomorphically onto U by π×1. Thus, a finite étale map is the natural
analogue of a finite covering space.

We define FEt/X to be the category whose objects are the finite étale maps π : Y → X
(sometimes referred to as finite étale coverings of X) and whose arrows are the X-
morphisms.

Define F : FEt/X → S ets to be the functor sending (Y, π) to the set of x̄-valued
points of Y lying over x, so F(Y) = HomX(x̄,Y). If X is a variety over an algebraically
closed field and x̄ ∈ X(k), then F(Y) = π−1(x̄).
We would like to define the universal covering space of X to be the object representing
F , but unfortunately, there is (usually) no such object. For example, let A1 be the
affine line over an algebraically closed field k of characteristic zero. Then the finite
étale coverings of A1\{0} are the maps

t 7→ tn : A1 → A1\{0}

Among these coverings, there is no “biggest” one in the topological case, with k = C,
the universal covering is

C
exp
−−→ C\{0}.

which has no algebraic counterpart.
However, the functor F is pro-representable. This means that there is a projective

system X̃ = (Xi)i∈I of finite étale coverings of X indexed by a directed set I such that

F(Y) = Hom(X̃,Y)
de f
= lim
←−−
i∈I

Hom(Xi,Y) f unctorially in Y

In the example considered in the last paragraph, X̃ is the family t 7→ tn : A1\{0} →
A1\{0} indexed by the positive integers partially ordered by division.

We call X̃ “the” universal covering space of X. It is possible to choose X̃ so that
each Xi is Galois over X, i.e., has degree over X equal to the order of AutX(Xi). A map
X j → Xi, i ≤ j, induces a homomorphism AutX(X j)→ AutX(Xi), and we define

π1(X, x̄) = AutX(X̃)
de f
= lim
←−−

i

AutX(Xi),

endowed with its natural topology as a projective limit of finite discrete groups. If
Xn → A

1\{0} denotes the covering in the last paragraph, then

AutX(Xn) = µn(k) (group o f nth roots o f 1 in k

withζ ∈ µn(k) acting by x 7→ ζx. Thus

π1(A1\0, x̄) = lim
←−−

nµn(k) ≈ Ẑ.

Here Ẑ '
∏

l Zl is is the completion of Z for the topology defined by the subgroups of
finite index. The isomorphism is defined by choosing a compatible system of isomor-
phisms Z/nZ→ µn(k), or, equivalently, by choosing primitive nth roots ζn of 1 for each
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n such that ζm
mn = ζn for all m, n > 0.

The action of π1(X, x) on X̃ (on the right) defines a left action of π1(X, x) on F(Y) for
each finite étale covering Y of X. This action is continuous when F(Y) is given the
discrete topology this simply means that it factors through a finite quotient AutX(Xi)
for some i ∈ I.

Theorem The functor Y 7→ F(Y) defines an equivalence from the category of finite
étale coverings of X to the category of finite discrete π1(X, x̄)-sets.

Thus π1(X, x̄) classifies the finite étale coverings of X in the same way that the topolog-
ical fundamental group classifies the covering spaces of a topological space.

Remark

1. If
=
x is a second geometric point of X, then there is an isomorphism π1(X, x̄) →

π1(
=
x), well-defined up to conjugation.

2. The fundamental group π1(X, x̄) is a covariant functor of (X, x̄).

Important Example

The spectrum of a field For X = Spec(k), k a field, the étale morphisms Y → X are the
spectra of étale k-algebras A, and each is finite. Thus, rather than working with FEt/X,
we work with the opposite category Et/k of étale k-algebras.
The choice of a geometric point for X amounts to the choice of a separably algebraically
closed field Ω containing k. Define F : Et/k → S ets by

F(A) = Homk(A,Ω)

Let k̃ = (ki)i∈I be the projective system system consisting of all finite Galois extensions
of k contained in Ω. Then k̃ ind-represents F , i.e.,

F(A) ' Homk(A, k̃)
de f
= lim
−−→
i∈I

Homk(A, ki) f unctorality in A

- this is obvious. Define
Autk(k̃) = lim

←−−
i∈I

Autk−alg(ki).

Thus
Autk(k̃) = lim

←−−
i

Gal(ki/k) = Gal(ksep/k)

where ksep is the separable algebraic closure of k in Ω. Moreover, F defines an equiv-
alence of categories from Et/k to the category of finite discrete Gal(ksep/k)-sets. This
statement summarizes, and is easily deduced from, the usual Galois theory of fields.

Normal Varieties (or Schemes) For a connected normal variety (or scheme) X, it is
most natural to take the geometric point x̄ to lie over the generic point x of X. Of
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course, strictly speaking, we cannot do this if X is a variety because varieties do not
have generic points, but what it amounts to is choosing a separably algebraically closed
field Ω containing the field k(X) of rational functions on X. We let L be the union of all
the finite separable field extensions K of k(X) in Ω such that the normalization of X in
K is étale over X; then

π1(X, x̄) = Gal(L/k(X))

with the Krull topology.
The Case of Variety Let X be a varity over an algebrically closed field k. Recall that

an étale neighbourhood of a point x ∈ X is an étale map U → X together with a point
u ∈ U mapping to x. A morphism (or map) of étale neighbourhoods (V, v) → (U, u)
is a regular map V → U over X sending v to u. It can be shown that there is at most
one map from a connected étale neighbourhood to a second étale neighbourhood. The
connected affine étale neighbourhoods form a directed set with the definition,

(U, u) ≤ (U′, u′) i f there exists a map (U′, u′)→ (U, u),

and we define the local ring at x for étale topology to be

OX,x̄ = lim
−−→
(U,u)

Γ(U,OU).

Since every open Zariski neighbourhood of x is also an étale neighbourhood of x, we
get a homomorphism OX,x → OX,x̄. Similarly, we get a homomorphism OU,u → OX,x̄

for any étale neighbourhood (U, u) of x, and clearly

OX,x̄ = lim
−−→
(U,u)

OU,u.

The transition maps OU,u → OV,v in the direct system are all flat (hence injective) un-
ramified local homomorphisms of local rings with Krull dimension dim X.

Fact. The ring OX,x̄ is a local Noetherian ring with Krull dimension dim X.

Proof. The direct limit of a system of local homomorphisms of local rings is local
(with maximal ideal the limit of the maximal ideals); hence OX,x̄ is local. The maps on
the completions ÔU,u = ÔX,x are all isomorphisms and it follows that ÔX,x̄ = ÔX,x. An
argument of Nagata now shows that OX,x̄ is Noetherian, and hence has Krull dimension
dim X.

It is quite well-known that every complete local ring is Henselian. Now in the case
of variety we have;
Theorem For any point x in X, OX,x̄ is Henselian.

The Case of Scheme A geometric point of a scheme X is a morphism x̄ : Spec Ω → X
with Ω a separably closed field. An étale neighbourhood of such a point x̄ is an étale
map U → X together with a geometric point ū : Spec Ω → U lying over x̄. The local
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ring at x̄ for the étale topology is

OX,x̄
de f
= lim
−−→
(U,ū)

Γ(U,OU)

where the limit is over the connected affine étale neighbourhoods (U, ū) of x̄.
When X is a variety and x = x̄ is a closed point of X, this agrees with the previous
definition.
Most of the results for varieties over algebraically closed fields extend to schemes. For
example, OX,x̄ is a strict Henselization of OX,x.

In the remainder of these notes, the local ring for the étale topology at a geometric
point x̄ of a scheme X (or variety) will be called the strictly local ring at x̄, OX,x̄.

6.5 Étale Cohomology Groups
In applications to algebraic geometry over a finite field Fq, the main objective was
to find a replacement for the singular cohomology groups with integer (or rational)
coefficients, which are not available in the same way as for geometry of an algebraic
variety over the complex number field. Étale cohomology works fine for coefficients
Z/nZ for n coprime to the characteristic, but gives unsatisfactory results for non-torsion
coefficients. To get cohomology groups without torsion from étale cohomology one has
to take an inverse limit of étale cohomology groups with certain torsion coefficients;
this is called l-adic cohomology. Here ”l” stands for any prime number different from
p, where p is the characteristic of Fq. One considers, for schemes V , the cohomology
groups

Hi(V,Z, lkZ)

and defines the l-adic cohomology group

Hi(V,Zl) = lim
←−−

Hi(V,Z/lkZ)

as their inverse limit. Here Zl denotes the l-adic integers, but the definition is by means
of the system of “constant” sheaves with the finite coefficients Z/lkZ. (There is a trap
here: cohomology does not commute with taking inverse limits, and the l-adic coho-
mology group, defined as an inverse limit, is not the cohomology with coefficients in
the étale sheaf Zl; In fact, the latter cohomology group exists but gives the ”wrong”
cohomology groups.)

More generally, if F is an inverse system of étale sheaves Fi, then the cohomology
of F is defined to be the inverse limit of the cohomology of the sheaves Fi,

Hq(X,F ) = lim
←−−

Hq(X,Fi)
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and though there is a natural map

Hq(X, lim
←−−

Fi)→ lim
←−−

Hq(X,Fi)

this is “not” usually an isomorphism. An l-adic sheaf is a special sort of inverse system
of étale sheaves Fi, where i runs through positive integers, and Fi is a module over
Z/liZ and the map from Fi+1 to Fi is just reduction mod Z/liZ.

In the case that V is a non-singular algebraic curve and i = 1, H1 is a free Zl-module
of rank 2g, dual to the Tate module of the Jacobian variety of V , where g is the genus
of V . Since the first Betti number of a Riemann surface of genus g is 2g, this is iso-
morphic to the usual singular cohomology with Zl coefficients for complex algebraic
curves. It also shows one reason why the condition l , p is required: when l = p the
rank of the Tate module is at most g.

To remove any torsion subgroup from the l-adic cohomology groups and get coho-
mology groups that are vector spaces over fields of characteristic 0 one defines

Hi(V,Ql) = Hi(V,Zl) ⊗ Ql

(though this notation is misleading: Ql is neither an étale sheaf nor an l-adic sheaf).

Examples of Étale Cohomology Groups

1. If X is the spectrum of a field K with absolute Galois group G, then étale sheaves
over X correspond to continuous sets (or abelian groups) acted on by the (profi-
nite) group G, and étale cohomology of the sheaf is the same as the group coho-
mology of G, i.e. the Galois cohomology of K.

2. If X is a complex variety, then étale cohomology with finite coefficients is iso-
morphic to singular cohomology with finite coefficients. (This does not hold for
integer coefficients.) More generally the cohomology with coefficients in any
constructible sheaf is the same.

3. If F is a coherent sheaf then the étale cohomology of F is the same as Serre’s
coherent sheaf cohomology calculated with the Zariski topology (and if X is a
complex variety this is the same as the sheaf cohomology calculated with the
usual complex topology).

4. For abelian varieties and curves there is an elementary description of l-adic coho-
mology. For abelian varieties the first l-adic cohomology group is the dual of the
Tate module, and the higher cohomology groups are given by its exterior powers.
For curves the first cohomology group is the first cohomology group of its Jaco-
bian. This explains why Weil was able to give a more elementary proof of the
Weil conjectures in these two cases: in general one expects to find an elementary
proof whenever there is an elementary description of the l-adic cohomology.
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6.6 Vanishing Cycle
First of all, let us recall the definition of monodromy in the sense of algebraic topology.

Definition of Monodromy 6.6.1. Let X be a connected and locally connected based
topological space with base point x, and let p : X̃ → X be a covering with fiber
F = p−1(x). For a loop γ : [0, 1] → X based at x, denote a lift under the covering
map (starting at a point x̃ ∈ F) by . Finally, we denote by x̃.γ the endpoint γ̃(1), which
is generally different from x̃. There are theorems which state that this construction
gives a well-defined group action of the fundamental group π1(X, x) on F, and that the
stabilizer of x̃ is exactly , that is, an element [γ] fixes a point in F if and only if it is
represented by the image of a loop in X̃ based at x̃. This action is called the monodromy
action and the corresponding homomorphism π1(X, x) → Sym(F) into the symmetric
group on F is the monodromy. The image of this homomorphism is the monodromy
group.

Historically, a classical result is the Picard-Lefschetz formula, detailing how the
monodromy round the singular fiber acts on the vanishing cycles, by a shear mapping
(transvection).

The classical, geometric theory of Lefschetz was recast in purely algebraic terms,
in SGA7. This was for the requirements of its application in the context of l-adic coho-
mology; and eventual application to the Weil conjectures. There the definition uses de-
rived categories, and looks very different. It involves a functor, the nearby cycle functor,
with a definition by means of the higher direct image and pullbacks.
The vanishing cycle functor then sits in a distinguished triangle with the nearby cycle
functor and a more elementary functor. This formulation has been of continuing influ-
ence, in particular in D-module theory.

Here, we are going to explain briefly the theory of vanishing cycle in the sense of
complex analysis and the algebraic counterpart is derived accordingly.

We begin with some definitions, Let R be a regular noetherian ring with finite Krull
dimension (e.g., Z, Q, C) A complex (A•,d•)

. . .A−1 d−1

−−→ A0 d0

−→ A1 d1

−→ A2 d2

−→ . . .

of sheaves of R-modules on a complex analytic space (or a scheme), X, is bounded if
Ap = 0 for |p| large.

The cohomology sheaves Hp(A•) arise by taking the (sheaf-theoretic) cohomology of
the complex.

The stalk of Hp(A•) at a point x is written Hp(A•)x and is isomorphic to what one
gets by first taking stalks and then taking cohomology, i.e., Hp(A•x).
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A single sheaf A on X is considered a complex, A•, on X by letting A0 = A and
Ai = 0 for i , 0; thus, R•X denotes the constant sheaf on X.

The shifted complex A•[n] is defined by (A•[n])k = A(n + k) and differential dk
[n] =

(−1)ndk+n.

A map of complexes is a graded collection of sheaf maps Φ• : A• → B• which com-
mute with the differentials. The shifted sheaf map Φ•[n] : A•[n] → B•[n] is defined by
Φk

[n] := Φk+n (note the lack of a (−1)n). A map of complexes is a quasi-isomorphism
provided that the induced maps

Hp(Φ•) : Hp(A•)→ Hp(B•)

are isomorphisms for all p.

If Φ• : A• → I• is a quasi-isomorphism and each Ip is injective, then I• is called
an injective resolution of A•. Injective resolutions always exist (in our setting), and
are unique up to chain homotopy. However, it is sometimes important to associate one
particular resolution to a complex, so it is important that there is a canonical injective
resolution which can be associated to any complex (we shall not describe the canonical
resolution here).

If A• is a complex on X, then the hypercohomology module, Hp(X,A•), is defined
to be the p-th cohomology of the global section functor applied to the canonical injec-
tive resolution of A•.

Note that if A is a single sheaf on X and we form A•, then Hp(X,A•) = Hp(X,A)
= ordinary sheaf cohomology. In particular, Hp(X,R•X) = Hp(X,R).

Note also that if A• and B• are quasi-isomorphic, then H∗(X,A•) � H∗(X,B•).

The usual Mayer-Vietoris sequence is valid for hypercohomology; that is, if U and
V form an open cover of X, then there is an exact sequence

. . .Hi(X,A•)→ Hi(U,A•) ⊕ Hi(V,A•)→ Hi(U ∩ V,A•)→ Hi+1(X,A•)→ . . . .

Note that hypercohomology is not a homology invariant.

For construction of the theory, we assume our objects are in the category Db
c(X);

The complex A• is constructible with respect to a complex stratification, S = {S α}, of
X provided that, for all α and i, the cohomology sheaves Hi(A•|S α

) are locally constant
and have finitely generated stalks (the fact which is correspondingly met in our setting
on schemes); we write A• ∈ DS (X). Moreover if A• ∈ DS (X) and A• is bounded, we
write A• ∈ Db

S (X).
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Notations;

Γ(X, .) (global sections);
Γc(X, .) (global sections with compact support);
f∗ (direct image);
f! (direct image with proper supports); and
f ∗ (pull-back or inverse image),
where f : X → Y is a continuous map. If the functor T is an exact functor from sheaves
to sheaves, then RT (A•) � T (A•); in this case, we normally suppress the R. Hence, if
f : X → Y , A• ∈ Db(X), and B• ∈ Db(Y), we write:

f ∗B•;
f!A•, if f is the inclusion of a subspace and, hence, f! is extension by zero;
f∗A•, if f is the inclusion of a closed subspace.
Note that hypercohomology is just the cohomology of the derived global section func-
tor, i.e., H∗(X, .) = H∗ ◦ RΓ(X, .). The cohomology of the derived functor of global
sections with compact support is the compactly supported hypercohomology and is de-
noted H∗c(X,A•).

If f : X → Y is the inclusion of a subset and B• ∈ Db(Y), then the restriction of
B• to X is defined to be f ∗(B•), and is usually denoted by B•

|X .

If f : X → Y is continuous and A• ∈ Db
c(X), there is a canonical map

R f!A• → R f∗A•.

For f : X → Y continuous, there are canonical isomorphisms

RΓ(X,A•) � RΓ(Y,R f∗A•) and RΓc(X,A•) � RΓc(Y,R f!A•)

which lead to canonical isomorphisms

H∗(X,A•) � H∗(Y,R f∗A•) and H∗c(X,A•) � H∗c(Y,R f!A•)

for all A• in Db
c(X).

If f : X → Y is continuous, A• ∈ Db
c(X), and B• ∈ Db

c(Y), there are natural maps
induced by restriction of sections

B• → R f∗ f ∗B• and f ∗R f∗A• → A•.

Fix a complex B• on X. There are two covariant functors which we wish to consider:
the functor Hom•(B•, ∗) from the category of complexes of sheaves to complexes of
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sheaves and the functor Hom•(B•, ∗) from the category of complexes of sheaves to the
category of complexes of R-modules. These functors are given by

(Hom•(B•,A•))n =
∏
p∈Z

Hom(Bp,An+p)

and
(Hom•(B•,A•))n =

∏
p∈Z

Hom(Bp,An+p)

with differential given by

[∂n f ]p = ∂n+p f p + (−1)n+1 f p+1∂p

The associated derived functors are RHom•(B•, ∗) and RHom•(B•, ∗), respectively.

If P• → B• is a projective resolution of B•, then, in Db
c(X), RHom•(B•,A•) is iso-

morphic to Hom•(P•,A•). For all k, RHom•(B•,A•[k]) = RHom•(B•,A•)[k].

The functor RHom•(B•, ∗) is naturally isomorphic to the derived global sections func-
tor applied to RHom•(B•, ∗), i.e., for any A• ∈ Db

c(X),

RHom•(B•,A•) � RΓ(X,RHom•(B•,A•)).

We wish now to describe an analogous adjoint for R f!

Let I• be a complex of injective sheaves on Y . Then, f !(I•) is defined to be the sheaf
associated to the presheaf given by

Γ(U, f !I•) = Hom•( f!K•U , I
•),

for any open U ⊆ X, where K•U denotes the canonical injective resolution of the con-
stant sheaf R•U . For any A• ∈ Db

c(X), define f !A• to be f !I•, where I• is the canonical
injective resolution of A•.

Now that we have this definition, we may state:

(Verdier Duality) If f : X → Y , A• ∈ Db
c(X), and B• ∈ Db

c(Y), then there is a canonical
isomorphism in Db

c(Y):

R f∗RHom•(A•, f !B•) � RHom•(R f!A•,B•)

and so
HomDb

c (X)(A•, f !B•) � HomDb
c (Y)(R f!A•,B•).

If B• and C• are in Db
c(Y), then we have an isomorphism

f !RHom•(B•,C•) � RHom•( f ∗B•, f !C•).
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Nearby and Vanishing Cycles

Historically, there has been some confusion surrounding the terminology nearby
(or neighboring) cycles and vanishing cycles; now, however, the terminology seems to
have stabilized. In the past, the term “vanishing cycles”was sometimes used to describe
what are now called the “nearby cycles”

The point is: one should be very careful when reading works on nearby and vanishing
cycles.

Let S = {S α} be a Whitney stratification of X and suppose F• ∈ Db
S (X). Given an

analytic map f : X → C, define a (stratified) critical point of f (with respect to S ) to be
a point x ∈ S α ⊆ X such that f|S α

has a critical point at x (in our setting, it corresponds
to a singular point of the scheme); we denote the set of such critical points by ΣS f .

We wish to investigate how the cohomology of the level sets of f with coefficients
in F• changes at a critical point (which we normally assume lies in f −1(0)).

Consider the diagram

E → C̃∗

↓ π̂ ↓ π

X − f −1(0)
f̂
−→ C∗

↓ i

f −1(0)
j
−→ X

where:

j : f −1(0)→ X is inclusion;

i : X − f −1(0)→ X is inclusion;

f̂ = restriction of f ;

C̃∗ = cyclic (universal) cover of C∗;

and E denotes the pull-back.
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The nearby (or neighboring) cycles of F• along f are defined to be

ψ f F• := j∗R(i ◦ π̂)∗(i ◦ π̂)∗F•.

Note that this is a sheaf on f −1(0).

As ψ f (F•[k]) = (ψ f F•)[k], we may write ψ f F•[k] unambiguously. In fact, it is fre-
quently useful to consider the functor where one first shifts the complex by k and then
takes the nearby cycles; thus, we introduce the notation ψ f [k] to be the functor such
that ψ f [k]F• = ψ f F•[k] (and which has the corresponding action on morphisms). The
functor ψ f takes distinguished triangles to distinguished triangles.

If P• is a perverse sheaf on X, then ψ f [−1]P• is perverse on f −1(0). (Actually, to con-
clude that ψ f [−1]P• is perverse, we only need to assume that P•

|X− f −1(0) is perverse.)

Because ψ f [−1] takes perverse sheaves to perverse sheaves, it is useful to include the
shift by −1 in many statements about ψ f . Consequently, we also want to shift j∗F• by
−1 in many statements, and so we write j∗[−1] for the functor which first shifts by −1
and then pulls-back by j.

As there is a canonical map F• → Rg∗g∗F• for any map g : Z → X, there is a map

F• → R(i ◦ π̂)∗(i ◦ π̂)∗F•

and, hence, a canonical map, called the comparison map:

j∗[−1]F•
c
−→ j∗[−1]R(i ◦ π̂)∗(i ◦ π̂)∗F• = ψ f [−1]F•

If you wish to look at the analytic root of the theory, note that for x ∈ f −1(0), the
stalk cohomology of ψ f F• at x is the cohomology of the “Milnor fibre” of f at x with
coefficients in F•, i.e., for all ε > 0 small and all ξ ∈ C∗ with |ξ| << ε,

Hi(ψ f F•)x � H
i(

o
Bε(x) ∩ X ∩ f −1(ξ),F•),

where the open ball
o

Bε(x) is taken inside any local embedding of (X, x) in affine space.
The sheaf ψ f F• only depends on f and F•

|X− f −1(0).

While the above definition of the nearby cycles treats all angular directions equally,
it is perhaps more illuminating to fix an angle θ and describe the nearby cycles in terms
of moving out slightly along the ray eiθ[0,∞). Consider the three inclusions
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kθ : f −1(eiθ(0,∞))→ f −1(eiθ[0,∞));

mθ : f −1(0)→ f −1(eiθ[0,∞));

lθ : f −1(eiθ[0,∞))→ X.

Then, one can define the nearby cycles at angle θ to be ψθf F
• := m∗θRkθ∗k∗θ l

∗
θF
•.

For each θ there is a canonical isomorphism ψ f F• � ψθf F
•. By letting θ travel around a

full circle, we obtain isomorphisms ψθf F
• � ψθ+2π

f F•. These isomorphisms correspond
to the monodromy automorphism T f : ψ f [−1]F• → ψ f [−1]F•, which comes from
the deck transformation obtained in our definition of ψ f F•. (and, hence, ψ f [−1]F•) by
traveling once around the origin in C. Actually, T f is a natural automorphism from
the functor ψ f [−1] to itself; thus, strictly speaking, when we write T f : ψ f [−1]F• →
ψ f [−1]F•, we should include F• in the notation for T f .

There is a natural distinguished triangle

j∗[−1]Ri∗i∗F• → ψ f [−1]F•

[1] ↖ ↙ T f − id

ψ f [−1]F•

Since we have a map c[1] : j∗F• → ψ f F•, the third vertex of a distinguished trian-
gle is defined up to quasi-isomorphism. We define the sheaf of vanishing cycles, φ f F•,
of F• along f to be this third vertex, i.e., there is a distinguished triangle

j∗F• → ψ f F•

[1] ↖ ↙

φ f F•

Letting φ f [−1] denote the functor which first shifts by −1 and then applies φ f , we
can write the triangle above as

j∗[−1]F•
c
−→ ψ f [−1]F•

[1] ↖ ↙

φ f [−1]F•
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Note that this is a triangle of sheaves on f −1(0). Note also that, by replacing F• with
i!i!F•, we conclude that there is a natural isomorphism ψ f [−1]F• � φ f [−1](i!i!F•).
There is another natural isomorphism ψ f [−1]F• � φ f [−1](Ri∗i∗F•).

By now, we have constructed the nearby cycles and the sheaf of vanishing cycles for
a complex F•. Among the constant sheaves, which can be thought as a complex, the
skyscraper sheaves are of the most importance in our discussion. Here we recall that, in
general, a sheaf F is said to be skyscraper sheaf if Fx̄ = 0 except for a finite number
of x. (Recall that x̄ denotes a geometric point of X with image x ∈ X). We shall need
some special skyscraper sheaves. Let X be a topological space (or scheme), and let
x ∈ X. Let Λ be an abelian group. Define Λx(U) = Λ if x ∈ U and 0 otherwise. Then
Λx is a sheaf on X. Obviously the stalk of Λx at y , x is 0, and at x it is Λ.

In the case of having a scheme, we choose x in X to be its generic point.
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Chapter 7

Geometry of curves over a
discrete valuation ring

As we already pointed out, the stable reduction theorem gives an equivalence geomet-
rical condition for the action of the inertia group to be unipotent in the global situation,
where “global” means that the curve in consideration is proper.

Here, we generalize the stable reduction theorem in two directions.

1. To the local situation with the isolated singularity.

2. To consider the geometrical condition for the action of the wild ramification
group to be trivial

In this way, we give a purely cohomological proof of the stable reduction theorem.
Throughout this chapter, we treat a strictly local discrete valuation ring (a ring satisfy-
ing the Hensel’s lemma and also has a separably closed residue field) with algebrically
closed residue field, however the results are true in the case we have a discrete valua-
tion ring with perfect residue field since they are étale local. (Recall that a D.V.R R is
called Henselian if it satisfies Hensel’s lemma; that is, R is Henselian if for any monic
polynomial f (x) ∈ R[x] and any element a ∈ R satisfying

f (a) ≡ 0 (mod p) and f ′(a) . 0 (mod p)

there exists a unique element α ∈ R satisfying

α ≡ a (mod p) and f (α) = 0.

First of all, let’s set up our notations;

• S : the spectrum of a strictly local discrete valuation ring with algebrically closed
residue field of ch = p ≥ 0.
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• s : the closed point S .

• η (resp. η̄): the (resp. geometric) generic point of S .

• I : the inertia group of S .

• P : the wild ramification group of S .

• Λ := Ql, where l is a prime number different from p.

• S -curve or curve over S : flat and separated S -scheme of finite type purely of
relative dimension 1.

• n.c.d: a normal crossing divisor which is a closed subscheme in a regular scheme
defined étale locally by an ideal (

∏
i fi) where ( fi)i forms a part of a regular

system of parameters.

• RψΛ: The sheaf of vanishing cycles.

• X̃x̄ : the strict localization of X at a geometric point x̄ of X.

• Xi : the set of all closed integral subschemes of X of dim i.

All we want to do can be summarized into four main theorems. Two of them are
involved with the inertia group I and the rest of them are involved with the wild rami-
fication group P. (the P-versions)

Now let’s take a look at the main theorems;

The Main Theorem 1 (Deligne - Mumford, Grothendieck) Suppose Xη is a proper
smooth geometrically connected curve over η of genus ≥ 2, and X is its minimal regular
model. Then the following conditions are equivalent.

1. The action of I on H1(Xη̄,Λ) is unipotent.

2. Xs is a normal crossing divisor in X.

(Deligne - Mumford proved the theorem above using the result of Raynaud on Picard
schemes.)

The Main Theorem 2 (The local analogue of the stable reduction theorem) Suppose
X is a normal S -curve, x is a closed point of Xs such that X − {x} is smooth over S (i.e.,
x is an isolated singularity of X → S ) and Y is a minimal regular model of X. Then the
following conditions are equivalent.

1. The action of I on R1ψΛx is unipotent.

2. Ys is a normal crossing divisor in Y .
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For the P-versions of the theorems above, we will need the notion of relatively minimal
regular n.c.d. model of Xη.

P − version of the main theorem 1 Suppose Xη is a proper smooth geometrically
connected curve over η of genus , 1, and X is a relative minimal regular n.c.d. model
of Xη. Then the following conditions are equivalent.

1. The action of P on H1(Xη̄,Λ) is trivial.

2. Every irreducible component C of Xs whose multiplicity in Xs is divisible by p
satisfies the following condition (*).

(*) C is isomorphic to P1
s and intersects with other components of Xs at exactly two

points and these components have prime-to-P multiplicities in Xs.

P − version of the main theorem 2 Suppose X is a normal S -curve, x is a closed
point of Xs such that X − {x} is smooth over S (i.e., x is an isolated singularity of
X → S ) and Y is a minimal regular n.c.d. model of X. Then the following conditions
are equivalent.

1. The action of P on R1ψΛx is trivial.

2. Every irreducible component C of Ys whose multiplicity in Ys is divisible by p
satisfies the following condition (*).

(*) C is isomorphic to P1
s and intersects with other components of Ys at exactly two

points and those components have prime-to-p multiplicities in Ys.

Let’s talk about the sketch of proof. For Λ-vector space V of finite dimension with
a continuous and quasi-unipotent action I, we put

dims(V) := dimΛ((semi-simplification of V)I).

dimt(V) := dimΛ(VP).

Of course, we have dims(V) ≤ dimt(V) ≤ dimΛ(V).

It is obvious that the action of I (resp. P) on V is unipotent (resp. trivial) if and only if
dims(V) = dimΛ(V) (resp. dimt(V) = dimΛ(V)). We define the following quantities as
well;

h1(Xη̄) := dimΛ H1(Xη̄,Λ), h1
t (Xη̄) := dimt H1(Xη̄,Λ),

h1
s(Xη̄) := dims H1(Xη̄,Λ).

(resp. r1
x := dimΛ R1ψΛx, r1

t,x := dimt R1ψΛx, and r1
s,x := dims R1ψΛx)
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The key point in reaching to a proof of our main theorems is to represent the num-
bers h1

t (Xη̄), h1
s(Xη̄), r1

t,x and r1
s,x using intersection theory. In fact, we use some linear

algebra over Z to make a correspondence between the geometrical properties stated in
our main theorems above and the equalities between these numbers.

Note that dimt and dims are also defined for an object of Db
c(η,Λ) such that the ac-

tion of I on each cohomology group is quasi-unipotent.

7.1 sheaves R1ψtΛ.

As we said, in this section we are going to represent numbers h1
t (Xη̄), h1

s(Xη̄), r1
t,x

and r1
s,x by intersection theory. We recall Riemann - Roch theorem formula which is

χ(OE) = −(E, E + K)/2.

Keep these nitations in this section;

• Y : a regular S -curve such that Ys,red is a normal cossing divisor (an n.c.d.) in Y.

• K : the relative canonical divisor of Y over S .

For C ∈ (Ys)1.

• rC : the multiplicity of C in Ys,

• mC : the prime-to-p part of rC (resp. mc := rc) if p , 0 (resp. p = 0.)

Theorem 7.1.1. Suppose Z is a reduced subscheme of Ys which is a proper s-curve.
Let D0 be the effective divisor Ys,red and put

E := ΣrCC, E1 := ΣmCC, E0 := ΣC

where C runs over Z1,

χt(Z,RψΛ) := dimt RΓ(Z,RψΛ) and

χs(Z,RψΛ) := dims RΓ(Z,RψΛ).

(we know that the action of I on RΓ(Z,RψΛ) is quasi-unipotent.) Then we have,

χt(Z,RψΛ) = −(E1,K + D0),

χs(Z,RψΛ) = −(E0,K + D0).

Furthermore, if we assume that Y − Z is smooth over S , then

χt(Z,RψΛ) = −(E1,K + E0 − E) and
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χs(Z,RψΛ) = −(E0,K + E0 − E).

The following corollary is crucial for our aim. In the corollary, we assume that an
S -curve X satisfies either of the following conditions.

• Global X is proper over S and regular, Xs,red is an n.c.d. in X and Xη is geomet-
rically connected over η.

• Local There exists a closed point x in Xs such that X−{x} and Xs−{x} are regular
and X is normal.

Defiition 7.1.2. If X satisfies the local condition above, a regular n.c.d. model of
X is a regular S -curve Y with a proper birational S -morphism Y → X which is an
isomorphism over X − {x} and whose reduced special fiber Ys,red is an n.c.d. in Y. If X
satisfies the global (resp. local) condition, we put

h1
t (Xη̄) := dimt H1(Xη̄,Λ) and h1

s(Xη̄) := dims H1(Xη̄,Λ)

(resp. r1
t,x := dimt R1ψΛx, and r1

s,x := dims R1ψΛx).

Now the corollary,

Corollary 7.1.3. Suppose that X satisfies the global condition and put Y = X and
Z = Xs,red. Then we have

h1
t (Xη̄) = 2 + (E1, E0 + K) and h1

s(Xη̄) = 2 + (E0, E0 + K).

Now, suppose that X satisfies the local condition and that Y is a regular n.c.d. model of
X and Z is Ys,red. Then,

r1
t,x = 1 + (E1,K + E0 − E) and r1

s,x = 1 + (E0,K + E0 − E)

if Y , X.
r1

t,x = r1
s,x = 1 if Y = X and X is not smooth over S at x.

r1
t,x = r1

s,x = o if Y = X and X is smooth over S at x.

Proof. By using the theorem (7.1.1) and Theorem 3.3 of [D-I], it suffices to remark that
if the assumption of the first part of this theorem (resp. the assumption of the second
part) is satisfied, then H0(Xη̄,Λ) = Λ and H2(Xη̄,Λ) = Λ(−1) (resp. R0ψΛx = Λ).
Now the deduction is clear since if it is necessary we can replace X by the connected
component of x in X and we may suppose Xη is geometrically integral over η. �

Now, it is time for explaining the action of the inertia goup I in the case that the
special fiber is reduced. Assume that X is a regular S -curve such that the special fiber
Xs is an n.c.d. in X. If x is a closed point of Xs, Bx denotes the set of the branches of Xs

at x (i.e., ˜(Xs)x)1) and Λ(x) denotes the cokernel of the diagonal morphoism Λ→ ΛBx .

We mention the following theorem (Formule de Picard-Lefschetz of Deligne) that you
can find it in [D-XV] Sections (3.3) and (3.4).
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Theorem (Deligne) 7.1.4. Let X be as above. Then

R0ψΛ = Λ and R1ψΛ|Xs,red = 0.

Assume x ∈ Xs,sing. Then,

R1ψΛx = Λ(x)(−1),

Hi
x(Xs,RψΛ) '


Λ(x) (i = 1)
Λ(−1) (i = 2)
0 (otherwise),

where the isomorphism H1
x(Xs,RψΛ) ' Λ(x) is such that the following diagram is

commutative,
H0( ˜(Xs)x − {x},RψΛ)→ H1

x(Xs,RψΛ)
↓ ↓

ΛBx → Λ(x)

where the vertical arrows are isomorphisms and all morphisms are canonical.

Poincaré duality The cup product

R1ψΛx × H1
x(Xs,RψΛ)→ H2

x(Xs,RψΛ) ' Λ(−1)

The cup product gives a dual of the above diagram, the following diagram is also
commutative,

R1ψΛx → H2
x(Xs,Λ)

↓ ↓

Λ(x)(−1) → ΛBx (−1)

where again the vertical arrows are isomorphisms and all the morphisms are the dual
of those canonical ones.

We have the variation morphism

Var(σ)x : R1ψΛx → H1
x(Xs,RψΛ)

↓ ↓

Λ(x)(−1) → Λ(x)

(the vertical arrows are isomorphisms)

The variation morphism is given by multiplication −tl(σ) where tl is the canonical
surjection, tl : I → Zl(1).

The composite morphism

R1ψΛx
Var(σ)
−−−−−→ H1

x(Xs,RψΛ)→ H1(Xs,RψΛ)→ R1ψΛx
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is equal to 0.

In the following theorem we use the notation of the theorem (7.1.1) and also assume
that the special fiber Ys is reduced.

Theorem 7.1.5. Let N be the logarithm of monodromy in H1(Z,RψΛ) and W := Zsing.
Then

Im(N : H1(Z,RψΛ)(1)→ H1(Z,RψΛ)) = Im( ⊕
y∈W

H1
y (Z,RψΛ)→ H1(Z,RψΛ)),

and rank N = Card W− Card Z1 + dimΛ H0(Z,Λ).

Corollary 7.1.6. Suppose X, Y and Z satisfy the condition of Corollary (7.1.3 (the first
part)) and Ys is reduced. Let N be the logarithm of monodromy on H1(Xη̄,Λ). Then
we have

rank N = Card(Xs)sing − Card(Xs)1 + 1.

Corollary 7.1.7. Suppose X, Y and Z satisfy the condition of Corollary (7.1 (the second
part)) and Ys is reduced. Let N be the logarithm of monodromy on RlψΛx. Then we
have

rank N = Card(Yx)sing − Card(Yx)1 + 1 i f Y , X

rank N = 0 i f Y = X

Proof. By knowing the fact that H0(Xη̄,Λ) = Λ and that R0ψΛx = Λ the results deduce
from the theorem directly. �

7.2 Lemmas
The aim of this section is to prove some lemmas which make a link between the geo-
metric properties stated in the main theorems and the quantities defined in the previous
section as dimension of some special vector spaces.

Definition of forms 7.2.1. A form is a free Z-module M of finite rank with the follow-
ing objects on M, which satisfies the properties 1 to 3 below.

• a basis B

• a symmetric bilinear form ( , ).

• a linear form ( ,K).

• an element E = ΣC∈BrCC, rC ≥ 1 for all C ∈ B.

(Property 1) MQ := M ⊗Z Q is negative and satisfies either of the following conditions;

• (1-1) The kernel is generated by E.
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• (1-2) MQ is nondegenerate and (C,−E) ≥ 0 for all C ∈ B.

(If M satisfies (1-1) (resp. (1-2)), M is called global. (resp. local))

(Property 2) (C,C′) ≥ 0, for all C,C′ ∈ B, C , C′, and B is connected i.e., there
is no nontrivial partition of the basis B, B = B1tB2, such that C,C′) = 0 for all C ∈ B1
C′ ∈ B2.

(Property 3) (C,C + K)/2 + 1 ∈ N for all C ∈ B

We put E0 := ΣC∈BC, and F := ( ,K − E + E0).
We define the conditions (RM) and (RMN) on forms as follows.

• (RM) There exists no C ∈ B such that (C,C) = (C,K) = −1.

• (RMN) There exists no C ∈ B such that F(C) ≤ 0 and −(C,C) = 1.

Since F(C) ≤ 0 and (C,C) = −1 imply (C,C + K) = −2, the condition (RM) implies
(RMN).

Definition of exceptional forms 7.2.2. A form is exceptional if it is isomorphic to one
of the following types, where always r ∈ N, ≥ 1.

• (rI0)

rank M = 1, B = {C}, (C,C) = 0, (C,K) = 0 and E = rC.

• (rIk)

(k ∈ N, ≥ 2), rank M = k, B = {Ci; i ∈ Z/kZ},

If k = 2 ( , ) is (
−2 2
2 −2

)
and 

−2
1

1

1
−2
1

1
: ...

...
... :

1
1
−2
1

1

1
−2


otherwise,

(C,K) = 0 for all C ∈ B and E = rE0.
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• (rII)

rank M = 4, B = {C0,1,C0,2,C0,3,C},

( , ) is 
−6 0 0 1

0 −3 0 1

0 0 −2 1

1 1 1 −1


( ,K) is 

4
1
0
−1


, and E = r(C0,1 + 2C0,2, 3C0,3, 6C).

• (rIII)

rank M = 4, B = {C0,1,C0,2,C0,3,C}, ( , ) is
−4
0
0
1

0
−4
0
1

0
0
−2
1

1
1
1
−1


( ,K) is 

2
2
0
−1


E = r(C0,1 + C0,2 + 2C0,3 + 4C)

• (rIV)

rank M = 4, B = {C0,1,C0,2,C0,3,C},

( , ) is 
−3
0
0
1

0
−3
0
1

0
0
−3
1

1
1
1
−1
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( ,K) is 
1
1
1
−1


, and E = r(C0,1 + C0,2 + C0,3 + 3C)

• (rI∗k) (k ∈ N),

rank M = k + 5, B = {C0,1,C0,2,C0,C1, . . . ,Ck,Ck,3,Ck,4},

( , ) is 

−2
0
1

0
−2
1

1
1
−2
1

1
−2
.

.

.

.

.

.

1
1
−2
1
1

1
−2
0

1
0
−2


,

( ,K) = 0, and E = r(C0,1 + C0,2 +
∑k

i=0 2Ci + Ck,3 + Ck,4).

• (rII∗)

B = {C0,1,C1,1,C2,1,C3,1,C4,1,C0,2,C1,2,C0,3,C}

( , ) is 

−2
1

1
−2
1

1
−2
1

1
−2
1

1
−2

1

−2
1

1
−2

1
−2
1

1

1
1
−2
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,

( ,K) = 0, and E = r(C0,1+2C1,1+3C2,1+4C3,1+5C4,1+2C0,2+4C1,2+3C0,3+6C).

• (rIII∗)

rank M = 8, B = {C0,1,C1,1,C2,1,C0,2,C1,2,C2,2,C0,3,C}

( , ) is 

−2
1

1
−2
1

1
−2

1

−2
1

1
−2
1

1
−2

1
−2
1

1

1
1
−2


,

( ,K) = 0 and E = r(C0,1 + 2C1,1 + 3C2,1 + C0,2 + 2C1,2 + 3C2,2 + 2C0,2 + 4C).

• (rIV∗)

rank M = 7, B = {C0,1,C1,1,C0,2,C1,2,C0,3,C1,3,C},

( , ) is 

−2
1

1
−2

1

−2
1

1
−2

1

−2
1

1
−2
1

1

1

1
−2


, ( ,K) = 0 and E = r(C0,1 + 2C1,1 + C0,2 + 2C1,2 + C0,3 + 2C1,3 + 3C).

• rO

rank M = 1, B = {C}, (C,C) = 0, (C,K) = −2 and E = rC.

(Here is the end of definition of exceptional forms.)

Note that a form is exceptional of type I or I* - IV* (resp. I - IV or I* - IV*) if and
only if it is global and satisfies (RM) (resp. (RMN)) and F(E) = 0.
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We again emphasize that p denotes a prime number and, for r ∈ N and ≥ 1, m de-
notes the prime-to-p part of r and El := ΣC∈BmcC.

Lemma (G-I) 7.2.3. If M is a global form satisfying (RMN), the following conditions
are equivalent.

• F(E) = F(E0).

• E = E0, or M is of type I.

Lemma (L-I) 7.2.4. If M is a local form satisfying (RMN), the following conditions
are equivalent.

• F(E) = F(E0).

• E = E0.

Lemma (G-P) 7.2.5. If M is a global form satisfying (RMN), the following conditions
are equivalent.

• F(E) = F(E1).

• M satisfies either of the following conditions (i) and (ii).

(i) Every C ∈ B such that p|rc satisfies the following property (*).

(*) F(C) = 0, (C,C + K) = −2 and, for all C′ such that (C′,C) , 0 and C , C′,
(p, rc′ ) = 1,

(ii) M is of one of the following exceptional types.

• type I - IV or I* - IV*, (if p , 2, 3).

• type I, III, I* or III*, (if p = 3).

• type I, IV or IV*. (if p = 2).

Lemma (L-P) 7.2.6. If M is a local form satisfying (RMN), the following conditions
are equivalent.

• F(E) = F(E1).

• Every C ∈ B such that p|rc satisfies the following property (*).

(*) F(C) = 0, (C,C + K) = −2 and, for all C′ such that (C′,C) , 0 and C , C′,
(p, rc′ ) = 1.

Theorem 7.2.7. Assume that M satisfies the condition (RMN). If there is a C ∈ B such
that F(C) − ch(C) = −2, the following conditions are equivalent.

• F(E) = F(E1) (resp. F(E) = F(E0))

• M is one of the following types,
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– type rO such that (p, r) = 1,

– type rII - rIV or rI∗ - rIV∗ such that p|r (p , 2, 3),

– type rIII, rI∗ or rIII∗ such that p|r (p = 3),

– type rIV or rIV∗ such that p|r (p = 2).

(resp. type 10.)

Theorem 7.2.8. Here we assume that p , 2. Let M (as always) be a form. Then the
following conditions are equivalent pairwise.

• M is of type rI∗k such that p|r and k ≥ 2.

• There exists a C ∈ B such that F(C) = 0 and chA(C) = 2.

• M is of type rI∗k such that p|r and k ≥ 1.

• There exists a C ∈ B such that F(C) = 1, chA(C) = 1, chα(C) = 2 and rC = 2r0,λ
for all λ ∈ chα(C).

• M is of type rI∗0 such that p|r.

• There exists a C ∈ B such that F(C) = 2, chA(C) = 0, chα(C) = 4 and rC = 2r0,λ
for all λ ∈ chα(C).

• M is of type rII (resp. rIII, rIV) such that p|r.

• There exists a C ∈ B such that F(C) = 1, chA(C) = 0, chα(C) = 3, rC = r0,λ+rnλ,λ

for all λ ∈ chα(C) and (rC/r0,λ) = (2, 3, 6) (resp. (2, 4, 4), (3, 3, 3)) up to order.

• M is of type rII∗ (resp. rIII∗, rIV∗) such that p|r.

• There exists a C ∈ B such that F(C) = 1, chA(C) = 0, chα(C) = 3, r0,λ = rnλ,λ for
all λ ∈ chα(C) and (rC/r0,λ) = (2, 3, 6) (resp. (2, 4, 4), (3, 3, 3)) up to order.

And in this case, M satisfies F(E) = F(E1).

7.3 Global Case
Definition 7.3.1. Assume that Xη is a regular proper η-curve. A proper S -curve Y
with an η-isomorphism Xη ' Yη is a regular (resp. regular n.c.d.) model (abbreviated
R-model (resp. N-model)) of X, if Y is regular (resp. regular and Ys,red is an n.c.d. in Y).

An S -morphism f : X′ → X′′ where X′, X′′ are R-models (resp. N-models) of X,
is a morphism of R-models (resp. N-models) of Xη if it induces the canonical isomor-
phism X′η ' X′′η .

An R-model (resp. N-model) X of Xη is a relatively minimal regular (resp. regular
n.c.d.) model (abbr. RM-model (resp. RMN-model)) if every morphism X → X′ of
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R-model (resp. N-model) of Xη is an isomorphism.

An R-model (resp. N-model) of X, is the minimal regular (resp. regular n.c.d.) model
(abbr. M-model (resp. MN-model)) if it is the final object of the category of R-models
(resp. N-models) of Xη.

Suppose X is a normal S -curve. An S -curve Y with a proper birational S -morphism
Y → X is a regular (resp. reg. n.c.d.) model (abbr. R-model (resp. N-model)) of X if Y
is regular (resp. regular and Ys,red is an n.c.d. in Y).

We can define RM-models and RMN-models, etc. of X similarly as above.

The natural question here is to ask if these models always exist. If not, under which
assumptions can we find such models?

If a proper smooth curve Xη, over η is given, we know that there exists an R-model
of Xη. From this it is easily seen that an N-model, an RM-model and an RMN-model
of Xη exist. If further Xη is geometrically integral over η, except the case where there
exists an R-model X of Xη such that Xs ' P

1
s , the M-model of Xη exists. Therefore the

MN-model does.

In the exceptional case, every RM-model X Of Xη satisfies Xs ' P
1
s , in particular,

X is smooth over S .

In the following theorem we will see when the generic fiber Xη satisfies the condi-
tions of the stable reduction theorem, then we can find a model among each of those
models we defined above such that it has reduced special fiber.

Theorem 7.3.2. Consider the following conditions,

a Every RMN-model has reduced special fiber.

a’ Every RM-model is an N-model and has reduced special fiber.

b There exists an RMN-model with reduced special fiber.

b’ There exists an N-model with reduced special fiber.

If Xη is a proper smooth geometrically integral curve over η or X is a normal S -curve
such that an R-model exists, the above conditions (a) - (b’) on Xη, or X are all equivalent
to one another.

Definition 7.3.3. Under the assumption of the theorem above Xη, (resp. X) is semi-
stable if it satisfies the equivalent conditions (a) - (b’) of the theorem.

Note to the fact that If Xη (resp. X) is semi-stable, so is it after any finite extension
of traits S ′ → S . This is easily seen by calculation of the blowing up.

Definition 7.3.4. Suppose X is a regular S -curve and Z is a connected closed sub-
scheme of Xs which is a proper curve over s. The form of (X,Z) is the free Z-module
M of basis Z1, with the following objects,
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• B := Z1,

• ( , ) : the intersection product on M,

• ( ,K) : the intersection with the relative canonical divisor of X over S .

• E := ΣC∈BrCC, where rC is the multiplicity of C in Xs.

We can check that the form of (X,Z) is a form in the sense of Definition (7.2.1)
above. It is global if Z = Xs, and it is local otherwise.

(X,Z) is said to be exceptional of type N if so is the form of (X,Z) in the sense of
Definition (7.2.2). If X is an R-model (resp. N-model) of a proper regular geometri-
cally connected η-curve Xη, X is relatively minimal if and only if the form of (X, Xs)
satisfies the condition (RM) (resp. (RMN)).

Suppose X is a normal S -curve, x is a closed point of Xs such that X − {x} is regu-
lar and is an R-model (resp. N-model) of X such that Y − Yx ' X − {x}. Then Y is
relatively minimal if and only if the form of (Y,Yx) satisfies the condition (RM) (resp.
(RMN)).

Now, we are ready to give a new proof of the stable reduction theorem.

Theorem (Deligne - Mumford, Grothendieck) 7.3.5. Suppose X is an RMN-model
of a proper smooth geometrically connected curve X, over η. Then the following con-
ditions are equivalent.

1. The action of I on H1(Xη̄,Λ) is unipotent.

2. X has reduced special fiber (i.e., Xη, is semi-stable), or (X, Xs) is of type rIk

(r, k ∈ N and r ≥ 1) (in the latter case, the genus of Xη is 1).

Proof. As we pointed out above, the form M of (X, Xs) satisfies the assumption of the
lemma (G-I).

On the other hand, the condition (2) of the theorem is equivalent to that E = E0 or
M is of type rIk. Therefore it suffices to show that the condition (1) is equivalent to
F(E) = F(E0).

It is equivalent because we have h1
s(Xη̄) = 2 + F(E0) by Corollary (7.1.3) and the

fact that (D1,D) = 0. But, we have

h1(Xη̄) := dim H1(Xη̄,Λ) = 2 − χ(Xη̄) = 2 − 2χ(OXη ) = 2 − 2χ(OXs )

(by the invariance of Euler-Poincare characteristic (EGA III)) it is equal to

= 2 + (E, E + K) = 2 + F(E).

So it is the condition (1), which is h1(Xη̄) = h1
s(Xη̄), is equivalent to F(E) = F(E0). �
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Corollary 7.3.6. Suppose Xη is a proper smooth geometrically connected curve over η.
Then, there exists a finite separable extension η′ of η such that X′η over η′ is semi-stable.

Corollary 7.3.7. Let the assumption be the same as in the theorem except that if the
genus of Xη = 1, we further assume that rC = 1 for a component C of Xs (i.e., X has a
section). Then the following conditions are equivalent.

1. The action of I on H1(Xη̄,Λ) is trivial.

2. Xs is reduced and Card(Xs)1 = Card(Xs)sing + 1.

Proof. Again, this is immediately deduced from the theorem and the corollary (7.1.6)
�

Now, the P-version of the theorem above,

Theorem 7.3.8. Let the assumption be the same as in the theorem (7.2.13). Then the
following conditions are equivalent.

1. The action of P on H1(Xη̄,Λ) is trivial.

2. X satisfies either of the following conditions (a), (b).

• Every component C of Xs whose multiplicity in Xs is divisible by p satisfies the
following condition (*).

(*) C is isomorphic to P1
s and intersects with other components of Xs at exactly

two points and the multiplicities of those components which intersect with C are
prime to p.

• (X, Xs) is of following exceptional type.

(in this case, the genus of Xη is 1.)

(X, Xs) is of type (I - IV) or (I* - IV*) (if p , 2, 3). (i.e., Xη is an arbitrary
curve of genus 1.

(X, Xs) is of type (I), (III), (I*), or (III*) (if p = 3).

(X, Xs) is of type (I), (IV), or (IV*) (if p = 2).

Proof. The proof of this theorem is analogue to the proof of theorem (7.2.13). The only
difference is that we use here the lemma (G-P) and the fact that h1

t (Xη̄) = 2+F(E1). �

Corollary 7.3.9. Suppose Xη is a proper smooth geometrically connected η-curve of
genus = 1 (which may not have section) Jη is the Jacobian of Xη Let X (resp. J) be the
MN-model of Xη, (resp. Jη). Then,

(X, Xs) is of type (I) if and only if (J, Js) is of type (I).
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If p = 2 (resp. 3),

(X, Xs) is of type (IV) or (IV*) (resp. (III), (I*) or (III*) if and only if so is (J, Js).

Proof. The proof is deduced from the theorems above and the theory of degeneration
of elliptic curves. Theorem (7.2.13) and the classification show that the following
conditions are equivalent.

1. The action of I on H1(Xη̄,Λ) is unipotent.

2. (X, Xs) is of type (I).

The assertion (1) follows from the isomorphism H1(Xη̄,Λ) ' H1(Jη̄,Λ). The second
assertion is deduced by the same argument.

If p = 2 (resp. = 3), Theorem (7.2.16) and the classification show that the follow-
ing conditions are equivalent.

• The action of P on H1(Xη̄,Λ) is trivial.

• (X, Xs) is of type (I), (IV) or (IV*) (resp. (I), (I*), (III) or (III*)).

The equivalence above shows that the second assertion is true. �

7.4 Local Case
In this section we take a look at the local case which is the case when we face with an
isolated singularity. First, we begin with defining some quantities.

Definition 7.4.1. Let X be a reduced s-curve where s is the spectrum of a field k, and
x is a closed point of X.

δX,s(x)(= δs(x)) := dimk(Onormal
X,x /OX,x),

pX,s(= ps(x)) := Card((X̃x)1).

Now, suppose X is an S -curve such that Xs is reduced and x is a closed point of Xs.

δX,s(= δs(x)) := δXs,s,

pX,s(x)(= ps(x)) := pXs,s(x).

Suppose that X is an S -curve and x is a closed point of Xs.

r1
x := dimΛ R1ψΛx.
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The following theorem is important for resolving the local results in this section.
We are not going to proof the theorem here. You can find it as Propsition (5.9) of [K]
and also Proposition (4.2) [T] with another proof.

Theorem 7.4.2. Suppose X is a normal S -curve and x is a closed point of Xs such that
X − {x} is smooth over S . Then,

r1
x = 2δs(x) − ps(x) + 1.

Definition 7.4.3. Suppose X is a normal S -curve and x is a closed point of Xs such
that X − {x} is smooth over S and φ : Y → X is a regular model of X such that
Y − Yx ' X − {x}. Then the proper transform X∗s of Xs in Y is a reduced divisor and
the exceptional divisor E = Ex is the divisor Ys − X∗s in Y.

Theorem 7.4.4. We keep the notation of the definition above, we have

δs(x) = Σyδs,X∗s (y) − (E, E) − χ(OE)

where y runs over inverse image of x in X∗s .

Proof. By the Zariski’s main theorem, the restriction map φ|X∗s : X∗s → Xs is finite and
we have

δs(x) − Σyδs,X∗s (y) = dimk(φ∗OX∗s ,x/OXs,x)

Because we have
δs(x) = dimk(Onormal

Xs,x /OXs,s) and

Σyδs,X∗s (y) = dimk(Onormal
Xs,x /φ∗OX∗s ,x)

But we have
−(E, E) = (E, (π) − E) = (E, X∗s ) = χ(OE ⊗OY OX∗s ).

One the other hand we have the following exact sequence

0→ OYs → Oχ∗s × OE → OE ⊗OY OX∗s → 0,

Hence, it is enough to show that

χs(OXs,x → Rφ∗OYs,x) := dimk(Mapping cone (OXs,x → Rφ∗OYs,x)) = 0.

To show this, we take a proper S -curve X̄ with an open immersion X → X̄ and put Ȳ
the gluing of Y and X̄ by the isomorphism Y − E ' X − {x}.

Then we will have

χs(OXs,x → Rφ∗OYs,x) = χ(OȲs
) − χ(OX̄s

) = χ(OȲη ) − χ(OX̄η ).

But it is equal to zero by the invariance of Euler-Poincaré characteristic) �
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Corollary 7.4.5. Under the assumption of the theorem (7.4.2), suppose that Y is an
N-model of X and E0 := Ered. Then

r1
x =


1 + (E,K + E0 − E) i f Y , X,

1 i f Y = X and X is not smooth over S ,

0 i f Y = X and X is smooth over S .

Proof. Only It is obvious that only the first case needs to be proved. By theorem
(7.4.2), it is enough to show

2δs(x) = (E,K − E) and ps(x) = −(E, E0).

For the first equality, we have δX∗s (y) = 0 for ally y 7−→ x, because Yx, is connected and
Y is an N-model.

On the other hand, we have −2χ(OE) = (E, E + K). So it suffices to apply theorem
(7.4.4).

For the second, it is sufficient to remark that (−E, E0) = Card(X∗s ×Xs x) (it follows
from the fact that Yx, is connected and that Y is an N-model.) �

Now, the local version of our main theorem.

Theorem 7.4.6. Suppose x is a normal S -curve, x is a closed point of Xs such that
X − {x} is smooth over S and Y is the MN-model of X. Then the following conditions
are equivalent.

1. The action of I on R1ψΛx is unipotent.

2. Y has reduced special fiber (i.e., X is semi-stable).

Proof. The assertion is clear if Y = X, we assume Y , X. By the explanations given af-
ter the definition (7.3.4), the form of (Y,Yx) satisfies the assumption of the lemma (L-I).

The above condition (2) is equivalent to E = E0. On the other hand, the condition (1)
is equivalent to r1

x = r1
s,x. Since r1

x = 1 + F(E) by Corollary above and r1
s,x = 1 + F(Eo)

by Corollary (7.1.3 (the second part)) is also equivalent to F(E) = F(E0). Thus it is
enough to apply the lemma (L-I) and we are done. �

Corollary 7.4.7. Let the assumption be the same as in Theorem (7.4.6) above. Then
there exists a finite separable extension η′ of η such that X′S , over S ′ is semi-stable
where S ′ is the integral closure of S in η′.

Proof. The assertion is directly deduced. �

Corollary 7.4.8. Again, let the assumption be the same as in Theorem (7.4.6). Then
the following conditions are equivalent.

1. The action of I on R1ψΛx is trivial.
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2. The MN-model Y of X has a reduced special fiber and

Card(Yx)1 = Card(Yx)sing + 1,

or Y = X.

Proof. The proof of this corollary follows immediately from the theorem (7.4.6) and
the Corollary (7.1.7). �

And at the end, the P-version of our main theorem in the local case.

Theorem 7.4.9. Let the assumption be the same as in Theorem (7.4.6). Then the
following conditions are equivalent.

1. The action of P on R1ψΛx is trivial.

2. Every component C of Yx whose multiplicity in Ys is divisible by p satisfies the
following condition (*).

(*) C is isomorphic to P1
s and intersects with other components of Ys at exactly

two points and the multiplicities of those components which intersect with C are
prime to p.

Proof. The proof is analogue to the proof of theorem (7.4.6) but here we use the lemma
(L-P) instead. �
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