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Chapter 1

Introduction

The history of K3 surfaces is long and rich. They obtained their name in honor
of three geometers Kummer, Kähler and Kodaira, and the mountain K2 in
Kashmir. They were the topic of researching for a long period in the world of
mathematics and physics, and even today they are still a popular and interesting
object of research.

The simplest way to describe these surfaces is to say that they are connected
complex surfaces with trivial canonical bundle and irregularity q = 0. The
easiest examples of algebraic K3 surfaces are smooth quartics surfaces in P3

and it is known that K3 surfaces are Kähler manifolds.
In my thesis I will give several approaches to K3 surfaces and I will describe

special subgroup of automorphisms which are of positive entropy and free on K3
surfaces. In the first chapter I gave short review about holonomy groups .Using
the Berger’s theorem for classification of the Riemannian holonomy groups I
showed that K3 surfaces are in the intersection between Calabi-Yau 2 manifolds
and hyper-kähler manifolds.

In the next chapter , K3 surfaces , using the standard geometrical and topo-
logical techniques, one showed some very important properties about K3 sur-
faces. There I explicitly "draw" the Hodge diagram and showed that first ho-
mology group for K3 surfaces is trivial. Also, I showed that H2(X,Z) = Z22

and it is even, non-degenerate lattice with intersection form of signature (3,19);
isomorphic to the latice U3 ⊕ 2E8(−1) . Also I wrote about cones and divisors
on K3 surfaces and presented several results such as Local and Global Torelli
Theorem for K3 surfaces. In the book of [3] is shown that all compact com-
plex surfaces with even first Betti’s number have the Hodge decomposition for
H1(X,C) and H2(X,C). This fact is used a lot of through this chapter, before
we conclude fact that all K3 surfaces are Kählerian.

The last chapter is inspired by the paper of Oguiso [15]: Free Automorphisms
of Positive Entropy on Smooth Kähler surfaces. It is divided in three parts,
where the first 2 parts are proofs of both directions of Ougiso’s main theorem,
while third part is my own result. The starting point for this chapter was
Cantant’s theorem:

Theorem 1.0.1. Let S be a smooth compact Kähler surface admitting an au-
tomorphism of positive entropy. Then S is bimeromorphic to either P2, to a
2-dimensional complex torus, an Enriques surface or a K3 surface.
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2 Introduction

By eliminating case by case we proved that the only K"ahleriann surfaces
admitting a free automorphism of positive entropy are the K3 surface.

In third part I showed how to construct surface with these desired properties
and in result I got that this surface is a complete intersection of four divisors
with class (1,1) . Also it is showed how to construct automorphism on that
surfaces such that it is free and of positive entropy.



Chapter 2

Motivation

This chapter does not concern topic of my thesis but I found higly interesting
to give different approach to K3 surfaces, by reading book of Dominic D.Joyce
"Compact complex manifold with special holonomy group" [7].

In this chapter I will introduce the notion of holonomy group and show how
it can be used in classification of certain surfaces.

Let X be a n-manifold and let TX, T ∗X denote the tangent and cotangent
bundles, respectively. The k-th exterior product of T ∗X is denoted

∧k
T ∗X ,

it is a vector bundle whose fibres have dimension

dim
(

n∧
TXx

)
=
(
n

k

)
.

The space of its smooth global sections will be denoted C∞(T ∗X); the elements
of this space are called the smooth k-forms on X.

Definition 2.0.1. Let X be a manifold and let E be a vector bundle on X. A
connection ∇ on E is a linear map

C∞(T ∗X)→ C∞(E ⊗ T ∗X)

with the additional requirement

∇(fσ) = (df)⊗ σ + f(∇σ)

where f is a smooth function on X and σ is a smooth section of E.

Definition 2.0.2. If v is a tangent vector field on X (i.e. a smooth section of
the bundle TX), then we can define the covariant derivative along v as the map

∇v : C∞(E)→ C∞(E)

given by
∇v(σ) = ∇v(σ) := (∇σ)(v).

Definition 2.0.3. The curvature F∇ of a connection ∇ on a vector bundle E is
a 2-form on X with values in E ⊗E∗, that is F∇ ∈ C∞((E ⊗E∗)⊗

∧2
T ∗X) =

Ω2(E ⊗ E∗) satisfying:

F∇(v, w, )(σ) = ∇v∇wσ −∇w∇vσ −∇[v,w]σ

where v, w are vector fields on X and σ is a section of E.

3



4 Motivation

Let α : [0, 1]→ X be a smooth curve on a manifold X, then using the pull-
back along α we get a vector bundle α∗(E) on [0, 1]; also, we can pull-back ∇
along α, producing a connection on α∗(E), which we denote as α∗∇.

A connection ∇ on E defines a notion of parallel transport on E along a
curve α:

Definition 2.0.4. A section σ of E along α is said to be parallel if ∇α̇(t)σ = 0.
A section σ of α∗(E) is said to be parallel if α∗∇α̇(t)(σ(t)) = 0 for all t ∈ [0, 1].

If we consider a parallel smooth section σ of α∗(E) over [0, 1], in such a way
that σ(t) ∈ Eα(t) for t ∈ [0, 1], as equation α∗∇α̇(t)(σ(t)) = 0 is an ordinary
differential equation of first order in σ(t), so there is unique smooth solution
σ(t) such that σ(0) = e for some e ∈ Eα(0).

Definition 2.0.5. Let α : [0, 1]→ X be a smooth curve on a manifold X, such
that α(0) = x, α(1) = y where x, y ∈ X. Then for each e ∈ Ex there is exactly
one smooth section σ(t) of α∗(E) which is parallel and such that σ(0) = e.
Define Pα(e) = s(1). Then Pα : Ex → Ey is a well defined linear map called
parallel transport map.

Now we can define the holonomy group of a connection on a bundle E
and give some interesting properties of this object. Let x be a point on the
manifold X. A loop α : [0, 1] → X based at x is a piecewise smooth path with
α(0) = α(1) = x. Parallel transport Pα : Ex → Ex is an invertible linear map,
so Pα lies in GL(Ex), the group of invertible linear transformations of Ex.

Definition 2.0.6. The holonomy group of a connection ∇ on a bundle E on
the manifold X at a point x ∈ X is the group defined as

Holx(∇) = {Pα : Ex → Ex | α loop based at x} ⊂ GL(Ex).

Elementary checks show that Holx(∇) is indeed a subgroup :

(Pα)−1 = Pα−1 , Pβα = Pβ ◦ Pα. (2.1)

Let X be a connected manifold. We will show that the holonomy group Holx(∇)
is independent of the choice of base point x. Let x, y be two points on X. There
is a piece-wise smooth path γ : [0, 1] → X such that γ(0) = x, γ(1) = y and
Pγ : Ex → Ey. Let α be a loop based at x; then the loop γαγ−1 is a loop based
at y, and

Pγαγ−1 = PγPαP
−1
γ .

Hence if Pα ∈ Holx(∇) then Pγ ◦ Pα ◦ P−1
γ ∈ Holy(∇). Thus:

PγHolx(∇)P−1
γ = Holy(∇). (2.2)

So this shows that the holonomy group is independent of the base point up to
the conjugation. If E is a bundle of rank k, then Ex ∼= Rk and thus GL(Ex) ∼=
GL(k,R) and Holx(∇) can be regarded as a subgroup H of GL(k,R).The holon-
omy group is a subgroup of GL(k,R), defined up to conjugation since aHa−1 is
a subgroup of GL(k,R) for a ∈ GL(k,R). This implies that equation 2.2 shows
that Holx(∇) and Holy(∇) yield the same subgroup of GL(k,R) .
Remark 2.0.1. Beacause of this we will omit the subscript x in Holx(∇) and
write Hol(∇).
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Let (U, (x1, . . . , xn)) be a local chart of X. For each point x ∈ U the tangent
vectors

∂

∂x1 , . . . ,
∂

∂xn

do form a basis for TxU . Hence, any vector field v on U may be uniquely written

v =
n∑
a=1

va
∂

∂xa

for some smooth functions v1, . . . , vn : U → R. Similarly, at each point x ∈ U ,
dx1, . . . , dxn form a basis for T ∗xU . Hence any 1-form α on U may be uniquely
written as

α =
n∑
b=1

αbdx
b

for smooth functions α1, . . . , αn : U → R. We denote v by va and α by αb where
a and b runs from 1 to n.

Definition 2.0.7. A tensor T on X is a smooth section of the bundle
k⊗
TX ⊗

l∧
T ∗X.

So as in the above notations, we have

T =
∑

1≤ai≤n,1≤i≤k
1≤bj≤n,1≤j≤l

T a1,...,ak

b1,...,bl

∂

∂xa1
⊗ . . .⊗ ∂

∂xak
⊗ (dxb1

1 ∧ . . . ∧ dxbl)

Remark 2.0.2. A connection ∇ on TX induces connections on all vector bundles
of tensors on X, such as

⊗
TX ⊗

⊗
T ∗X. All of these induced connections on

tensors we will note by ∇.
Let ∇ be a connection on the tangent bundle TX of X. Then there is a

unique tensor T = T abc in C∞(TX ⊗
∧2

T ∗X) called torsion of ∇ satisfying

T (v ∧ w) = ∇vw −∇vw − [v, w]

for all v, w ∈ C∞(TX). A connection ∇ with zero torsion is called torsion free.

Definition 2.0.8. Let ∇ be a connection on TX. Then from Remark 2.0.2 ∇
extends to connections on all the tensor bundles

⊗k
TX ⊗

⊗l
T ∗X. We say

that a tensor S on X is a constant(flat) if ∇S = 0.

Theorem 2.0.2. Let X be a manifold and ∇ a connection on TX. Fix x ∈ X
and let H = HolX(∇). Then H is a subgroup of GL(TxX). Let E be the vector
bundle

⊗k
TX ⊗

∧l
T ∗X over X. Then the connection ∇ on TX induces a

connection on E and H has a natural representation on the fibre Ex of E at x.
Suppose that S ∈ C∞(E) is a constant tensor. Then S|x is fixed by the action of
H on Ex. Conversely, if Sx ∈ Ex is fixed by the action of H, then there exists
a unique tensor S ∈ C∞(E) such that ∇S = 0 and S|x = Sx.

Corollary 2.0.1. Let X be a manifold and ∇ a connection on TX. Fix x ∈ X.
Define G ⊂ GL(TX) to be the subgroup of GL(TxX) that fixes S|x for all constant
tensors S on X. Then Hol(∇) is a subgroup of G.



6 Motivation

By this theorem and corollary we have the principle that given a manifold
X, a connection ∇ on TX with the holonomy group Hol(∇) determines the
constant tensors on X, and the constant tensors on X usually determine the
holonomy group Hol(∇). Therefore, studying the holonomy of a connection and
studying its constant tensors come down to the same thing.

We will now define holonomy groups of a Riemannian metric, or Rieman-
nian holonomy groups which have stronger properties than holonomy groups of
connections on arbitrary vector bundles.

Theorem 2.0.3. Let X be a manifold and g a Riemannian metric on X. Then
there exists a unique torsion free connection ∇ on TX with ∇g = 0, called the
Levi-Civita connection.

Proof. Suppose first of all that ∇ is a torsion free connection on TX with
∇g = 0. Let u, v, w ∈ C∞(TX) be vector fields on X. Then g(v, w) is a smooth
function on X and so u acts on g(v, w) to give another smooth function ug(v, w)
on X. Since ∇g = 0, using the properties of connections we find that

u · g(v, w) = g(∇uv, w) + g(v,∇uw)

Combining this with similar expressions for vg(, w) and wg(u, v) we obtain:

v · g(u,w) = g(∇vu,w) + g(u,∇vw)
w · g(u, v) = g(∇wu, v) + g(u,∇wv)

u · g(v, w) + v · g(u,w)− w · g(u, v) = g

Hence:

g(∇uv, w) + g(v,∇uw) + g(∇vu,w) + g(v,∇uw)− g(∇wu, v)− g(u,∇wv)

is equal to

g(∇uv +∇vu,w) + g(∇vw −∇wv, u) + g(∇uw −∇wu, v)

Now if we use the fact that ∇uv −∇vu = [u, v] this becomes equal to

g(2∇uv − [u, v], w) + g([u,w], u) + g([u,w], v)

(this is satisfied as ∇ is torsion free, i.e. ∇vw−∇wv− [v, w] = 0). And now we
have

2g(∇uv, w) = u·g(v, w)+v·g(u,w)−w·g(u, v)+g([u, v], w)−g([v, w], u)−g([u,w], v)

For fixed u, v there will be unique vector field ∇uv which satisfies this equation
for all w ∈ C∞(TM). This defines ∇ uniquely and it turns out that ∇ is a
torsion free connection with ∇g = 0.

First of all we should note that g is a constant tensor as ∇g = 0, so g is
invariant under Hol(g) by Theorem 2.0.2. That is, Holx(g) lies in the subgroup
of GL(TxM) which preserves g|x. This subgroup is isomorphic to O(n). Thus
Holx(g) may be regarded as subgroup of O(n) defined up to conjugation, and
it is then independent of x ∈ X, so we will write it as Hol(g).
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Definition 2.0.9. A Riemannian manifold (M, g) is said to be a symmetric
space if for every point p ∈ X there exists an isometry sp : X → X that is an
involution (that is, s2

p is the identity), such that p is an isolated fixed point of
sp.

Examples of these manifolds are Rn, sphere Sn, projective spaces CPm with
the Fubini-Study metric and so on...

Definition 2.0.10. A Riemannian manifold (X, g) is called locally symmetric if
every point has an open neighbourhood isometric to an open set in a symmetric
space and nonsymmetric if it is not locally symmetric.

The preceding definitions and results lead us to the most important theorem
of this chapter. It is a theorem due to Berger. This theorem gives us the
classification of Riemannian holonomy groups.

Let (X, g) and (Y, h) be a two Riemannian manifolds and let X×Y be their
product manifold. Recall that the product metric g× h is defined on X × Y by

g × h|(x,y) = g|x + h|y, ∀x ∈ X, y ∈ Y

We call (X × Y, g × h) a Riemannian product.
Remark 2.0.3. We can express this more nicely by saying that the forgetful
functor U : RMan →Man from the category of Riemannian manifolds to the
category of Manifolds creates products.

Definition 2.0.11. A Riemannian manifold (X ′, g′) is said to be locally irre-
ducible if every pair has neighbourhood isomorphic to a Riemannian product
(X × Y, g × h), otherwise it is irreducible.

Theorem 2.0.4 (Berger). Suppose X is a simply connected manifold of di-
mension n and that g is a Riemannian metric on X, which is irreducible and
non-symmetric. Then there are the following mutually exclusive alternatives:

1. Hol(g) = SO(n);

2. n = 2m with m ≥ 2 and Hol(g) = U(m) in SO(2m);

3. n = 2m with m ≥ 2 and Hol(g) = SU(m) in SO(2m);

4. n = 4m with m ≥ 2 and Hol(g) = Sp(m) in SO(4m);

5. n = 4m with m ≥ 2 and Hol(g) = Sp(m)Sp(1) in SO(4m);

6. n = 7 and Hol(g) = G2 in SO(7);

7. n = 8 and Hol(g) = Spin(7) in SO(8).

Remark 2.0.4. 1. SO(n) is the holonomy group of the generic Riemannian
metric ;

2. A Riemannian metric g such that Hol(g) ⊂ U(m) are called Kähler met-
rics. Kähler metrics form a natural class of metrics on a complex manifold,
and the generic Kähler metric on a given complex manifold has holonomy
group equal to U(m);
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3. Metrics g such that Hol(g) = SU(m) are called Calabi-Yau metrics. Since
SU(m) is a subgroup of U(m), all Calabi-Yau metrics are Kähler;

4. Metrics g with Hol(g) = Sp(m) are called hyper-Kähler metrics;

5. Metrics g with holonomy group Sp(m)Sp(1) for m ≥ 2 are called quater-
nionic Kähler;

6. The holonomy groups G2 and Spin(7) are called the exceptional holonomy
groups.

The Kähler holonomy groups are U(m), SU(m) and Sp(m). Any Riemannian
manifold with one of these holonomy groups is a Kähler manifold and thus a
complex manifold.

The main object of this thesis will be the study of K3 surface (complex
manifolds of dimension 2), which are in fact the lowest dimensional examples of
complex manifolds which are both Calabi-Yau and compact hyper-Kähler, since
SU(2) = Sp(1).



Chapter 3

K3 surfaces

In this chapter I will try to give some properties about K3 surfaces. I will
use very popular theorems and methods in the world of geometry and try to
glue them together in order to get one compact picture of these very nice and
interesting objects in geometry.

3.1 Definition and numerical characteristics
Definition 3.1.1. A K3 surface is a connected compact complex surface X
(i.e. dimC(X) = 2, or, equivalently, dimR(X) = 4) such that its first Betti’s
number is b1(X) = 0 and such that it has trivial canonical divisor, KX = 0.

Let’s explain a little bit the second part of the definition. As we know the
canonical bundle for a complex manifold X of dimension n is defined to be

n∧
T ∗X

, where T ∗X is the holomorphic cotangent bundle. The sections of this bundle
are the forms of type (n, 0). As KX = 0 then we have that

∧2
T ∗X is trivial

bundle and so there is the holomorphic 2-form ωX which is nowhere zero.
This holomorphic form which is non-zero everywhere is unique up to a multi-

plication by a scalar c ∈ C∗. So, from this fact, we get that h2(OX) = h0(KX) =
1, i.e.

h2,0(X) = 1 = h0,2(X)
Remark 3.1.1. The number hk represent the dimension of Hk(X,OX); in fact
these are the Hodge numbers h0,k = dim Hk(X,OX). By Poincare duality we
have that

b0 = b4 = 1
b3 = b1,

where bi = dimHi(X,R) is i-th Betti’s number. Also hi,j = dim Hj(X,Ωi)
(i, j = 0, 2) and by Serre duality we have hi,j = h2−i,2−j and h0,0 = h2,2 = 1.
We use notations

q = h0,1dim H1(X,OX),we call q irregularity and
pg = h0,2 = dim H2(X,OX) = dim H0(X,Ω2) we call geometrical genus.

9



10 K3 surfaces

Also, c1 and c2 represent first and second Chern classes. We will use some
well known formulas from general theory of surfaces in order to obtain some
numerical results about K3 surfaces . So if X is compact complex surface we
have :

1. The Noether Formula

pg − q + 1 = 1
12(c21 + c2)

2. The signature formula of Hirzebruch

b+ + b− = 1
3(c21 − 2c2)

where b+ and b− reprsent the signature (b+, b−) of the intersection form

H2(X,R)×H2(X,R)→ H4(X,R) ∼= R

and satisfies b2 = b+ + b−.

3. The Gauss-Bonnet formula

c2 =
∑
i

(−1)ibi = 2− 2b1 + b2,

c2 =
∑
i,j

(−1)i+jhi,j = 2− 2q + h1,1 + 2pg − 2h1,0.

Now we have:

12pg − 12q + 12 = c21 + c2,

3b+ − 3b− = c21 − 2c2;

and from these two equalities it follows

12pg − 12q + 12− 3b+ + 3b− = 3c2,
4pg − 4q + 4− b+ + b− = c2.

From the Gauss-Bonnet formula we have

c2 = 2− 2b1 + b2

so we deduce
4pg − 4q + 4− b+ + b− = 2− 2b1 + b2, (3.1)

and so

(b+ − 2pg) + (2q − b1) =
(

1
2b2 − b1

)
+ 1

2(b+ − b−)− 2(pg − q) + 2

=
(

1
2c2 − 1

)
+ 1

6(c21 − 2c2)− 1
6(c21 + c2) + 2

= 1
2c2 − 1 + 1

6c
2
1 −

1
6c2 −

1
6c

2
1 −

1
6c2 + 2 = 1

we can find that

2h1,0 ≤ b1, b1 − h1,0 ≤ q, 2pg ≤ b+

so from our result we get that the possible solutions are
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1. b+ = 2pg and b1 = 2q − 1;

2. b+ = 2pg + 1 and b1 = 2q.

So we can conclude that

1. If b1 is even then

b1 = 2q
b+ = 2pg + 1

and from (3.1) and from the Gauss-Bonnet formula we deduce

4pg − 4q + 4− b+ + b− = 2− 2q + h1,1 + 2pg − 2h1,0

4pg − 4q + 4− 2pg − 1 + b− = 2− 2g + h1,1 + 2pg − 2h1,0

h1,1 − 2h1,0 = b− + 1− 2q

which implys
h1,1 = b− + 1, h1,0 = 2.

Also we have that
c21 + 8q + b− = 10pg + 9.

2. b1 is odd: b1 = 2q − 1 and b+ = 2pg. Similarly we get h1,0 = q − 1,
h1,1 = b− and c21 + 8q + b− = 10pg + 8.

As consequence we see that

b1 = h1,0 + h0,1,

b2 = h2,0 + h1,1 + h0,2.

Definition 3.1.2. Let X be any compact complex manifold. Since there is a
pairing H0(X,m1KX)⊗H0(X,m2KX)→ H0(X, (m1m2)KX) we can make the
direct sum

C⊕
∑
m≥1

H0(X,mKX)

into a commutative ring R(X) with unit element. This ring is called the canon-
ical ring of X. R(X) has a finite degree of transcendence, say tr.degR(X) over
C. We can define Kodaira dimension Kod(X) of X as follows

Kod(X) =
{
−∞ if R(X) ∼= C
tr.deg(R(X))− 1 otherwise

By Kodaira general classification of surfaces by means of 2 invariants (the
first Betti’s number b1 and the Kodaira dimension K ) we obtain a division in
six big classes:

1. b1 is even and K = −∞;

2. b1 is even and K = 0;

3. b1 is even and K = 1;
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4. H = 2 (this implies b1 even);

5. b1 odd, K ≥ 0;

6. b1 odd, K = −∞.

K3 surfaces are situated in the second group, with b1 even and K = 0.
Since b1 vanishes for K3 surfaces we have that q = 0. The Noether’s formula

yields

χ(OX) = c21 + c2
12 = KX ·KX) + c2

12
where χ(OX) is the holomorphic Euler characteristic. As KX is trivial we have
KX ·KX = 0 and so

χ(OX) = c2
12

while
χ(OX) = h0,0 − h0,1 + h0,2.

By definition h0,0 = 1 and h0,1 = q = 0 and from h2,0 = 1 = h0,2 it follows

χ(OX) = 2.

Thus
c2 = 2 · 12 = 24,

c2 is the Euler topological characteristic and now we have that

b2 = 24− 2 = 22.

From the previous remark we see that b+ = 2pg+1, but we know that χ(OX) =
1− q + pg and we have also pg = 1. And now we get that b+ = 3 and b− = 19.
This leads us to the table which represents the dimension of Hp,q(X) for p, q =
0, 1, 2.

p \ q 0 1 2
0 1 0 1
1 0 20 0
2 1 0 1

Here we will give very important fact, in order avoid confusion about whether
a surface is Kählerian or not. In Chapter IV.2 inside the book [3] it is explained
that the Hodge decomposition

Hr(X,C) ∼=
⊕
p+q=k

Hp,q(X)

holds always in case k = 2 and it holds for k = 1 if b1(X) is even.

Theorem 3.1.1. H1(X,Z) = 0 if X is K3.

Proof. As consequence of universal coefficients theorem we have thatHi(X,Z) ∼=
Zbi(X)⊕Ti, where Ti is torsion part. As we have that H1(X,R) = 0 since b1 = 0
then we have that H1(X,Z) ∼= T1 . So we get that H1(X,Z) is a torsion group.
Let’s suppose that H1(X,Z) has a torsion element of order n. Then by the
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“unbranched covering trick” (pg. 43 [3]) we have that X has an unbranched
covering of order n. So we have π : X̃ → X. Using the complex analytic
structure on X we can construct an analytic structure on X̃. The surface X̃
will be smooth and compact. As we know that X admits holomorphic 2-form ω
nowhere 0 on X, then also π∗ω will be a nowhere zero holomorphic 2-form on
X̃, so by this we have that K

X̃
= 0. By Noether’s formula, for X̃ we get

χ
X̃

(0) = 1 + pg(X̃)− q(X̃)

As K
X̃

= 0 we see that pg(X̃) = 1, so we get

χ
X̃

(0) = 2− q(X̃).

Also we know that e(X̃), the topological Euler characteristic of X̃, is in fact
e(X̃) = ne(X), also the Noether’s formula implies again

12χ
X̃

(0) = K
X̃

+ e(X̃),

and so

12(2− q(X̃) = 0 + 24n = 24n,

2− q(X̃) = 2n,

q(X̃) = 2− 2n.

By this we get that the only solution is n = 1, q(X̃) = 0, and we see that
H1(X,Z) is torsion free.

Corollary 3.1.1. We have that H1(X,Z) = H1(X,Z) = H3(X,Z) = H3(X,Z) =
0 and H2(X,Z) = H2(X,Z) = Z22.

Proof. We know that H1(X,Z) = H1(X,Z) = 0. Using Poincare duality we get

H1(X,Z) = H3(X,Z) = 0,
H1(X,Z) = H3(X,Z) = 0,
H2(X,Z) = H2(X,Z).

As H2(X,Z) is a free abelian group and b2 = 22, then H2(X,Z) ∼= Z22.

Let’s recall some basic facts from geometry: if X is a complex manifold and
L,M are line bundles on X, then if

L↔ {(Ui, gij : Ui ∩ Uj → C∗ hol. map)}
M ↔ {(Ui, hij : Ui ∩ Uj → C∗ hol. map)}

then we define the relation L ∼= M , isomorphism of line bundles, if and only if
there are holomorphic maps ϕi : Ui → C∗ such that

gij = ϕihijϕ
−1
j

The Picard group of X is defined to be

Pic(X) := {line bundles on X}/ ∼= .
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It is not hard to prove that it satisfies all the properties of a group.
The exponential sequence

0→ Z→ OX → O∗X → 0

gives us the long exact sequence

0→ H1(X,Z)→ H1(X,OX)→ H1(X,O∗X) δ→ H2(X,Z)

It is well known that H1(X,O∗X) ∼= Pic(X) and we define

Pic0(X) := H1(X,OX)/H1(X,Z)

and
NS(X) := Im(δ) ⊆ H2(X,Z)

NS(X) is the Neron-Severi group of X and we have the exact sequence

0→ Pic0(X)→ Pic(X)→ NS(X)→ 0

Moreover, we have that
NS(X) ∼= Zρ ⊕ T

where T is a finite group and the number ρ, i.e. the rank of NS(X), is called
the Picard number of X.

NS(X) is a free abelian group endowedwith a symmetric non-degenerate
pairing

〈 ·, · 〉 : NS(X)×NS(X)→ Z

Theorem 3.1.2 (Signature Theorem). Let X be a compact surface. Then
the cup product on H2(X,R) restricted to H1,1(X) is non degenerate of type
(1, h1,1 − 1) if b1(X) is even and of type (0, h1,1) and of type (0, h1,1) if b1(X)
is odd.

Proof. Let us consider the space

(H2,0(X)⊕H0,2(X)) ∩H2(X,R)

This is a 2pg dimensional subspace of H2(X,R) (as dim(H2,0(X)) = pg). On
this subspace the intersection product form is positive definite. Using the Hodge
decomposition we see that the orthogonal complement of our space H2(X,R) is
nothing but H1,1(X). And now using our remark 2.1.1 we get that for b1 even
we have b+ = h1,1 − 1 and, for b1 odd, b+ = h1,1.

Theorem 3.1.3 (Lefschetz theorem on (1, 1)-classes). Let X be a compact sur-
face. Then the image of Pic(X), the Neron-Severi group, is

H1,1(X) ∩H2
DR(X,Z)

In other words, an element of H2(X,C) is in the image of Pic(X) if and only
if it is integral and can be represented by a real closed (1, 1)-form.

Theorem 3.1.4. For a K3 surface X, the intersection pairing 〈 ·, · 〉 on NS(X)
is even, non-degenerate and of signature (1, ρ− 1).
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Proof. It is non-degenerate by definition of NS(X) for any surface. It is even
because by Riemann-Roch formula we have

χ(X,L) = L · L
2 + 2

and so L ·L = 2χ(X,L)− 4, and this is even ( in fact by Wu’s formula we have
that intersection-product form on H2(X,Z) is even). As we know that

NS(X) = H1,1(X) ∩H2(X,R)

then we have

H2(X,R) = (H1,1(X) ∩H2(X,R))⊕ Rα⊕ Rβ

with
α = Re(ω), β = Im(ω),

where ω is the generator of H0(X,Ω2
X). As 〈α, β〉 = 0 and

〈α, α〉 = 〈β, β〉 = 1
2 〈ω, ω〉 = 0

and the signature of 〈 ·, · 〉 on H2(X,R) is (3, 19), we have that the signature of
〈 ·, · 〉 on NS(X) will be (1, ρ− 1).

H2(X,Z) is a free abelian group of rank 22. It is known that H2(X,Z is an
unimodular lattice which is isomorphic to the lattice

(−E8)⊕ (−E8)⊕ U ⊕ U ⊕ U

What are U and E8? U denotes the hyperbolic plane, that is U is a free Z-
module of rank 2 whise bilinear form has matrix(

0 1
1 0

)
This is an even lattice and

U(−m) ∼= U(m)

for any m.
E8 denotes the unique even unimodular positive definite lattice of rank (,

the bilinear form on E8 is given by the matrix

2 −1
−1 2 −1

−1 2 −1 −1
−1 2 0
−1 0 2 −1

−1 2 −1
−1 2 −1

−1 2
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3.2 Divisors and cones on K3 surfaces
In this section we are going to describe a little bit more the geometry of K3
surfaces. We will use divisors and cones to give results which describes curves ,
linear systems of divisors and projectivity of K3 surfaces.

First of all I would like to define ample divisors and to give some properties
of ample divisors.

Let X be complex compact surface. We say that a line bundle:
ξ ∈ H1(X,O∗) = Pic(X), is very ample if ϕξ : X → PM defined as
ϕξ(x) = (s0(x), s1(x), ..., sM (x)) ,where {s0, s1, ..., sM} represents the basis for
H0(X, ξ), is an embedding. If ξ = [D] for some D ∈ Div(X) then we say that
divisor D is very ample.

For divisor D ∈ Div(X) we say that D is ample divisor if exists positive
number m such that mD is very ample. We can give some well known proper-
ties for ample divisors. For exemple ,we have that :
1.If divisors H and H ′ are ample divisors, then H +H ′ is also ample divisor.

2.For divisor D ∈ Div(X) exists the number m >> 0 such that mH + D is
very ample.

3.The Kodaira Vanishing Theorem :
If D ∈ Div(X) and D is ample divisor then we have that :

Hq(X,KX +D) = 0,∀q > 0.

4.The Nakai-Moishezon criterion:
We have that for divisor D ∈ Div(X) is satisfied next:

D is ample if and only if : D ·C > 0 for every irreducible curve C and D2 > 0.

Now we will introduce one notation which will be used a lot of trough this
section. With N(X) we will denote : H2(X,Z) ∩H1,1(X). Rank of this group
will be r. The intersection form on N(X) can be extended to one bilinear
symmetric non-degenerate form on Rr. We can associate to it a quadratic
form q, which, by Sylvester’s Theorem will have canonical form in some basis
e1, . . . , er of Rr. By the Hodge Index Theorem this form q is of signature(1,r-1)
and its matrix is 

1 0 . . . 0
0 −1 . . . 0
...

...
. . .

...
0 0 . . . −1


Hence, if x ∈ N(X), then

q

(
r∑
i=1

xiei,
r∑
i=1

xiei

)
= x2

1 − x2
2 − . . .− x2

r

Set
Ω := {x ∈ N(X) | q(x) > 0

We call Ω the positive cone of X.
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This cone Ω consists of two connected components and each of these two
components is convex. The equation is

x2
2 + . . .+ x2

r − x2
1 < 0 ⇐⇒ x2

1 > x2
2 + . . .+ x2

r

From this we see that these components does not contain the vertex.

Definition 3.2.1. The upper positive cone is by definition

Ω+
X := {x ∈ Ω | x1 > 0}

Theorem 3.2.1. Every ample divisor of X has class in Ω+
X .

Proof. Let take H ′ ample , so it is H ′ ·H ′ = (H ′)2 > 0 and thus class of H ′ ∈ Ω.
Let us choose ample divisor H such that class of H in N(X) has first coordinate
x0 > 0 . So H belongs to Ω+

X .
If we suppose that H ′ 6∈ Ω+

X then we have that the points of the segment
HH ′ are of the form D := λH + (1− λ)H ′ as λ ranges over [0, 1]. Now

q(D,D) = λ2H2 + 2λ(1− λ)HH ′ + (1− λ2)(H ′)2

Since every term of this expression is bigger than 0, then

q(D,D) ≥ 0

which is a contradiction. Thus H ′ ∈ Ω+
X .

Definition 3.2.2. The ample cone of X is the convex cone A(X) ⊂ R+ gen-
erated by classes in N(X) of ample divisors. In other words, if h ∈ A(X),
then

h =
∑
k≥0

λkxk

where λk ≥ 0 and where xk is the class of an ample divisor Hk ∈ Div(X).

Remark 3.2.1. A(X) ⊆ Ω+
X .

Theorem 3.2.2. A(X) is open.

Proof. Let H ∈ Div(X) be an ample divisor. There is a family of divisors
{D1, . . . , Dr} such that their classes {d1, . . . , dr} in N(X) form a basis. By the
property 2 of ample divisors for all i = 1, . . . , r there will be ni > 0 such that
±Di + niH is very ample. Thus

H ± 1
ni
Di ∈ A(X)

So we have an open neighbourhood of H which is contained in A(X) and so H
is an interior point of A(X). If this is satisfied for H then it is satisfied for λH,
λ ∈ R, and if also H ′ is an interior point of A(X), then so it will be λH + µH ′.
Then we deduce that for all h ∈ A(X),

h =
∑

λkHk

with λk ≥ 0 and Hk ample, we win that h is an interior point of A(X).
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Definition 3.2.3. The Nef cone of X is by definition

A′(X) := {x ∈ Ω+
X | x · C ≥ 0 ∀C irreducible curve in X}

Remark 3.2.2. Let D ∈ Div(X) be a divisor. Then

{x ∈ N(X) | x ·D = 0}

is a hyperplane through the origin in N(X) and {x ∈ N(X) | x·D ≥ 0} is a half-
plane which is closed in N(X). With respect to the Sylvester basis {e1, . . . , er}
we have

D =
∑

αiei, x =
∑

xiei

and
D · x = α1x1 − α2x2 − . . .− αrxr

Considering this and the definition of A′(X) we get that if x ∈ A′(X), then
λx ∈ A′(X) for all λ ∈ R+, so A′(X) is a cone.

Proposition 3.2.1. A′(X) = A(X), the closure being taken in N(X).

Proof. We have indeed

A′(X) = Ω+ ∩

 ⋂
C⊂X

irreducible

{x ∈ N(X) | x · C ≥ 0}


so we obtain that A′(X) is closed. Also, it is A(X) ⊆ A′(X), so that A(X) ⊆
A′(X). Now we will prove that A′(X) ⊆ A(X). Let us prove that for every
h ∈ A′(X) there is a sequence in A(X) which is convergent to h. A(X) is
contained inN(X) and there are divisorsH1, . . . ,Hr inX with classes h1, . . . , hr
in N(X) which form a basis for N(X). If h ∈ A′(X), then for all n ≥ 1 we set

Pn :=
{
h+

∑
tihi | 0 ≤ ti ≤

1
n

}
As Q is dense in R there is h̃n ∈ Pn with rational coordinates.

For a certain m = m(n) we will have mh̃n = D, D ∈ Div(X). Then

D2 = m2h̃n
2

= m2(h2 + 2tihhi +
∑

titjhihj) > 0

because every term is bigger than 0 (recall that hi are ample), and for C irre-
ducible curve in X we have

D · C = C · (mh̃n) = m(Ch+
∑

tiC · hi) > 0

hence D is ample and so
1
m
D ∈ N(X)

As
lim h̃n = h

then we see that h ∈ A(X), i.e. A′(X) ⊆ A(X).
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Let’s make some nice connection with curves on a K3 surface X and the
cone A′(X). If C is a curve on the surface X, then by the adjunction formula
we have

KC = [KX ⊗OC(C)]|C
As we know that in the case of K3 surfaces the canonical divisor KX is null, we
obtain KC = OC(C). This implies

degKC = degOC(C)

and since

degKC = 2g(C)− 2
degOC(C) = 〈G(C), G(C)〉 = C · C

we get
2g(C)− 2 = C · C

Consider the short exact sequence

0→ OX → OX(C)→ OC(C)→ 0 (3.2)

The integer dim H1(C,OC(C)) = h1(C,OC(C)) is called arithmetic genus and
denoted by pa. Sequence 3.2 we can rewrite as

0→ OX(−C)→ OX → OC → 0

By Riemann - Roch we get

χ(−C) = χ(OX) + 1
2(C2 + C ·KX)

and so
C2 + C ·KX = 2χ(−C)− 2χ(OX)

Then, as we know that χ(OX) = χ(OC) + χ(OX(−C)) we get, by simplifying
notation χ(OX(−C) = χ(−C), that

C2 + C ·KX = 2χ(OX)− 2χ(OC)− 2χ(OX)

and
C2 + C ·KX = 2χ(OC)

As χ(OC) = h0(OC) − h1(OC) + h2(OC) and h2(OC) = 0 (dim C < 2),
h0(OC) = 1 and h1(OC) = pa. We get that

C2 + C ·KX = −2(1− pa) = 2pa − 2

As in case of K3 surfaces KX = 0 then we get that C2 = 2pa − 2, also as we
know that C2 = 2g − 2, then pa = g.

If C ·C = 0, then pa = 1 and by definition of A′(X) we can conclude that all
irreducible curves of arithmetic genus 1 are on A′(X). As C · C = 2pa(C)− 2,
now we can a little bit analyse effective divisors on K3:

1. if pa(C) = 0 then C ·C = −2 and all divisors obtained by linear combina-
tion of these kind of curves are not in positive cone and these curves are
rational smooth curves;
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2. there is no curves D on K3 surface X with C2 < −2, it is obvious by fact
that pa(C) ≥ 0;

3. if pa(C) > 0, all divisors obtained by linear combination of this kind of
curves are nef, because C · C ≥ 0.

Definition 3.2.4. A divisor D on a surface X is said to be:

1. nef: if D2 ≥ 0 and D · C ≥ 0 for each irreducible curve C on X;

2. big and nef (or pseudo-ample): D2 > 0 and D ·C ≥ 0 for each irreducible
curve C onX.

A fixed component of a linear system |L| is an effective divisor D∗ on X such
that D = D′ + D∗ for any D ∈ |L| where D′ is an effective divisor. When D
runs through |L| the divisors D′ form a linear system |L′| of the same dimension
as |L|.

If X is a K3 surface with line bundle L such that L2 ≥ 0 the conidtion
L · C ≥ 0 for each irreducible curve C on X is equivalent to the condition
L · δ ≥ 0 for each irreducible (−2)-curve δ on X (cfr. [3], Proposition 3.7).

Also, some well known result from Saint-Donat paper, Projective Models of
K3 surfaces [16], are:

1.If H is an effective divisor on X, the intersection of H with each curve C
is non negative except when C is a component of H and C is a (−2)-curve.

2. If the linear system |H| does not have fixed components and if H2 > 0,
then the generic element in |H| is smooth and irreducible and H is a pseudo-
ample divisor.

3. The fixed components of a linear system on K3 surfaces are always (−2)-
curves and Saint-Donat proves that a linear system on a K3 surface has no base
points outside its fixed components.

Theorem 3.2.3. Let Γ be a divisor on X, a K3 surface. We will suppose that
Γ2 ≥ −2, then Γ or −Γ is effective. Moreover if for some L, nef divisor, we
have L · Γ > 0, then it is Γ which is effective.

Proof. By Kodaira vanishing theorem we have that

H2(X,OX(Γ)) ∼= H0(X,OX(KX − Γ))

As we know that KX = 0 we get that

H2(X,OX(Γ)) ∼= H0(X,OX(−Γ))

simplifying notation we get h2(Γ) = h0(−Γ). By Riemann-roch we get

h0(Γ) + h0(−Γ) ≥ h0(Γ) + h0(−Γ)− h1(Γ)− χ(Γ)

= χ(OX) + Γ(KX + Γ)
2

= 1− g + pg + Γ · Γ
2 = 2 + Γ2

2 ≥ 1

So by this Γ or −Γ is effective. If L · Γ > 0 for some nef divisor L, then −Γ
cannot be effective.
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Theorem 3.2.4. Let X be a smooth projective K3 surface, let L be a nef and big
line bundle on X (i.e. pseudo-ample), and suppose there is an effective divisor
D such that L ·D = 1, D2 = 0. then |L| has a fixed component.

Proof. We will consider the divisor L − gD. From genus formula we get that
L2 = 2g − 2. Then

(L− gD)2 = L2 − 2gLD + g2D2 (L ·D = 1, D2 = 0)
2g − 2− 2g = −2

while
L · (L− gD) = 2g − 2− g = g − 2

L is nef and if

1. g ≥ 3 then L · (L− gD) > 0 and by previous lemma we get that L− gD
is effective.

2. g = 2 then we have that L − 2D or 2D − L is effective. If 2D − L
is effective, let D̃ = L − D. Then we have L · D̃ = 1, (D̃)2 = 0 and
L− 2D̃ = 2D−L is effective. Thus replacing D by D̃ we get that L− gD
is effective. As h0(D) + h0(−D) ≥ 2 + D2

2 = 2 and h0(−D) = 0 we get
h0(D) ≥ 2. Now we can conclude that h0(gD) ≥ g+ 1. also we know that
h0(L) = 2 + L2

2 = 2 + 2g−2
2 = g + 1. . From :

0→ OX(gD)→ OX((L− gD) + gD)→ OL−gD((L− gD) + gD)→ 0

we have the injection 0→ H0(gD)→ H0(L) and dim(H0(gD) ≥ dim(H0(L))
and so L− gD has base points and it is fixed component of linear system
|L|.

Let’s suppose that we have on some smooth surface X a collection of n
smooth rational curves C1, . . . , Cn such that C2

i = −2,
⋃
Ci is connected and

intersection matrix is negative definite 1 .
Then there is a contraction map π : X → X such that π(

⋃
Ci) = P , P is

point and π|X\⋃Ci
: X \

⋃
Ci → X \ {P} is an isomorphism. The point P ∈ X

is a rational double point.

Theorem 3.2.5. Let X be a smooth K3 surface, let |L| be a nef and big base
point-free linear system on X and suppose there is an effective curve D such
that L ·D = 0, D2 = −2. Then every irreducible component Di of D satisfies
L · Di = 0, D2

i = −2. TMoreover if C1, . . . , Cn is maximal connected set of
irreducible curves such that L · Ci = 0, C2

i = −2, then there is a contraction
π : X → X of

⋃
Ci to a rational double point, and the map ϕ|L| factors through

π.

Proof. Let D =
∑
niDi with ni > 0. Since L · D = 0, we have that 0 =∑

niL ·Di, but as L is nef we get that for all i, L ·Di ≥ 0, as 0 =
∑
niL ·Di

implies L · Di = 0 for all i. If we recall Hodge Algebraic Index Theorem ,
1A matrix Mn×n is negative definite if xtMx < 0 for all n-dimensional vector x.
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which states the following: Let D,E be divisors with rationa coefficients on
the algebraic surface X (projective compact surface). If D2 > 0 and D · E = 0,
then E2 ≤ 0. Then by this theorem we get, since L ·Di = 0, that D2

i < 0. So
as Di is on K3 and D2

i < 0, we have that D2
i = −2 (there is no (−1)-curve on

a K3 surface) and Di is smooth rational curve. These curves can be contracted
to a rational double points.

Let C1, . . . , Cn be a maximal connected set of curves as before. Also, we will
suppose that L2 ≥ 4, that C =

∑
niCi satisfies C · Ci ≤ 0 for all i, and that

C2 = −2. Let us consider the linear system |L− C|. Then

(L− C)2 = L2 − 2LC + C2 = L2 − 2
L · (L− C) = 2g − 2

By previous theorem we get that L−C is effective. We will suppose that L−C
is not nef.

Let Γ be an irreducible curve such that (L − C) · Γ < 0. If Γ2 ≥ 0, then
|Γ| moves (by Saint-Donat and the introductory part we have that Γ is big and
nef), so that (L−C) ·Γ cannot be negative since L−C is effective. So we have
that Γ2 = −2. We have C · Γ > L · Γ ≥ 0, since (L − C) · Γ < 0 and L is nef,
then Γ cannot be component of C because all components of C have negative
intersection with C and so we get that L ·Γ > 0 (not L ·Γ = 0 because Γ is not
component of C).

Let x = L · Γ and y = C · Γ, and we know that L2 = 2g − 2 . We have that
0 < x < y and also next matrix of intersection:

· L C Γ
L 2q − 2 0 x
C 0 −2 y
Γ x y −2

By Hodge index theorem we must have that the determinant of this matrix
is ≥ 0.

So we have

0 ≤ (2g − 2)(4− y2) + 2x2 ≤ (2g − 2)(4− y2) + 2y2

and so
y2 < 4

(
g − 1
g − 2

)
≤ 8 (g > 2)

i.e. y = 2 and x = 1.
So we have (C+Γ)2 = 0 and L·(C+Γ) = 1, by previous lemma we have that

(C + Γ) is fixed component of |L|, which is not possible because we supposed
that L2 ≥ 4 (by Saint Donat it is very ample).

So we got contradiction and then |L− C| is nef. By Riemann-Roch:

h0(L− C) = 1
2(L− C)2 + 2 = 1

2L
2 + 2− 1 = h0(L)− 1

We see that C impose just one condition on H0(L) so ρ|L|(C) must be a point,
so ϕ|L| factors through the contraction.
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In the case where L2 = 2, we will get:

h0(L− C) ≥ 1
2(L− C)2 + 2 = 2

As C is not fixed component of L we have that

2 ≤ h0(L− C) < h0(L) = 3

and so h0(L− C) = h0(L)− 1, and we get the same result as before.

Now, one theorem from Morrison paper: On K3 surfaces with big Picard
number ([Mor]):

Theorem 3.2.6. Let L be nef and big linear system on a K3 surface.

1. |L| has base points if and only if there is a divisor D such that L ·D = 1,
D2 = 0;

2. in the case of no base points:

(a) if π : X → X denotes the contraction of all effective curves C with
L·C = 0, C2 = −2 to rational double points, then ϕ|L| factors through
π;

(b) the induced map ϕ : X → Pg has degree 2 if and only if either L2 = ”
,or L ∼ 2D for divisor D with D2 = 2 or there is a divisor D with
L ·D = 2, D2 = 0. Otherwise, ϕ : X → Pg is an embedding.

And now as conclusion of this part we will prove the following theorem:

Theorem 3.2.7. If |L| is a nef and big linear system on a K3 surface, then
|3L| induces an embedding of X into the projective space.

Proof. By previous theorem, if we suppose that this is not true then either
2 = (3L)2 = gL, which is impossible, or 3L ∼ 2D and D2 = 2, so L2 = 4

9D
2

and L2 = 8
9 , also impossible, or there is some D with D2 = 0, and 3L ·D = 1

or 3L · D = 2, both cases impossible. By elimination we proved what we
wanted.

3.3 Weyl Group and Torelli Theorem for K3
surfaces

Definition 3.3.1 (Kähler Cone). We will define the Kähler cone for compact
complex surface X as :

CX := {x ∈ N(X) | x2 > 0 and x · d > 0 for all effective divisors}

CX is a convex subcone of the positive cone. But also we should notice very
important facts about Kähler cone:

1. The Kähler cone is the ample cone. This is provided by Nakai-Moishizon
criterion which states that: for divisor D ∈ Div(X) we have that D is
ample if and only if D · C > 0 for all irreducible curves C on X and
D2 > 0.
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2. The Kähler cone contains all Kähler classes, because in general if X has
Kḧaler metric with cohomology class κ, then is κ ·D > 0 for all effective
divisors. Also necessary condition which must be satisfied in order that
class be Kähler is that κ2 > 0. So by this all Kähler classes lie in Kähler
cone.

Now, let’s define ∆(X) as

∆(X) := {δ ∈ N(X) | δ2 = −2}.

Divisors with this kind of class will be called nodal divisors. And also we will
define ∆+(X) as

∆+(X) := {δ ∈ ∆(X) and δ is the class of an effective divisor}

If we fix a Kähler class κ on X, then all effective divisors x ∈ N(X) which
satisfy x2 > 0 are in the same component of the cone Ω(X) where κ belongs.

Definition 3.3.2. Let X be a complex manifold and G be a subgroup of the
group of automorphism of X. Then we say that

1. G acts properly discontinuously on X if for every two compact sets K1,
K2 from X we have that

{g ∈ G | g(K1) ∩K2 6= ∅}

is finite.

2. G acts without fix points on X if for all g ∈ G, g 6= idX , g doesn’t have
fixed points.

Remark 3.3.1. If 1. and 2. are satisfied then

X/G = {orbits of G in X}

is a complex manifold and π : X → X/G is holomorphic, surjective and locally
biholomorphic.A nice example of a such variety is complex torus, i.e. X = Cn,
Γ ⊂ Cn lattice of rank 2n .

Definition 3.3.3. IfX,X ′ are surfaces, an isomorphism of Z-modulesH2(X,Z)→
H2(X ′,Z) is called a Hodge isometry if

1. It preserves the cup product (i.e. it is an isometry);

2. its a C-linear extension H2(X,C) → H2(X ′,C) preserves the Hodge-
decomposition.

If X,X ′ are moreover Kähler surfaces, a Hodge isometry is called effective if it
preserves the positive cone.

Definition 3.3.4. For δ ∈ ∆(X) we will define reflection in δ to be the mapping:
Sδ : H2(X,Z)→ H2(X,Z) defined as

Sδ(x) = x+ (x · δ)δ

Theorem 3.3.1. The reflection in δ, Sδ, is a Hodge isometry.
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Proof. 1. It preserves intersection form since

(x+ (x · δ)δ)2 = x2 + x(x · δ)δ + (x · δ)δx+ (x · δ)δ(x · δ)δ
= x2 + (x · δ)2 + (x · δ)2 + (x · δ)2δ2 = (δ2 = −2, δ ∈ ∆(X))
= x2 + 2(x · δ)2 − 2(x · δ)2 = x2

2. It preserves the Hodge decomposition because: δ ∈ N(X), so δ ∈ H1,1(X)
implies H2,0 ⊕H0,2 ∈ δ⊥.

Definition 3.3.5. The Weyl group of X is defined to be the subgroup W (X)
of Aut(H2(X,Z) generated by {Sδ | δ ∈ ∆}.

W (X) is a subgroup of those automorphisms which preserve the intersection
form and Hodge decomposition.

Theorem 3.3.2. W (X) is a discrete group which acts properly discontinuously
on Ω(X).

Proof. Ω(X) ∼= Ω1(X)× R+, where with Ω1(X) we denote

Ω1(X) = {x ∈ N(X) | x2 = 1}

and R+ denotes the positive reals. So now we will prove our result by showing
that W (X) acts properly discontinuously on Ω1(X).

Aut(N(X)) ∼= O(1, r−1), this group acts transitively on Ω1(X), and the sta-
bilizer of point is compact group isomorphic to O(r−1). W (X) is a subgroup of
Aut(H2(X,Z)),so it is discrete in Aut(H2(X,R)) and hence also in the subgroup
Aut(N(X)) in which it lies.The action ofW (X) on O(1, r−1) is properly discon-
tinuous, which implies that the induced action on Ω1(X) ∼= O(1, r−1)/O(r−1)
is also properly discontinuous.

Theorem 3.3.3. If a discrete group W acts properly discontinuously on a space
Ω(X) and if S is a subset of W then

F =
⋃
s∈S
{x | s(x) = x}

is closed in Ω(X).

Proof. For y ∈ X \ F let

Wy := {w ∈W | w(y) = y}

be the stabilizer. We have Wy ∩ S = ∅. Since the action is properly discontinu-
ous, there is neighbourhood U of y such that WU ∩ U = ∅ for all w ∈ W \Wy

and in particular for all w ∈ S. Hence, there is no point of U fixed by any
element of S, so U ⊂ X \ F .

Corollary 3.3.1.
⋃
δ∈∆(X) δ

⊥ is closed in Ω(X).

Proof. δ⊥ is the fixed locus of the reflections Sδ, and by applying previous
theorem we will obtain the result.
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Definition 3.3.6. The hyperplane δ⊥ will be called walls in Ω(X). Connected
component of Ω(X) \

⋃
δ∈∆(X) δ

⊥ will be called chambers of Ω(X).

Remark 3.3.2. It is clear that chambers are open sets of Ω(X).

Theorem 3.3.4. The group W (X)×{±1} acts transitively on the set of cham-
bers of Ω(X).

Proof. Since ±1 interchanges the two connected components upper and down
component of positive cone, and since W (X) preserves them because

x · Sδ(x) = x2 + (x · δ)(x · δ) > 0

we have to check the transitivity of the action of W (X) on the chambers in one
of the components of C(X).

Let x, y ∈ Ω(X) be such that x and y belongs to the same component of
Ω(X), i.e. x · y > 0, and let x · δ 6= 0 and y · δ 6= 0 for all δ ∈ ∆(X). We want to
prove that for at least one w ∈ W (X), w(x) and y are in the same connected
component of

Ω(X) \
⋃

δ∈∆(X)

δ⊥

Let us take x and let l be such that x2 = l. Then for any a ∈ R the set

{z ∈ Ω(X) | 0 ≤ y · z ≤ a, z2 = l}

is compact.
As we proved action ofW (X) on C(X) is properly discontinuous so it follows

that
{w ∈W (X) | y · w(x) ≤ a}

is a finite set. Note that 0 ≤ y · w(x) and w(x)2 = l. First is from fact that
w(x) preserves components of cone, second is from fact that (Sδ(x))2 = x2 = l.
From this we can conclude that the function z 7→ y · z on the orbit Wx of x
attains its minimum at a point z0 = w0x. Then for all δ ∈ ∆ we will have

y · wδ(w0x) ≥ y · w0x

because
y · (z0 + (δ · z0)δ) ≥ y · z0

Now we have that y · z0 + y(δ · z0) · δ ≥ y · z0 and so (δ · z0)(δ · y) ≥ 0. So z0 and
y are on the same side of every wall because if (δ · z0) > 0 then (y · δ) > 0 and
conversely. And so both belong to the same connected component of

Ω(X) \
⋃

δ∈∆(X)

δ⊥.

In this part I will give some general facts and useful results about period
maps and space of period and then we will see how we will use them in order
to get nice results for concrete case, i.e. case of K3 surface.
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Let X be a compact connected, smooth complex surface. As we know, we
have the Hodge decomposition for X:

H2(X,C) = H2,0(X)⊕H1,1(X)⊕H0,2(X).

The signature of the intersection form on H1,1(X) will be (1, h1,1 − 1) if b1(X)
is even (which is the case for K3 surfaces). So from now on we will suppose
that b1(X) is even. We will denote geometric genus pg of X with h = h2,0 =
dim H2,0(X) and H2(X,C) with H2.

Definition 3.3.7. The space of periods Ω of the surface X is the subspace of
the grassmannian Gr(H2, h) of h-planes of the space H2 such that every µ ∈ Ω
is isotropic for the intersection bilinear form and for each x ∈ µ, x 6= 0 we have
x · x > 0. In other words we have

Ω := {µ ∈ Gr(H2, h) | µ is isotropic for the bilinear form and
for all x ∈ µ, x 6= 0 we have x · x > 0}

Remark 3.3.3. Given µ ∈ Ω we can define Hodge decomposition by H2,0 = µ,
H0,2 = µ so we get H1,1 = (µ ⊕ µ⊥) . From now we will consider that Hodge
structure is ordered by µ .

Theorem 3.3.5. Let µ be point of Ω ⊂ Gr(H2, h). The tangent space at µ of
the Grassmannian Gr(H2, h) is given by

TµGr(H2, h) = HomC(µ,H2/µ)

and the tangent space at µ of the space of period Ω is given by

TµΩ = HomC(H2,0, H1,1).

Proof. Let γ be curve on Gr(H2, h) defined as γ : (ε, ε)→ Gr(H2, h) and h(0) =
0 and γ̇(0) =

→
p . Let

→
p be the tangent vector at µ determined by curve γ(u).

To every point x ∈ µ we associate vector

d

du
γ̃(u)

∣∣∣∣
u=0

of H2, where γ̃ is lifting of γ passing through the point x. This vector is defined
by x (mod µ). Then

TµGr(H2, h) = HomC(µ,H2/µ).

Let’s consider a complex curve C(t) on Gr(H2, h) where t = u + iv, complex
number near to 0, such that C(0) = µ. If we take C̃(t) to be the lifting of C(t)
passing through x, where x ∈ µ, we will get homomorphism,

µ 3 x 7→ ∂

∂t
C̃(t)

∣∣∣∣
t=0

(mod µ) (3.3)

in real case we can write down this as

µ 3 x 7→ 1
2

(
∂C

∂u
− i∂C

∂v

)∣∣∣∣
(0,0)
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So we can deduce from here that C(t) is holomorphic in 0 if and only if

∂

∂t
C̃(t)

∣∣∣∣
t=0

belongs to µ. So our homomorphism 3.3 can be identified with

µ 3 x 7→ ∂C

∂u

∣∣∣∣
u=0

.

The space of periods Ω is an open of the subvariety Gr(H2, h) defined by
the equation 〈x, x〉 = 0. tangent space at µ to Ω is identified with TµΩ =
HomC(µ,H2/µ). From the remark we have

µ⊥ = µ⊕H1,1 ⇒ µ⊥/µ = H1,1

and so
TµΩ ∼= HomC(H2,0, H1,1).

Now as we told let’s consider the period space for K3 surface X. As we know
on H2(X,Z) intersection product defines a bilinear form which is unimodular,
even and of signature (3, 19).

H2(X,Z) as Z-module is isomorphic to the lattice L = (−E8)2 ⊕H3 which
we call K3-lattice.

For every K3 surface there exists an isomorphism α : H2(X,Z)→ L preserv-
ing bilinear forms. Choice of such an isomorphism is called marking of X. By
using the marking α : H2(X,Z)→ L we get a Hodge structure on L. We want
to consider Hodge decomposition on the LC = L⊗ C = H2,0 ⊕H1,1 ⊕H0,2.

Period space for K3 lattice L will be subspace of Grassmannian Gr(1, LC).
In this case grassmannian is a projective space of dimension 21 and so period
space is

Ω := {[w] ∈ P(L⊗ C) | w · w = 0, w · w > 0}

with associated Hodge structure:

H2,0 = Cw, H0,2 = Cw, H1,1 = 〈w,w〉⊥

So by this we see that Ω is open subset in a quadric in P21.
Now I will briefly explain notions of deformation of surface and local Torelli

theorem. This part is a short review of Gandelion exposition “Theoreme Local
de Torelli pour K3 surfaces” in the Asterisque Seminaire directed by Beauville
([Be]).

I will mention just some big important results without details.

Definition 3.3.8. The analytic family of complex manifolds is given by

1. a space of parameters S, which is complex manifold of dimension n;

2. a compact complex manifold H of dimension m+ n;
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3. a holomorphic map p of maximal rank, where

p : H → S

and every fibre f−1(s), s ∈ S, is a compact complex manifold of dimension
n.

Example 3.3.1. If we take S = H, the Poincare half-plane and H = C ×H/ ∼
where ∼ is defined as

(z, τ) ∼ (z + a+ bτ, τ)

if a, b ∈ Z, then we get a family of complex tori of dimension 1, Tτ .
We say that real manifold X0 has an complex structure X if there is splitting

of tangent bundle

TCX0 = T 1,0X0 ⊕ T 0,1X0 and T 1,0X0 = T 0,1X0.

We say that X0 is integrable if it is induced by a complex structure, i.e. in
neighbourhood of all points of X0 we can find system of n linearly independent
functions ξα, α = 1, . . . , n such that ξα constructs linearly independent system
in that neighbourhoods.

Definition 3.3.9. A deformation of X0 is a analytic family of almost complex
integrable structures.

Let now ΘX be the sheaf of holomorphic vector fields.The Kodaira - Spencer
map is defined to be the map

ρ : T0S → H1(X,ΘX)

by sending a vector v ∈ T0S to form which determine element of H1(X,ΘX)
(Dolbeault cohomology), explicitly for chart system {nξαi } and vector

v =
∑
a

va
∂

∂ta

we have

ρ(v) =
n∑
α=1

d′′
(∑

va
∂

∂ta
ξαi

)
· ∂

∂za

where {zα(x)} is a system of charts on X. We will need very nice result of
Nirenberg and Spencer, it is theorem:

Theorem 3.3.6 (Nirenberg - Spencer). If X0 is complex compact manifold
such that H2(X0,ΘX) = 0, then there exists analytic deformation of X0 with
parametrizing space an open subset of H1(X0,ΘX) such that Kodaira - Spencer
map is identity.

Definition 3.3.10 (Period map). Let S be a space of parameters forthe defor-
mation of complex manifold X.To point s of S we associate complex structure
X(s) of the variety X0 and also the Hodge structure H2(X,C). This Hodge
structure lies in Ω and we will note it as p(S) and we will call p, period map
associated to deformation.
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Now if we return to the case of K3 surfaces we will have next: ΘX is iso-
morphic to the sheaf of holomorphic 1-forms Ω1

X by contraction with nowhere
vanishing holomorphic 2-form ω. So we have

H2(ΘX) = H2(Ω1
X) = 0

So by the previous theorem there is a smooth local deformation of X, i.e.
π : X → S with smooth fibres such that π−1(0) = X and Kodaira-Spencer
map is an isomorphism.

If we choose a marking α : H2(X,Z)→ L we will extend this as

αs : H2(π−1(s),Z)→ L, s ∈ S.

We now have a period mapping of the family S → Ω, which sends s to the
Hodge structure on L given by α(H2(π−1(s),Z)). Now we can state local Torelli
theorem for K3 surfaces:

Theorem 3.3.7. The differential of the period map S → Ω is an isomorphism.

Proof. Consider the following diagram:

T0S
differential

of period map
//

∼=Kodaira - Spencer

��

TµΩ

∼=

��

H1(θX)
∼= // Hom(H2,0(X), H1,1(X))

The natural map H1(θX)→ Hom(H2,0(X), H1,1(X)) is given by the mapping

H1(θX)⊗H0(Ω2
X)→ H1(Ω1

X)

induced by contraction of a vector field with a 2-form to produce 1-form. In
case of K3 surfaces, this is an isomorphism.

Main consequence of the local Torelli theorem is the set of Hodge structures
corresponding to K3-surfaces is an open set in the 20-dimensional complex
manifold Ω.

This theorem, together with Kummer surface is main tool for proving Global
Torelli theorem. We will now state Global Torelli theorem and we will give
important consequences of that theorem. Techniques for proving this theorem
are derived and explicitly shown in Asterisque Seminar: Geometrie des surfaces
K3.

Theorem 3.3.8 (Global Torelli Theorem). Let X and X ′ be Kähler K3 surfaces
and suppose that there exists an effective Hodge isometry

φ : H2(X,Z)→ H2(X ′,Z)

Then φ = f∗, with f : X → X ′ biholomorphic.

Theorem 3.3.9 (Weak Torelli Theorem). Let X,X ′ be Kähler K3 surfaces and
suppose that there exists a Hodge isometry H2(X ′,Z) → H2(X,Z). Then X
and X ′ are isomorphic.
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We define the Kähler chamber to be

V +(X) = {x ∈ N(X) | x2 > 0, x · κ > 0 and for all δ ∈ ∆+(X) x · δ > 0}

where κ is any Kähler class on X.
The reflections generating the group W operate properly discontinuously on

V +(X) as we proved in Theorem 3.3.3 and V +(X) is the set of ample divisors
on X. Let’s prove this:

Theorem 3.3.10. Let X be an algebraic K3 surface. Then any element D from
V +(X) is the class of an ample divisor.

Proof. By Riemann-Roch D or −D is an effective divisor. Since D is from
V +(X) it must that D is effective. By Nakai - Moisezon criterion for ampleness
it is sufficient to show that for effective irreducible divisors on X, say E, is
D · E > 0.

1. If E2 < 0 then E2 = −2 and this implies that E ·D > 0, by definition of
V +(X).

2. If E2 ≥ 0 then E ·D ≥ 0. By the Hodge Index Theorem we may take a
basis (D1, . . . , Ds) ∈ N(X), with D1 = D and D2

i < 0 (i = 2, . . . , s) and
Di ·Dj = 0 (i 6= j). Write: E = α1D1 + . . .+αsDs (αi ∈ Z). If E ·D = 0,
then α1D

2
1 + α2D2 ·D1 + . . .+ αsDs ·D1 = 0, and so α1D

2
1 = 0. We get

α1 = 0 and hence E2 < 0. This gives us contradiction, so E ·D > 0.

On the end of this chapter we state a theorem which remained a conjecture
for a lot of time:

Theorem 3.3.11. Every K3 surface is Kähler. Moreover the set of Kähler
classes is exactly V +(X).
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Chapter 4

Free Automorphisms of
Positive Entropy on
Smooth Kähler surfaces

In the paper of Keiji Oguiso [15] is proved that there is a projective K3 sur-
face admitting a fixed-point-free automorphism of positive entropy and that
no smooth compact Kähler surface other than projective K3 surfaces and their
blow-ups admit such an automorphism.

Now let us introduce some important notion and definitions important for
our work. Let M be a complex compact Kähler manifold. Let g be a biholo-
morphic automorphism of M .

Definition 4.0.11. The first dynamical degree of g, denoted d1(g), is the maxi-
mum of absolute values of eigenvalues of the C-linear extension g∗ : H2(M,Z)→
H2(M,Z).

Definition 4.0.12. We say that g is of positive entropy if d1(g) > 1. We say
that g is of null entropy if d1(g) = 1.

Remark 4.0.4. Last definition is the result of the research contained in the papers
of Gromov-Yomdin [11], Dinh-Sibony [8] and Friedland [9].

1. As g∗ is an automorphism for H2
DR(M,Z), then det(g∗|H2(X,Z)) = ±1. As

|det g∗| =

∣∣∣∣∣±
b2∏
i=1

λi

∣∣∣∣∣
then 1 =

∏b2
i=1 |λi|, then we have:

(a) if there exists i such that |λi| < 1, then there exists j such that
|λj | > 1 and g is of positive entropy;

(b) if for all i, |xi| = 1, then g is of null entropy.

2. (g∗)k has eigenvalues λki , where λi are the eigenvalues for g∗. If |λi| > 1
and we have |λi|k = 1, then k = 0 and so g has infinite order.

33
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Definition 4.0.13. Let Mg := {x ∈M | g(x) = x}. Map g is said to be free if
Mg = ∅.

Remark 4.0.5. Non-trivial translation on a complex torus is free, but it is of
null entropy.

Our first goal will be to prove this theorem, whose proof will be divided in
the following sections.

Theorem 4.0.12. Let S be a smooth complex compact Kähler surface admitting
a free automorphism of positive entropy. Then S is birational to a projective
K3 surface of Picard number greater than 1, and conversely there is a projective
K3 surface of Picard number 2 with a free automorphism of positive entropy.

4.1 Part I
In this section we will prove the first part of the theorem, i.e. we will consider
compact Kähler surface admitting an automorphism of positive entropy. We
will show that this surface is bimeromorphic to either P2, to a 2-dimensional
copmlex torus, to an Enriques surface or to a K3 surface. And the by elimination
we will prove that the only surfaces which admit free and of positive entropy
are the K3 surfaces.

4.1.1 Topological and Holomorphic Lefschetz Number
This part will be strongly based on the Principles of Algebraic Geometry of
Griffiths and Harris [10].

Let g : M →M be a C∞ map of a compact oriented manifoldM of dimension
n. Let p be a fixed point of g, i.e. p ∈ M and g(p) = p. It’s clear that
p correspond to a point of intersection of the graph Γg ⊂ M × M and the
diagonal ∆ ⊂M ×M , where

∆ = {(x, x) | x ∈M}
Γg = {(x, g(x)) | x ∈M}

The intersection number #(Γg ·∆)M×M depends only on the homology classes
of Γg and ∆ in M ×M .

Definition 4.1.1. A point p ∈ M which is fixed for the map g is said to be
non-degenerate if it is an isolated fixed point and the Jacobian matrix

Jg(p) : Tp(M)→ Tp(M)

satisfies det(Jg − I) 6= 0.
In this case, we define ig(p), the index of g at p to be

ig(p) = sgn(det(Jg(p)− I))

Let g̃ : M → Γg be defined as

p 7→ (p, g(p))
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and ∆: M → ∆ be defined as
p 7→ (p, p)

Also, two more maps π1 and π2, the projections, are defined as

M ×M
π1

zz

π2

$$
M M

We will denote with η∆ a cohomology class from Hn(M ×M) of the diagonal
∆ ⊂M ×M .

For a fixed q, consider a collection {ψµ,q} of closed q-forms onM which form
a basis for Hq

DR(M) and let {ψ∗µ,n+q} be n−q forms representing the dual basis
for Hn−q

DR (M). Hence we have∫
X

ψµ,q ∧ ψ∗ν,n−q =
{

1 if µ = ν

0 if µ 6= ν
(4.1)

By the Künneth formula, a basis of Hk
DR(M ×M) will be represented by

{ϕµ,ν,p,q = π∗1ψµ,p ∧ π∗2ψ∗ν,q}p+q=k

The dual basis of H2n−k
DR (M ×M) is represented by

{ϕ∗µ,ν,n−p,n−q = (−1)2(p+q)π∗1ψ
∗
µ,n−p ∧ π∗2ψν,n−q}p+q=k

And by direct computations:∫
M×M

ϕµ,ν,p,q ∧ ϕ∗µ′,ν′,n−p′,n−q′ = δµ,µ′ · δν,ν′ · δp,p′ · δq,q′

The Poincaré dual η∆ of the homology class of the diagonal ∆ ⊂M ×M is
the represented by the form

ϕ∆ =
∑
p,µ,ν

cp,µ,νϕµ,ν,p,n−p

and we have
cp,µ,ν =

∫
∆
ϕ∗µ,ν,n−p,p = (−1)n−pδµ,ν

and now we obtain that η∆ is represented by

ϕ∆ =
∑
p,µ

(−1)n−pϕµ,µ,p,n−p

The coordinates of (p, p) ∈ M ×M , using the local coordinates on x1, . . . , xn
on M will be

yi = π∗1xi and zi = π∗2xi

by this we have that an oriented basis for

T(p,p)(∆) ⊂ T(p,p)(M ×M)
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is given by

∆∗
(

∂

∂x1
, . . . ,

∂

∂xn

)
=
(

∂

∂y1
+ ∂

∂z1
, . . . ,

∂

∂yn
+ ∂

∂zn

)
where ∆: x 7→ (x, x) is the diagonal map). For T(p,p)(Γg) we have basis

g̃∗

(
∂

∂x1
, . . . ,

∂

∂xn

)
=
(

∂

∂y1
+
∑ ∂gi

∂x1
· ∂

∂zn
, . . . ,

∂

∂yn

∑ ∂gi
∂xn

· ∂

∂zn

)
and now we have(

∆∗
(

∂

∂x1

)
, . . . ,∆∗

(
∂

∂xn

)
, g̃∗

(
∂

∂x1

)
, . . . g̃∗

(
∂

∂xn

))
which is in fact obtained from the standard basis for T(p,p)(M ×M)(

∂

∂y1
, . . . ,

∂

∂yn
,
∂

∂z1
, . . . ,

∂

∂zn

)
by the matrix (

In In
In Jg(p)

)
We know that Γg and ∆ intersect transversely at (p, p) exactly when

det
(
In In
In Jg(p)

)
= det(Jg(p)− I) 6= 0,

In fact, when p is non-degenerate point of g. So the index of g at p, ig(p) is the
intersection number of ∆ with Γg at p. So we can conclude that∑

g(p)=p

ig(p) = #(∆ · Γg)M×M

Now

#(∆ · Γg) =
∫

Γg

ϕ∆

=
∑
p

(−1)n−p
∫

Γg

∑
µ

π∗1ψµ,p ∧ π∗2ψµ,n−p

(it is obvious that g̃∗π∗2 = g∗)

=
∑
p

(−1)n−p
∫
M

∑
µ

ψµ,p ∧ g∗ψµ,n−p = (by (4.1))

=
∑
p

(−1)n−ptr(g∗|Hn−p
DR

(M))

=
∑
p

(−1)ptr(g∗|Hp
DR

(M))
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thus
T (M, g) =

∑
p

(−1)ptr(g∗|Hp
DR

(M))

is the topological Lefschetz number.
It is clear from here that if g has no fixed points then

T (M, g) =
∑
g(p)=p

ig(p) = 0.

In the case when X is a compact complex Kähler manifold of dimension
n and g : X → X a holomorphic map, then g acts not only on the De Rham
cohomology of X, but also on the Dolbeault cohomology groups as well.

So we will start with the computation of the Dolbeault cohomology class
of the diagonal ∆ ⊂ X × X. For p and q we have {ψp,q,µ} be a basis of the
(p, q)-forms on HP,q

∂
(X) and {ψn−p,n−q,µ} be a ∂-closed forms representing the

dual basis for Hn−p,n−q
∂

(X) under the pairing

Hp,q

∂
(X)⊗Hn−p,n−q

∂
(X)→ C

given by
ψ ⊗ ϕ 7→

∫
X

ψ ∧ ϕ

The Künneth formula provides a basis for Hn,n

∂
(X ×X):

{ϕp,q,µ,ν = π∗1ψp,q,µ ∧ π∗2ψn−p,n−q,ν}

and the dual basis for Hn,n(X ×X) is represented by

{ϕ∗n−p,n−q,µ,ν = π∗1ψ
∗
n−p,n−q,µ ∧ π∗2ψp,q,ν}

the Dolbeault class η∆ of the diagonal is

ϕ∆ =
∑
p,q,µ

(−1)p+qϕp,q,µ,µ .

Now let g : X → X be holomorphic map with isolated non-degenerate fixed
points and

Γg = {(p, g(p)), p ∈ X}.
We have to know that for holomorphic map g we have ig(p) ≥ 0.

Then we have

#(∆ · Γg) =
∫

Γg

ϕ∆

=
∑

(−1)p+q
∫

Γg

π∗1ψp,q,µ ∧ π∗2ψ∗n−p,n−q,µ

=
∑

(−1)p+qtr(g∗|Hp+q

∂
(X))

If p = 0 we get
H(X, g) =

∑
q

(−1)qtr(g∗|H0,q

∂
(X))

and we call it Holomorphic Lefschetz number. So we have that H(X, g) = 0 if
g has no fixed points.
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4.1.2 Cantat’s result
In the paper [4] by Cantat it is shown the next theorem:

Theorem 4.1.1. (Cantant’s theorem) Let S be a smooth compact Kähler sur-
face admitting an automorphism of positive entropy. Then S is bimeromorphic
to either P2, to a 2-dimensional complex torus, an Enriques surface or a K3
surface.

Now, if X is a smooth compact Kähler surface admitting an automorphism
of positive entropy, we will show that that automorphism will be free just in
case when S is a K3 surface.

Theorem 4.1.2. Assume that X is birational to either P2 or to an Enriques
surface. If g ∈ Aut(X) is a biholomorphic morphism then Xg 6= ∅.

Proof. In the case when X = P2 we have

Ω2
P2 ∼= O(KP2) ∼= O(−3).

As we know that

H0(Pn,O(d)) =
{
Sd if d ≥ 0
0 if d < 0

where Sd is the space of homogeneous polynomial in n+ 1 variables of degree d,
we can conclude that H0(P2,O(−3)) = 0, soH0(P2,Ω2

P2) = 0 and soH2,0(P2) =
0, as by Serre duality we have that

H2,0(P2) = H0,2(P2)⇒ H0,2(P2) = 0.

So H2(P2,OP2) = 0. Using the De Rham cohomology for P2 we have that
H1
DR(P2) = 0, so that H1(P2,C) = 0 and by Hodge decomposition we have

H0,1(P2) = H1,0(P2) = 0

so H1(P2,OP2) = 0. We know by maximal principle theorem that

H0(P2,OP2) = C.

The holomorphic Lefschetz formua

H(P2, g) =
2∑
k=0

(−1)ktr(g∗|Hk(P2,OP2 ))

implies that
H(P2, g) = tr(g∗|H0(P2,OP2 ))

as det g∗ = ±1 and g∗|H0(P2,OP2 ) : C→ C we have that H(P2, g) = 1 6= 0, so Xg

and g is not free.
The same will be done in case of Enriques surface since by definition of that

surface we have that pg = g = 0.

So by this theorem we have that P2 and Enriques surfaces do not admit free
automorphisms.

Before I continue with theorems which are necessary for proving main result,
I would like first to point out some facts and well-known results from bimero-
morphic geometry.
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Definition 4.1.2. Let S be a smooth complex surface and p ∈ S a point on
S. Then there exists a surface S̃ together with a bimeromorphic morphism
σ : S̃ → S such that

1. σ−1(p) = E, where E ∼= P1;

2. σ|
S̃\E : S̃ \ E ∼= S \ {p} is a biholomorphism.

We say that σ is a blow up and that S is blown up in p. We will write Ŝ = Blp(S)
and we will call this the blow-up of S. The curve E is called the exceptional
curve of σ at p.

I will recall some facts about blow-ups, without proof (which can be found
in [17]).

1. The cohomology groups of S̃ with coefficients in Z satisfy

Hq(S̃,Z) ∼=

{
Hq(S,Z) if q 6= 2
H2(S,Z)⊕ E if q = 2

where E is the lattice generated by the class of the exceptional curve.

2. σ : S̃ → S induces:

(a) σ∗ : M(S)→M(S̃) by the assignment f 7→ f ◦ σ

S̃

��

f◦σ=σ∗(f)

��

S // P1

(b) σ∗ : Div(S)→ Div(S̃);

(c) σ∗ : Pic(S)→ Pic(S̃);

3. let C be an irreducible curve in S and p ∈ C, with multp(C) = r. Let
S̃ = Blp(S). then

(a) the proper transformation of C by σ will be

C̃ = σ−1(C \ {p})

the closure being taken in S̃;
(b) the total transformation of C by σ will be

σ∗C = C̃ + rE

4. Pic(S̃) ∼= Pic(S)⊕ Z, this isomorphism is performed by

([D], n) 7→ [σ∗D + nE]

5. for all D,D′ ∈ Div(S) we have:
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(a) σ∗D · σ∗D′ = D ·D′;
(b) σ∗D · E = 0;
(c) E2 = −1;

6. K
S̃

= σ∗KS + E;

7. e(S̃) = e(S) + 1, because

bi(S̃) =
{
bi(S) if i 6= 2,
bi(S) + 1 if i = 2.

8. K2
S̃

= (σ∗KS + E)2 = (σ∗KS)2 + 2σ∗KSE + E2 = K−S 1;

9. K2
S̃

+ e(S̃) = K2
S + e(S);

10. χ(O
S̃

) = χ(OS).

Let S be a surface and E be an irreducible curve on S. Then E is (-1) curve
if one of the next three condition is satisfied:

1. E ∼= P1, so E2 = −1; or

2. E2 = E ·KS = −1; or

3. E2 < 0, E ·K < 0.

Theorem 4.1.3 (Criterium of Castelnuovo). If E ⊂ S is (-1) curve then E is
exceptional curve.

Theorem 4.1.4 (Structure of Bimeromorphic Morphism). Let S and S′ be two
surfaces. Every bimeromorphic morphism between S and S′ will be composition
of a finite number of blow-ups.

Definition 4.1.3. A smooth surface is called minimal, if it does not contain
any (-1) -curve.

Remark 4.1.1. If S is a minimal model for S, then there exists a natural mor-
phism π : S → S , it is the composition of finitely many blow-downs, obviously
contracting exceptional curves. In other words, S is a blow-up of S̃.

Nice properties for minimal models are

Theorem 4.1.5. Every compact non-singular surface S has a minimal model.

Theorem 4.1.6. If S is a compact connected surface with Kod(S) ≥ 0, then all
minimal models are isomorphic.

These two theorems are taken from the book [3], Chapter II.
Now I will present my own remarks about nef surfaces (surfaces with nef

canonical bundle) and birational geometry. If S is a nef surface (i.e. for all
irreducible curve C on S, K · C ≥ 0), then on S there is no (-1)-curves. Why?
If we suppose that E is an irreducible curve on S with canonical divisor K such
that E2 = −1, then from the genus formula we get that

2g − 2 = E · (E +K)
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as E ∼= P1, g(E) = 0 and E2 = −1. So we get −2 = E2 +E ·K and E ·K = −1,
which gives contradiction since K is a nef divisor.

Also if we now continue with S nef surface and do blow-up of S in a point p we
get S′ = Blp(S). Let C be a curve on S such that p ∈ C and C has multiplicity
r in p. The proper transformation C̃ of C on S′ will be C̃ = σ∗(C)− rE, where
E is the exceptional curve corresponding to p. Let K ′ be the canonical divisor
of S′, then we have

K ′C ′ = (σ∗K + E)(σ∗C − rE) = KC − rE2 = KC + r

since r > 0, KC > 0, we get K ′C ′ ≥ 0, but what will be K ′E? Since

E(K ′ + E) = 2g(E)− 2

we get
EK ′ + E2 = −2

hence EK ′ = −1, so K ′ is not nef.
Now if we blow-up S′ in a point q on S′ we will get S′′ = Blq(S′). All

proper deformation C ′′ of curves in S′ will satisfy same as curve C ′ from above,
K ′′C ′′ ≥ 0, except curve E′, the exceptional curve in S′′ corresponding to q,
and maybe E′′, the proper transformation of E. We use: E′′K ′′ = EK ′+ r and
facts that

1. r = 1 if q ∈ E. If q ∈ E, then E′ is the only curve in S′′ with K ′′E′ < 0;

2. r = 0 if q 6∈ E. In this case we have two disjoint curves E′, E′′ in S′′ with
K ′′E′ < 0 and K ′′E′′ < 0, and both are (-1)-curves.

Proceeding in this way it is clear that after n blow-ups of S we will get at
most n curves with negative intersection with canonical divisors, and all these
curves are disjoint and (-1)-curves.

Now let’s turn to our main tasks:

Theorem 4.1.7. Assume that X is bimeromorphic to either a 2-dimensional
torus or to a K3 surface. Let X be the minimal model of X and π : X → X be
the naturally induced morphism. Then g descends to an automorphism g of X.
Moreover:

1. g is of positive entropy if and only if g is of positive entropy;

2. g is free if and only if g is free.

Proof. As X in both cases has non-negative Kodaira dimension then we will
have by previous theorem that X has a unique minimal model. So by this, the
automorphism of X will descend to an automorphism on X. Now we are going
to explain why positive entropy of g of g implies positive entropy of another
one.

Now if we suppose that g is free

X \
⋃
{pi} ∼= X \

⋃
Ei

where Ei is the exceptional line corresponding to pi, so if on X there are no
fixed points, then there are no on X either.
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Conversely, if g has fixed point, let it be p. Then π−1(p) is either a point
on X, say Q, or it is an exceptional curve obteined in first blow up E ∼= P1.
In the first case we will have g(Q) = Q since g(π−1(P )) = π−1(g(P )) and it is
fixed point for g; in second case we will have that g(E) = E, and H(E, g) =
H(P1, g) = tr(g∗|H0(P1,OP1 ))+ tr(g∗|H1(P1,OP1 )) = 1+0, (since H0(P1,OP1) = C,
H1(P1,OP1) = 0) and g will have at least one fixed point. So g is free if and
only if it is g.

From Fact 1., from previous part we have decomposition

H2(X,Z) = π∗H2(X,Z)⊕ E

where E is the lattice generated by exceptional divisors:
As the bilinear form restricted on E is always negative (by the Hodge index

theorem we have that this bilinear form is negative) then E is negative definite.
We know that

g∗(E) = E

And by this we get that absolute values of g∗|E are 1. So by this we get that
d1(g) > 1 if and only if d1(g) > 1 (exceptional divisors do not play any role for
positive entropy).

Theorem 4.1.8. Let’s suppose that X is bimeromorphic to a 2-dimensional
complex torus. Let’s suppose that X has a free automorphism g. Then g is of
null entropy.

Proof. We can suppose that X is itself minimal, i.e. X is 2-dimensional complex
torus. Global coordinates of the universal cover C2 of X will be z = (z1, z2).

C2 g∗
//

g

##

π

��

C2

π

��

C2/Γ g
// C2/Γ

This diagram commutes by lifting property for covering spaces.

g = g ◦ π : C2 → X

g(z + λ) = g(z), λ ∈ Γ

By this we get that g∗ : C2 → C2 is such that

g∗(z + λ) = g∗(z) + wλ, wλ ∈ Λ, z = (z1, z2) ∈ C2

For every i we have
∂

∂zi
g∗(z + λ) = ∂

∂zi
g∗(z)

and we can write
g∗(z) = Az + b

where A ∈ GL2(Z) and b ∈ C2. Let α, β be eigenvalues of A, then we have:

g∗
(
z1
z2

)
=
(
αz1 + b1
βz2 + b2

)
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As we know that for a torus X = C2/Γ, H0(X,Ω1
X) = 〈dz1, dz2〉, we have:

g∗dz1 = d(αz1 + b1) = αdz1

g∗dz2 = d(βz2 + b2) = βdz2

So α, β are eigenvalues of the action of g on H0(X,Ω1
X). Fact that H0(X,Ω2

X) =∧2
H0(X,Ω1

X) and Hodge duality give

H(X, g) = 1− (α+ β) + αβ = (1− α)(1− β)

As H(X, g) = 0 since g is free, so we get α = 1 or β = 1. Now we use fact that

H1(X,Z)⊗ C = H0(X,Ω1
X)⊕H0(X,Ω1

X)

by Hodge decomposition and eigenvalues of the C-linear extension of H1(X,Z)
will be α, β, α and β. By fact that g∗ is automorphism we have

αβαβ = ±1.

Hence if α or β is 1, then |α| = 1 and |β| = 1. As H2(X,Z) =
∧2

H1(X,Z) we
have that eigenvalues of g∗|H2(X,Z) are of absolute value 1, hence d1(g) = 1, so
g is of null entropy.

Theorem 4.1.9. (Nikulin’s theorem) Let X be compact hyperkahler manifold,
that is smooth simply-connected compact Kähler manifold with an everywhere
nondegenerate holomorphic 2-form ωX such that H0(X,Ω2

X) = CωX . Assume
that X admits a bimeromorphic automorphism g such that g∗ωX = ζnωX , where
ζn is a root of unity. Then X is projective.

Proof. Proof of this theorem can be found in the paper of Nikulin [13].

Theorem 4.1.10. Let X be bimeromorphic to a K3 surface X. Let ωX be a
generator of H2,0(X). Assume furthermore that X has a free automorphism g.
Then g∗ωX = −ωX and X is projective. Moreover ρ(X) ≥ 2, where ρ(X) is the
Picard number of X.

Proof. As X is bimeromorphic to X, where X is a K3 surface then we have that
H0,1(X) = 0 and dim(H2,0(X)) = 1, so H0(X,Ω2

X) = CωX . Now H2,0(X) =
H0,2(X) by Serre duality, so

H0,2(X) = H2(X,OX) = CωX

As g is a free automorphism we have that

0 = H(X, g) = 1 + (−1) · tr(g∗|H0,1(X) + tr(g∗|H0,2(X))
= 1 + tr(g∗|H0,2(X)) (4.2)

H0,2(X) ∼= CωX , g∗ : CωX → CωX where ωX is generator, then the matrix of
g∗ will be one number and det g∗ = ±1, so that number, in fact tr(g∗), will be
1 or −1.

From equation (4.2) we have

tr(g∗|H0,2(X) = −1
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so we can conclude that g∗ωX = −ωX . This the implies that g∗ωX = −ωX .
Now by Nikulin theorem we can conclude that X is projective.

As g is free, by theorem 3.1.9 g is also free, so we have that the topological
Lefschetz number is T (S, g) = 0.

Let T (X) be the trascendental lattice of X, we know that

T (X) = {x ∈ H2(X,Z) | x ∈ NS⊥(X)}
= {x ∈ H2(X,Z) | (x, y) = 0 ∀y ∈ NS(X}.

So by this it is not hard to notice that T (X) ∩ NS(X) = {0}. Also we have
that :

H2(X,C) = (T (X)⊗ C)⊕ (NS(X)⊗ C)

and
T (X)⊕NS(X) ⊆ H2(X,Z)

is finite subgroup of finite index of H2(X,Z). We know that the Picard number
ρ of X is the rank of NS(X) and also we know that H2(X,Z) has rank 22,
so rank T (X) = 22 − ρ. As we proved that X is projective then by Kodaira
theorem about Kähler manifolds, which says: a Kähler manifold X is projective
if and only if it admits integral Kähler classe, we know that ρ(X) ≥ 1.

By topological Lefschetz formula we have that

0 = T (X, g)
= 1 + (−1)1tr(g∗|H1(X,Z)) + (−1)2tr(g∗|H2(X,Z)) + (−1)3tr(g∗|H3(X,Z)) + (−1)4tr(g∗|H4(X,Z))

= 2 + tr(g∗|H2(X,Z)) (as b1 = b3 = 0, b0 = b4 = 1)
= 2 + tr(g∗|NS(X) + tr(g∗|T (X)

As ωX ∈ H
2,0(X,C) and

H2(X,C) = H2,0(X,C)⊕H1,1(X,C)⊕H0,2(X,C)

and NS(X) ⊆ H1,1(X,C) it follows that ωX 6∈ NS(X). As

(g∗ωX , g
∗t) = (ωX , t)

for t ∈ T (X) we have
(−ωX , g∗t) = (ωX , t)

and so −ωX · g∗t = ωX · t, so that ωX · (g∗t+ t) = 0. Thus

g∗t+ t ∈ NS(X).

As t ∈ T , g∗ ∈ T , we get g∗t+ t ∈ T , g∗t+ t = 0, i.e. g∗t = −t.
So we have that g∗|T (X) = −id|T (X .
This gives us that tr(g∗|T (X)) = −rank(T (X)) = −(22−ρ(X). If we suppose

now that ρ(X) = 1 then tr(g∗|NS(X) = 1, and we have:

T (X, g) = 2 + 1− 2(22− 1) = −20 6= 0

so ρ(X) 6= 1, i.e. ρ(X) ≥ 2.
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The first part of our main theorem says if X is smooth complex compact
Kähler surface admitting a free automorphism of positive entropy then X is
birational to projective K3 surface of Picard number ≥ 2. This part is a conse-
quence of Cantant theorem and the previous three theorems, which directly led
us to the fact that X is birational to a projective K3 surface of Picard number
≥ 2.

4.2 Part II
Let X be a K3 surface of Picard number 2 with a free automorphism g. From
theorem from I Part we have that

g∗|T (X) = −idT (X).

As g is free we have that H(X, g) = 0, and so

0 = H(X, g) = 2 + tr(g∗|NS(X)) + (−1) · (22− 2)

i.e. tr(g∗|NS(X)) = 18. Moreover g∗|NS(X) ∈ GL2(Z), so that det(g∗|NS(X)) =
±1. So characteristic polynomial of g will be

ϕ(t) = t2 − 18t+ 1

and eigenvalues of g∗|NS(X) are the roots of this polynomial, i.e.

t1,2 = 18±
√

182 − 4
2 = 9± 4

√
5

The number
η =
√

5 + 1
2

we call the golden number and η±6 = t1,2, so eigenvalues of g∗|NS(X) are η6 and
η−6. One of this eingenvalues is bigger than 1, so g is of positive entropy.

This introduction and golden number η will serve as starting points for the
proof of the second part of our theorem.

The minimal polynomial of η over Z is t2 − t− 1 and we denote

N := Z[η] = {a+ bη | a, b ∈ Z} ∼= Z2

The unit group of N will be

Z[η]∗ = {u ∈ Z[η] | ∃v ∈ Z[η] such that uv = 1}

Example 4.2.1. η2 = η+1 (η zero of t2− t−1). Then η(η−1) = 1, so η ∈ Z[η]×
and 1, η, η2, . . . are all units, so Z[η]× is infinite.

Theorem 4.2.1. Let {an}n≥0 be the Fibonacci sequence:
an+2 = an+1 + an

a0 = 0
a1 = 1
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Then ηn = anη + an−1 for each positive number n. For instance

η3 = 2η + 1
η4 = 3η + 2
η5 = 5η + 3
η6 = 8η + 5
η7 = 13η + 8

Proof. We will do this by induction on n. If n = 1, it is trival. For n = 2 we
have η2 = a2η + a1, where a2 = a0 + a1 = 1, so η2 = η + 1, which is true.

Assume the thesis for n. Then an+1 = an + an−1 and so

ηn = anη + an−1

by multiplying by η we get

ηn+1 = anη
2 + an−1η = an(η + 1) + an−1η

= η(an + an−1) + an = an+1η + an

As we said that N ∼= Z2 we will take for basis of N to be {e1, e2}, where
e1 = 1 and e2 = η, so we have that N = Ze1 ⊕ Ze2. As η ∈ Z[η]× then we will
have that

ηn : N → N

ηn(p(η)) = ηnp(η) (where p(η) is polinimial in η ) is an automorphism of the
Z-module N .

Theorem 4.2.2. Let n be a positive integer.

1. The eigenvalues of the automorphism η2n on N are η2n and η−2n.

2. the characteristic polynomial of η2n on N is t2 − (a2n + 2a2n−1)t + 1,
where {an}n≥0 is the Fibonacci sequence. For instance, the characteristic
polynomials of η2, η4, η6 are t2−3t+1 t2−7t+1, t2−18t+1 respectively.

Proof. 1. As characteristic polynomial for automorphism η : N → N is t2 −
(−η + η′)t− ηη′, on the other side minimal polynomial for η is t2 − t− 1,
so we have that η′ = η−1 and η′ + η = −1, then η′ = 1− η, so

η′ = 1−
√

5
2

It is easy to conclude that eigenvalues for η2n will be η2n and η−2n.

2. By previous theorem we have that η2n = a2nη+a2n−1. Taking the Galois
conjugate η → −η−1 we have

1
η2n = a2n ·

(
−1
η

)
+ a2n−1
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Now we have

η2n + 1
η2n = a2n

(
η − 1

η

)
+ 2a2n−1

= a2n(η + 1− η) + 2a2n−1 = a2n + 2a2n−1

As
tr(η2n) = 1

η2n + η2n = a2n + 2a2n−1

and
det η2n = η2n · 1

η2n = 1

we have that the characteristic polynomial of η2n is

t2 − (a2n + 22n−1)t+ 1

If b : N × N → Z is a Z-valued symmetric bilinear form, the matrix Sb of
that form is

p = b(e1, e1

g = b(e1, e2)
r = b(e2, e2)

Sb :=
(
p g
g r

)
We say that b is hyperbolic if the matrix Sb has signature (1, 1). Then (N, b) is
hyperbolic lattice if b is hyperbolic on N .

Theorem 4.2.3. There is an embedding

N∗ : HomZ(N,Z) ↪→ N ⊗Q

Proof. We will prove that for every f ∈ N∗ there is y ∈ N⊗Q such that f(x) =
(x, y) for all x ∈ N . A basis of N is {e1, e2}. Then we have f(ej) = aj ∈ Z for
j = 1, 2. Then this gives the map : f : N∗ → N ⊗Q

f
(∑

niei

)
=
∑

niai, ni ∈ Z

We want y ∈ N ⊗Q ' Q2 such that

tejSby = aj , j = 1, 2

If we take
y = S−1

b

(
a1
a2

)
then we will have

tejSbs
−1
b

(
a1
a2

)
= aj , j = 1, 2

By tis we proved existence of an embedding.
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Definition 4.2.1. N∗/N is called the discriminant group of N .

Definition 4.2.2. An automorphism f : N → N is an isometry of the lattice
(N, b) if b(f(x), f(y)) = b(x, y) for all x, y ∈ N .

Remark 4.2.1. An isometry naturally induces an automorphism of the discrim-
inant group N∗/N .

Proposition 4.2.1. Assume that (N, b) is an even hypeerbolic lattice and that
η2 is an isometry of (N, b). Then:

1. the matrix Sb is of the following form:

Sb :=
(

2q q
g −2q

)
where q 6= 0 and q is an integer;

2. Under 1. the discriminant group N∗/N satisfies

N∗/N =
〈
e2

q

〉
⊕
〈
e1 − 2e2

5q

〉
' Z/qZ⊕ Z/5qZ

3. Under 1. b does not represent 0, i.e. there is no x ∈ N such that b(x, x) =
±2 if and only if q 6= ±1.

4. Under 1., η6 acts on the discriminant group N∗/N as idN∗/N if and only
if q is one of {±1,±2}.

Proof. 1. We take

2p = b(e1, e1)
q = b(e1, e2)
2r = b(e2, e2)

We have

η2(e1) = η2 = η + 1 = e1 + e2

η2(e2) = η3 = 2η + 1 = e1 + 2e2

η2 is an isometry if and only if

b(e1, e1) = b(e1 + e2, e1 + e2)
b(e1, e2) = b(e1 + e2, e1 + 2ee)
b(e2, e2) = b(21 + 2e2, 9 + 2e2)

These lead us to

p = 2p+ 2q + 2r
q = 2p+ 3g + 4r
2r = 2p+ 4g + 8r

so r = −q and p = q, Sb is hyperbolic if q 6= 0.
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2. As N∗ = S−1
b Z2 we have that

Sb =
(

2q q
q −2q

)
, S−1

b = − 1
5q2

(
−2q −q
−q 2q

)
= 1

5g

(
2 1
1 −2

)
N∗ is generated by

S−1
b

(
1
0

)
= 1

5q

(
2 1
1 −2

)(
1
0

)
= 2e1 + e2

5q

S−1
b

(
0
1

)
= 1

5q

(
2 1
1 −2

)(
0
1

)
= e1 − 2e2

5q

Now notice that
2e1 + e2

5q − 2(e1 − 2e2)
5q = e2

q

b

(
e1,

e2

q

)
= 1

b

(
e2,

e2

q

)
= −2

b

(
e1,

e1 − 2e2

5q

)
= 0

and
b

(
e2,

e1 − 2e2

5q

)
= 1

so that
e1 − 2e2

5q ,
e2

q

are from N∗/N . Thus 〈
e1 − 2e2

5q

〉
∩
〈
e2

q

〉
= 0

As |N∗/N | = |detSb| we get that

|N∗/N | =
〈
e2

q

〉
⊕
〈
e1 − 2e2

5q

〉
' Z/q ⊕ Z/5q

3. If we take x = ae1 + be2 (a, b ∈ Z) we get

b(x, x) = 2g(a2 + ab− b2)

If x 6= 0 the it is not possible for b(x, x) to be 0 or ±2 for q 6= ±1.

4. From previous Lemma we know that

η6 = 7η + 5, η7 = 13η + 8
η6(e1) = 5e1 + 8e2, η8(e2) = 8e1 + 13e3

η6
(
e2

q

)
= 8e1 + 13e2

q

η6
(
e1 − 2e2

5q

)
= 1

8q (η6(e1)− 2η6(e2)) = −11a+ 18e2

5q
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So if η6
N∗N = −idN∗/N then it must be

821 + 13e2

q
= −e2

q
⇒ 8e1 + 14e2

q
= 0

and
e1 − 2e2

5q = 11e1 + 10e2

5q ⇒ 10e1 + 20e2

5q = 0⇒ e1 + 4e2

q
= 0

As
8e1 + 4e2

q
= 0 (mod N), 2e1 + 4e2

q
= 0 (mod N)

it must be that 8e1+4e2
q and 2e1+4e2

q are from N . In other words q | 2, so
by this q is ±1, ±2.

Theorem 4.2.4. Let (N, b) be the lattice as before given by matrix

Sb =
(

2q q
g 2− q

)
In the case when q = 2, we get

Sb =
(

4 2
2 −4

)
.

In a case when q = 2 we have

1. (N, b) is an even hyperbolic lattice which represents neither 0 nor ±2.

2. η6 is an isometry of (N, b) such that the characteristic polynomial is
t2 − 18t + 1 and the induced action on the discriminant group N∗/N is
−idN∗/N .

Proof. This is a particular case of the previous theorem, so the proof is based
on theorem before.

And now we will state and prove the most important theorem from II part.
It is the second part of theorem 4.0.12.

Theorem 4.2.5. There exists a projective K3 surface X of Picard number
ρ(X) = 2 such that NS(X) = Zh1 ⊕ Zh2, where

((hi · hj)) =
(

4 2
2 −4

)
Any such K3 surface X admits a free automorphism g of positive entropy.

Proof. The matrix (
4 2
2 −4

)
is even hyperbolic matrix of rank 2. By Morrison paper: on K3 surfaces with
large Picard number and corollary 2.9 from that paper (more precisely, that
corollary says that if ρ ≤ 10 then every even lattice of signature (1, ρ−1) occurs
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as the Néron - Severi group of some algebraic K3 surface). Now, we are going to
construct an automorphism g of X with desired properties. By the last theorem
we get that NS(X) ' (N, b), and that an isomorphism we will call ϕ. First of
all let f := ϕ−1η6ϕ, f is an isometry of NS(X). It is true because:

(f(x), f(y)) = (ϕ−1 ◦ η6 ◦ ϕ(x), ϕ−1 ◦ η6 ◦ ϕ(y)
= (ϕ ◦ ϕ−1 ◦ η6 ◦ ϕ(x), η6 ◦ ϕ(y))
= (η6 ◦ ϕ(x), η6 ◦ ϕ(y)) = (ϕ(x), ϕ(y))
= (ϕ−1 ◦ ϕ(x), y) = (x, y)

So f is an isometry of NS(X). The eigenvalues of f are the same as eigenvalues
of η6, so that they are η6 and η−6, by Theorem 4.2.2.

Both eigenvalues of f are positive, so f preserves component Ω+(X) of the
positive cone Ω(X). As we know that ample divisors are all in Ω+(X) and
NS(X) does not represent −2, the ample cone of X, A(X) coincides with the
cone Ω+(X). So we can conclude that f preserves the ample cone.

By theorem 3.2.4 we have that η6 acts on the discriminant group N∗/N as
−idN∗/N and so then the isometry f will act on discriminant groupNS(X)∗/NS(X)
as −idNS(X)∗/NS(X).

T (X) is transcendental lattice of X and we can conclude that −idT (X) acts
on the discriminant group T (X)∗/T (X) as −idT (X)∗/T (X).

Again, by Nikulin result from paper Integer symmetric bilinear forms and
some of their geometric applications, [14], more precisely by proposition 1.6.1
from that paper we can conclude that isometry (f,−idT (X)) of NS(X)⊕ T (X)
extends to an isometry, say f̃ , of H2(X,Z).

By construction of f̃ we can notice that it preserves the Hodge decomposition
of H2(X,Z), and as we observed above, it preserves the ample cone.

So it preserves Hodge decomposition, and preserves positive cones and re-
spective sets of effective classes, so f̃ is an effective Hodge isometry.

By the global Torelli theorem for K3 surfaces, there is an automorphism g
of X such that g∗|H2(X,Z) = f̃ . One useful well-known fact is that:
NS(X) = T (X)⊥ and so

H2(X,Z) ⊇ NS(X)⊕ T (X).

By construction we have that f = f̃ |NS(X) and also we have that one of the
eigenvalues of f is η6, so as η6 > 1, the g is of positive entropy.

the next step is to prove that g has no fixed points, i.e. that g is free.
As g 6= idX , the set of fixed points for g, Xg , consists of finitely many curves

and at most finitely many points.
Let us suppose first that C is a curve from Xg. So we have g(C) = C. Then

we have that the class [C] in H2(X,Z) will be eigenvector of g∗|NS(X), with
eigenvalues 1. But this is not possible since eigevalues of g∗|NS(X) = f are η6

and η−6, so in Xg there are no curves.
Next possible situation is that Xg consists of finitely many points, so for

example n points counted with multiplicities. By Lefschetz fixed point formula,
we have

n = T (X, g) = 2 + tr(g∗|NS(X)) + tr(g∗|T (X)).
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As g∗|NS(X) = f and tr(f) = tr(η6|N ), by previous theorem we get tr(f) = 18
and tr(g∗|NS(X)) = 18. Also we have that g∗|T (X) = −idT (X), as ρ(X) = 2,
then rank(T (X)) = 20 and we get that tr(g∗|T (X)) = −20. Finally we can
conclude that g is free since

n = T (X, g) = 2 + 18− 20 = 0.

So we proved that X admits automorphism g which is free of positive entropy.

4.3 Part III
In this part I tried ,using result of Oguiso, to show explicitly how we can obtain
surface and automorphism on that surface with properties described in theorem
3.2.5 .
Let X be a K3 surface with NS(X) = Zh1 ⊕ Zh2 such that

(hi · hj)i,j =
(

4 2
2 −4

)
By Theorem 3.2.4 we have that there are no divisors with self-intersection ±2
and 0. We have that for any ax+ by ∈ NS(X) it holds:

(ax+ by)2 = 4(a2 + ab− b2)

Let us take D ∈ Ω+ \ {0}. Then D2 > 0 and by Saint-Donat [16] we have an
embedding ϕD : X ↪→ PN .

Let D be of type (1, 0) and we have D2 = 4. A curve in |D| is defined as
DH = H ∩X, where H is the hyperplane in P3, and will have class (1, 0). This
curve DH is irreducible. Let us prove this. If we suppose that DH = C + C ′

and if C has class (a, b) and C ′ has class (c, d), thus we have that a+ c = 1 and
so a = 0 or c = 0. Hence, we get that one class is zero class and thus, DH is
irreducible.

Let D′ be curve on X of type (1, 1). Then we get: (D′)2 = 4(1 + 1− 1) = 4.
We want to see how is obtained curve D′. For sure we know that D′ 6= X ∩H,
since D′ is of type (1, 1) and X ∩H is of type (1, 0). What is the degree of D′?

D′ ·H = D′ ·D =
(
1 1

)(4 2
2 −4

)(
1
0

)
=
(
6 −2

) (1
0

)
= 6

Is D′ ⊆ Q ∩X, where Q is quadric and Q is of type 2H, so with class (2, 0) ?
If we suppose that D′ ⊆ Q ∩ X we have Q ∩ X = D′ ∪ D′′ and D′ has class
(1, 1) and D′′ has class (1,−1). But as (D′′)2 = −4 < 0 we have that D′′ is not
from Ω+ and by this we have that D′ is not obtained as intersection of quadric
Q and surface X.

Now we will investigate intersection of the cubic surface R and surface X.
The cubic R has class 3H = (3, 0). We will suppose that D′ ⊂ R ∩ X. Thus
we have R ∩X = D′ + D′′, and D′ is of class (1, 1) and so D′′ will have class
(2,−1). As (D′′)2 = 4 then we have that D′′ ∈ Ω+. What is the degree of D′′?

D′′ ·H =
(
2 −1

)(4 2
2 −4

)(
1
0

)
= 6
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Let us prove the existence of cubics R ∈ |3H| such that R = D′+D”. We have
exact sequence:

0→ OP3(−X + 3H)→ OP3(3H)→ OX(3H)→ 0

and the first map is f 7→ f ·G, where G is homogeneous polynomial defines X .
We get a long exact sequence

H0(OP3(3H))→ H0(OX(3H))→ H1(OP3(3H −X)).

But H1(OP3(3H −X)) = H1(OP3((3 − d)H) = 0, where d is the degree of X.
So we get

H0(OP3(3H)) ϕ
// H0(OX(3H))) // 0

and so ϕ is surjective. This means that for every s ∈ H0(OX(3H)) there is
polynomial function F of degree 3 (of course it is an element of H0(OP3(3H))
such that (s = 0) ⊆ X is given by (F = 0) ∩X. Since D′ +D′′ has class (3, 0)
we have that D′ + D′′ ∈ |3H| on X and so there exists a cubic surface R such
that R ∩X = D′ +D′′.

Let D and D′ be divisors with corresponding class (1, 0) and (1, 1). Map
ϕD × ϕD′ will define an embedding of X into P3 × P3:

ϕD × ϕD′ : X ↪→ P3 × P3

Now we will use Segre’s embedding of P3 × P3 into P4·4−1 = P15 defined as

((x0 : . . . : x3), (y0 : · : y3)) 7→ (. . . : xiyi : . . .)

We denote xiyj = zij . So we define embedding of X into P15 using zij . We
have a diagram

P3 × P3

$$

X

;;

ϕD+D′
// P15

But the dimension of space of section which defines embedding ϕD+D′ is h0(D+
D′) = 20

2 + 2 = 12 (by Riemann-Roch), so we have that the projective space
where we can embed X is of dimension 12 − 1 = 11. Hence , we can conclude
that:15 − 11 = 4 linear equations of type (1, 1) in P15 define X. In fact X is a
complete intersection of 4 divisors of type (1, 1) in P3 × P3.

We will now show that the surface obtained as complete intersection of 4
divisors with classes (1,1) is K3 surface with properties which are desired in the
begining of III part.

Let D be divisor on X. We will define cycle class of the divisor D as [D] =
c1(D) ∈ H2(X,Z) ↪→ H2

DR(X).
Remark 4.3.1. Let Z ⊆ X have codimension k in the n-dimensional complex
manifold X. then ∫

Z

(HDR(X)2(n−k))dual ∼= H2k
DR(X)
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the last isomorphism is provided by Poincare’s theorem. So we can represent∫
Z

as [v] such that for all [ω] ∈ H2(n−r)
DR (X) we have

∫
Z
ω =

∫
X
v ∧ ω. If Y is

complete intersection of two divisors D1, D2 then we have [Y ] = [D1] ∧ [D2].
If we return now to our case we have that X is intersection of 4 divisors of

class (1, 1). So we have that

[D1 ∩D2 ∩D3 ∩D4] = [D1] ∧ [D2] ∧ [D3] ∧ [D4]

and Di ⊆ P3 × P3 and we know that

Hi
DR(P3) =

{
0 i odd
R i even

By Künneth formula we have that

H2
DR(P3 × P3) = H0(P3)⊗H2(P3) +H1(P3)⊗H1(P3) +H2(P3)⊗H0(P3)

= R[ωFS,2]⊕ R[ωFS,1]

where ωFS is the Fubini- Study form.
If Y ⊆ P3×P3 is a manifold of codimenison 1, then we have that [Y ] = ax+by

where x = π∗1ωFS and y = π∗2ωFS since we know that Pic(P3×P3) = Pic(P3)⊕
Pic(P3) (a, b ∈ Z). We say that Y has type (a, b).

Again in our case we have 4 divisors Di of type (1, 1) and then

[D1] ∧ [D2] ∧ [D3] ∧ [D4] = (x+ y) ∧ . . . ∧ (x+ y)
= x4 + 4x3y + 6x2y2 + 4xy3 + y4

x4 = (π∗1ωFS)4 = π∗1(ω4
FS) ∈ H8

DR(P3), since dimR(P3) = 6 we have that
H8
DR(P3) = 0 and x4 = 0. Same is for y4. X is complete intersection of divisors

D1, D2, D3, D4 and

[X] = [D1] ∧ [D2] ∧ [D3] ∧ [D4]
= 4x3y + 6x2y2 + 4xy3 ∈ H8

DR(P3 × P3).

We have an embedding i : X ↪→ P3×P3 and we naturally have i∗ : H∗DR(P3×
P3) → H∗DR(X). Let x|X and y|X be classes in H2

DR(X). Our aim is to find
what are (x|X)2 and (y|X)2. We have that

(x|X)2 = (i∗x)2 = i∗(x2)

We claim that
i∗(x2) = [x2] ∧ [X] ∈ H12

DR(P3 × P3)

and

[x2] ∧ [X] = [x] ∧ [x] ∧ [D1] ∧ [D2] ∧ [D3] ∧ [D4]
= x2 · (4x3y + 6x2y2 + 4xy3) = 4x3y3 = 4 · 1 = 4

Similarly [y2]∧ [X] = 4 and [xy]∧ [X] = 6. So intersection matrix on X will be(
4 6
6 4

)
∼
(

4 2
2 −4

)
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(since in basis (1,0), (0,1) intersection matrix will have this form ) . And it is
exactely surface with desired properties. So our surface is obtained as complete
intersection of 4 divisors with classes (1, 1).

How to find an automorphism g on the surface X, as before, such that
automorphism is of positive entropy and free?

Motivation step:
Divisors D′ ∼ (1, 1), D′′ ∼ (2, 3), D∗ ∼ (5, 8) are such that (D′)2 = 4,

(D′′)2 = 4, and (D∗)2 = 4. All of them define embeddings ϕ|D′|, ϕ|D′′|, ϕ|D∗|
into projective space. Divisor D∗ with class (5, 8) in NS(X) correspond to the
element η6 in N because η6 = 8η + 5. This element η6, using the isomorphism
ϕ between N and NS(X), defines automorphism g with desired properties.

Let us try to write explicitly automorphism g. First of all let us consider
divisor D′ ∼ (1, 1) on X. That divisor, as it is shown before, is obtained
by intersection X with some cubic surface R. So R ∩ X = D′ + D0, where
D0 ∼ (2,−1). D0 is curve on X and it is defined by global section t from
H0(OX(D0)) such that (t = 0) = D0. We will now construct ϕ(1,1).

We know that OX(D′) ·t−→ OX(D′ +D0) ∼= OX(3), where OX(3) represents
all cubics. Let us now see what is space of all cubics containing D0. We will
denote that space with I0. In fact, we have next situation: R ∈ I0 is defined by
(F ≡ 0), so we have that X ∩ (F ≡ 0) = D0 + D′F , where D′F ∈ |D′|, and it is
valid for all R ∈ I0. So F |X = s · t, where (s = 0) defines D0 and (t = 0) defines
D′F .

And so we have map:

F |X = s · t 7→ t ∈ H0(D′)

where as we said s is a section which is zero on D0. This map is isomorphism
between I0 and H0(D′), since:

• injectivity: if we take RF = D0 + D′F and RG = D0 + D′G such that
D′F , D

′
G ∈ |D′| and such that D′F 6= D′G then

F |X = s · t1 7→ t1

G|X = s · t2 7→ t2

and so we have t1 6= t2, where t1 and t2 belong to H0(D′).

• surjectivity: ∀t ∈ H0(D′) is such that (t = 0) = D̃ and D̃ ∈ |D′|. Hence
D̃ ∼ (1, 1) and D̃+D0 ∼ (3, 0) will be the cubic which contains D0 .Thus
our map is surjective.

Then we have that I0 ∼= H0(D′). By Riemann-Roch we have

h0(D′) = 2 + (D′)2

2 = 2 + 4
2 = 4,

so I0 ∼= C4. Space I0 we can write down as I0 = 〈R0, R1, R2, R3〉. As we know
that ϕ|D′| is an embedding into P3 of X we have that ϕ|D′| : X ↪→ X1 ⊆ P3

defined by
x 7→ (R0(x) : . . . : R3(x))
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. If it happens that Ri(x) is 0 for all i on D′ then we just take some other
divisor D1 ∈ |D′| and everything will fits. The embedding ϕ|D′| : X ↪→ X1 we
will call ϕ(1,1).

Let us now consider all cubics on X1 cut out by divisor D′1, i.e. all cubics of
class 3 · (1, 1) = (3, 3). We can write them as (3, 3) = (2, 3) + (1, 0). So now we
will consider all cubics on X1 which contains ϕ1,1(D), where D is the hyperplane
curve defined by X ∩ H, D ∼ (1, 0). These cubics are making space which is
isomorphic to H0(OX(D′′)) ,as we proved before, and D′′ ∼ (2, 3). In this way
we defined base of section on X1 which provide embedding ϕ|D′′| : X1 ↪→ X2.
This embedding we will call ϕ2,3.

Now we will consider cubics onX2 cut out by divisorD′′ ∼ (2, 3). So we have
that 3 ·(2, 3) = (6, 9) = (1, 1)+(5, 8). These cubics all contains ϕ23(D′). Divisor
with class (5, 8) we will denote as D∗. Space of cubics on X2 contains ϕ2,3(D′)
is isomorphic to the space H0(OX(D∗)). This space gives bases of space of
sections which define an embedding ϕ|D∗| : X2 ↪→ X3 ⊆ P3, and as we get used
to, we will denote it with ϕ5,8. On the end we have ϕ5,8 : X2 ↪→ X3 ⊆ P3.
Explicitly we can write that g is:

g : S ϕ1,1−−−→ S1
ϕ2,3−−−→ S2

ϕ5,8−−−→ S3
M−→ S

M is a linear map and MS3 = S. This linear map exists since g∗(1, 0) = (5, 8)
and explicitly if {t0, . . . , t3} is a basis of H0(D∗) and {s0, . . . , s3} is a basis for
H0(D) then g∗si =

∑
aijtj and [aij ]i,j will represent matrix M and it will give

our linear transformation M between isomorphic quartic surfaces in P3.
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