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Introduction

The positive integers were undoubtedly the first objects investigated by the early mathematics;

more than 2000 years ago and exactly 300 B.C, Euclid found out that the primes are the ”bones”

of the integers skeleton, or, in our modern language, he proved the first form of the fundamental

theorem of arithmetics, namely the fact that every integer greater than one is either a prime or

a product of primes. Few decades after Euclid, Eratosthenes gave an algorithm to determine

the primes less than a given bound; by this Eratosthenes initiated a new research activity

known as Sieve Theory. The Sieve Theory is a family of methods (i.e. sieves) that estimate the

size of a given set of integers. One of the most asked questions in sieve theory is to estimate

the number of primes satisfying some propriety in an interval of arbitrary length, for example

counting the primes given by a polynomial expression up to some real number x.

It is easy to find a polynomial that contains infinitely many primes, starting from the fact

that the polynomial 2x+ 1 contains all the odd numbers for integer values of x, then definitely

it contains all the odd primes. Indeed it was believed that one could find a polynomial P with

integer coefficients such that P (x) is prime for all integer x. Unfortunately in 1752 Goldbach

proved that such a polynomial doesn’t exist.

Introducing new analytic tools, 85 years after Goldbach, Dirichlet proved that the poly-

nomial ax + b contains infinitely many primes for a and b being co-prime. In 1904 Dickson

conjectured that there are infinitely many positive integers x such that the polynomials aix+bi

are all primes for 0 ≤ i ≤ k. Until writing these lines Dickson conjecture remains unsolved,

even some of its special cases seems to be very hard to prove, for example taking k = 1,

(a0, b0) = (1, 0), and (a1, b1) = (1, 2) we find the twin primes conjecture; furthermore the spe-

cial case ai = 1 for 0 ≤ i ≤ k of the Dickson conjecture remain unsolved. The last special case,

with an additional condition on the bi’s (to be defined later), is called the k-tuples conjecture.



Remark that if we relax the condition ”the polynomials x+ bi are all primes for 0 ≤ i ≤ k” in

the k-tuples conjecture and we replace it by ”at least two of the polynomials x+ bi are primes

for some 0 ≤ i ≤ k”, then this implies that there exist infinitely many pairs of successive primes

of difference H where H = max |bi − bj| for i 6= j. In other words we will prove the existence

of bounded gaps between infinitely many successive primes.

In 2005, investigating this relaxed version of the k-tuples conjecture, Goldston, Pintz and

Yildirim designed a sieve method (i.e. the GPY sieve) to deal with some problems related to the

gaps between primes. Indeed they conditionally proved for the first time the existence of a finite

gap H ≤ 16 Surprisingly Yitang Zhang in 2013 proved unconditionally that H ≤ 70 000 000

introducing more advanced analytic machinery. Two years later a further breakthrough was

obtained by James Maynard (independently found also by Terence Tao) improving uncondi-

tionally the bound to H ≤ 600 using more simpler arguments based on the ideas of Selberg

and developing a ”multidimensional” GPY sieve.

Organization of the thesis

In the first section, we will give an introduction of sieve theory, starting by estimating the

integers given by a polynomial expression, then we will give the description of a sieve method

developed by Selberg, and we will illustrate it by an application on the twin prime conjecture.

In the rest of the thesis we will be mostly interested in the bounded gaps between primes.

In the second section we will discus the Goldston, Pintz and Yildirim sieve, then we will give

the complete conditional proof on the existence of a bounded gap between infinitely many

consecutive primes. In the last section we will present Maynard’s work and his unconditional

proof of the bounded gaps. Hence, the main results in the present thesis are

Theorem 0.0.1. (Goldston, Pintz and Yildirim (2005)) We have

∆1 = lim
n→∞

inf
pn+1 − pn

log pn
= 0.

Theorem 0.0.2. (Goldston, Pintz and Yildirim (2009))

Assume the primes have level of distribution θ ≥ 1/2, then there exist an explicitly calculable

constant C(θ), such that any admissible k−tuple with k ≥ C(θ) contains at least two primes



infinitely often. In particular, we have

lim inf(pn+1 − pn) ≤ 20.

Theorem 0.0.3. (Maynard (2013)) We have

lim
n→∞

inf pn+1 − pn = 600

Theorem 0.0.4. (Maynard (2013)) Assuming the Elliott-Halberstam conjecture, we have

lim
n→∞

inf pn+1 − pn = 12

—-
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Chapter 1

Selberg sieve

1.1 Definitions and notations

Throughout this document, we will use with or without subscripts n, m, a and b for positive

integers, p and q for prime numbers, and x, y for real numbers.

We denote by

1. ω(n) the number of prime divisors ofn.

2. (a, b) is the greater commun divisor of a and b.

3. a ≡ b (mod m) if it exists m such that a = mn+ b.

4. p|n p divides n.

5. p - n p doesn’t divide n.

6. bxc is the integer part of x.

7. {x} is the fractional part of x.

8. |A| is the cardinality of the set A.

9. ϕ(n) is Euler’s totient function, which is the number of positive integers less than or equal

to n that are relatively prime to n.

10. π(x) is the number of primes p ≤ x, where x a real number.

11. π(x,m, n) is the number of primes p ≤ x, where p ≡ n (mod m).
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Recall the following definition of the Landau symbols.

Definition 1.1.1. Let f, g two real functions

1) If g(x) > 0 for all x ≥ a, with a ∈ R, we write

f(x) = O(g(x)) (to be read as f is big-oh of g),

to mean that the quotient f(x)
g(x)

is bounded for x ≥ a, that is, there exists a constant M > 0 such

that

|f(x)| ≤Mg(x). for everyx ≥ a

2) We write

f(x) = o(g(x)) (to be read as f is little-oh of g),

to mean that f is asymptotically dominated by g, and that is

lim
x→∞

f(x)

g(x)
= 0.

3) We write

f(x) ∼ g(x) (to be read as f has the same order of g),

to mean that f is asymptotically equal to g, and that is

lim
x→∞

f(x)

g(x)
= 1.

We will also use Vinogradov symbols � and �. If f(x) = O(g(x)), it’s equivalent to write

f(x)� g(x) or g(x)� f(x).

In the next section we will present an important sieve method carrying by Atle Selberg.

In order to do that, we will give an assortment of notations and definitions frequently used in

sieve theory. [15]

1.2 Numbers given by polynomial expression

Let
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A = {h(n);n ≤ x} and Ad = {a ∈ A; a ≡ 0 (mod d)}.

Let further h(n) ∈ Z[X] and

ρ(d) = #{0 ≤ n ≤ d− 1 : h(n) ≡ 0 (mod d)},

which denotes the number of solutions of h(n) ≡ 0 (mod d)}.

Let P be the set of primes and p ∈ P ; we denote

P (y) =
∏
p≤y

p.

To estimate |Ad| we consider each residue class (mod d) separately, so we get

|Ad| =
∑

1≤l≤d
h(l)≡0 (mod d)

∑
n≤x

n≡l (mod d)}

1 =
∑

1≤l≤d
h(l)≡0 (mod d)

(
x

d
+O(1)).

Hence

|Ad| = x
ρ(d)

d
+O(ρ(d)). (1.1)

Now we define

S(A,P (y)) = |{n ∈ A; 1 ≤ n ≤ x; (n, P (y)) = 1}|.

In other words S(A,P (y)) is the number of integers in A not divisible by any prime less than

y.

We can re-write S(A,P (y)) using a property of Möbius function µ:

∑
a∈A

µ(d) =

{
1 if (a, P ) = 1
0 otherwise .

Hence

S(A,P ) =
∑
a∈A

∑
d|(A,P )

µ(d) =
∑
a∈A

∑
d|a
d|P

µ(d).

Interchanging the order of summation, we get the Legendre identity

S(A,P ) =
∑
d|P

µ(d)|Ad|.
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From (1.1) we get

S(A,P ) = x
∑
d|P

µ(d)

d
ρ(d) +O(

∑
d|P

ρ(d)). (1.2)

Recalling the following identity ∑
d|P

µ(d)

d
ρ(d) =

∏
p≤y

(1− ρ(d)

p
),

we get

S(A,P (y)) = x
∏
p≤y

(1− ρ(d)

p
) +O(

∑
d|P

ρ(d)).

Our problem now is to get a suitable approximations to µ(d), based on the ideas developed

by Atle Selberg [15].

1.3 Selberg sieve

From the previous manipulations we could estimate S(A,P (y)) the number of integers n less

than a given bound x, for which h(n) is not divisible by any prime (or a product of primes)

less than a given y, with h(n) ∈ Z[X].

Let us write again as in (1.1)

|Ad| = x
ρ(d)

d
+R(d),

with R(d) ≤ ρ(d). So to get an upper bound on S(A,P (y)), we need a multiplicative function

λ(d), such that

∑
d|(n,P (y))

µ(d) ≤
∑

d|(n,P (y))

λ(d).

If the above inequality holds, (1.2) becomes

S(A,P ) = x
∑
d|P

λ(d)ρ(d)

d
+
∑
d|P (y)

λ(d)R(d). (1.3)

Selberg’s idea is to let Φ be a multiplicative function and define λ as

∑
d|(n,P (y))

λ(d) = (
∑

d|(n,P (y))

Φ(d))2.



Chapter 1. Selberg sieve 15

The right hand side in the previous equation is always greater than or equal to zero, and it

is equal to one for (n, P (y)) = 1, so the equality (1.3) holds. Recalling that Φ is multiplicative,

we define

λ(d) =
∑

d1,d2|P (y)
d=[d1,d2]

Φ(d1)Φ(d2).

It remains to find the optimal Φ, which means to get a main term in (1.3) as small as

possible. Selberg sets for all d|P (y)

f(d) =
d

ρ(d)
. (1.4)

For all k|P (y), we have

g(k) = f(k)
∏
p|k

(1− ρ(p)

p
) = f(k)

∏
p|k

(1− 1

f(p)
).

This way he proved the following theorem

Theorem 1.3.1. Let

Q =
∑
d|P (y)

1

g(d)
=
ρ(d)

d

∏
p|k

(
1− ρ(p)

p

)−1

.

Let Φ be a multiplicative function, with Φ(p) = 0 if p|P (y), and

λ(d) =
∑

d1,d2|P (y)
d=[d1,d2]

Φ(d1)Φ(d2).

If λ(d) = 0 if d - P (y), then ∑
d|P

λ(d)ρ(d)

d
≥ 1

Q
.

Moreover the previous inequality becomes an equality for

Φ(d) =
dµ(d)

Qρ(d)

∑
t|d

1

g(t)
,

for all d|P (y).

Proof. We have that if f is multiplicative and all the k’s are square-free. Hence d|k we have

(d, k/d) = 1, and this implies

f(k) = f(d)f(k/d).
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Then we get

g(k) = f(k)
∏
p|k

(1− 1

f(k)
) =

∑
d|k

µ(d)
f(k)

f(d)
=
∑
d|k

µ(d)f(k/d).

So g = µ ∗ f. Using the Möbius inversion formula we obtain

f(k) =
∑
d|k

g(d).

We know also that (d1, d2)[d1, d2] = d1d2, so

f([d1, d2]) =
f(d1)f(d2)

f((d1, d2))
.

Hence we can now with that write

1

f([d1, d2])
=

1

f(d1)f(d2)

∑
d|(d1,d2)

g(d).

Now we have

∑
d|P

λ(d)ρ(d)

d
=

∑
d|P

λ(d)

f(d)
=

∑
d1,d2|P (y)

Φ(d1)Φ(d2)

f([d1, d2])

=
∑

d1,d2|P (y)

Φ(d1)Φ(d2)

f(d1)f(d2)

∑
t|(d1,d2)

g(t)

=
∑
t|P (y)

g(t)
∑

d1|P (y)
d2|P (y)
t|d1
t|d2

Φ(d1)Φ(d2)

f(d1)f(d2)

=
∑
t|P (y)

g(t)(
∑
d|P (y)

Φ(d)

f(d)
)2

Now we introduce a change of variable

y(t) =
∑
d|P (y)

Φ(d)

f(d)
.

From the equality (1.8) we have∑
d|P

λ(d)ρ(d)

d
=
∑
t|P (y)

g(t)y(t)2.
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We see that ∑
d|t|P (y)

µ(t/d)
∑
d|t|P

Φ(d)

f(d)
=

Φ(d)

f(d)
.

Then we get

Φ(d) = f(d)
∑
t|P (y)

µ(t/d)y(t). (1.5)

Remark 1.3.2. One of the important steps in Selberg’s combinatorial technique is to make an

invertible (to be defined later) change of variable. We will see in Chapter III that Maynard’s

argument is a variation of this technique in higher dimension.

For d = 1 ∑
t|P (y)

µ(t/d)y(t) = 1.

Then

∑
d|P

λ(d)ρ(d)

d
=

∑
t|P (y)

g(t)y(t)2

=
∑
t|P (y)

g(t)y(t)2 − 2

Q

∑
t|P (y)

µ(t/d)y(t) +
1

Q2

∑
d|P (y)

µ(t)2

g(d)
+

1

Q

=
∑
t|P (y)

1

g(t)
(g(t)y(t)− µ(t)

Q
)2 +

1

Q

So finally we get

∑
d|P

λ(d)ρ(d)

d
≥ 1

Q
.

The above inequality becomes an equality if

y(t) =
µ(t)

Qg(t)
. (1.6)

Hence from (1.5) and (1.6) we get

Φ(d) =
f(d)

Q

∑
d|t|P (y)

µ(t/d)
µ(t)

g(t)
=
f(d)µ(d)

Q

∑
d|t|P (y)

1

g(t)
.
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Now we are ready to prove the following theorem.

Theorem 1.3.3. Under the assumptions of Theorem (1.3.1), we have

S(a, P (y)) ≤ x

Q
+ y2

∏
p|P (y)

(1− ρ(p)

p
)−2.

Proof. We already proved in (1.3) that

S(A,P (y)) ≤ x
∑
d|P (y)

λ(d)ρ(d)

d
+
∑
d|P (y)

λ(d)R(d).

Recalling that ∑
d|P (y)

λ(d)ρ(d)

d
=

1

Q
,

it remains to estimate the error term

E =
∑
d|P (y)

λ(d)R(d) =
∑
d|P (y)

Φ(d1)Φ(d2)R[d1d2].

The optimal Φ by Selberg sieve is

Φ(d) =
f(d)µ(d)

Q

∑
t|d|P

1

g(t)
.

Hence

|Φ(d)| = f(d)

Q

∑
t|d|P

1

g(t)
≤ f(d)

g(d)Q

∑
k|P (y)

1

g(k)
≤ f(d)

g(d)
.

since

|R([d1d2])| ≤ [d1d2]

f([d1d2])
≤ d1

f(d1)

d2

f(d2)
.

Finally

E ≤
∑

d1,d2|P (y)

d1d2

g(d1)g(d2)
(
∑
d|P (y)

d

g(d)
)2.

So we have

E ≤ y2Q2.
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1.4 Application : twin primes

The twin primes conjecture states that there are infinitely many primes p such that p + 2 is

prime. One can think about a non trivial lower bound on the number of pairs of twin primes

p, p + 2 up to a given x, so if this bound involves a term that goes to infinity for x going to

infinity then we will be done, but until writing these lines this seems to be far out of reach with

current techniques. In this section we will give an upper bound on the number of twin pairs

up to x.

We denote by π2(x) the cardinality of the following subset of primes p

π2(x) = |{p, p+ 2 ≤ x|p, p+ 2 primes}|.

Using the prime number theorem ”PNT” we can give a heuristic to estimate π2(x), as from the

PNT the chance to pick randomly a pair of primes p, and p+2 in an interval of length x is 1
log x

, if

we assume that these two events are independent, we can expect that π2(x) ∼ 1
log x

. 1
log x

= 1
(log x)2

.

Clearly this is obviously false if we look to the trivial parity dependence between n and n+2

(if n even⇒ n+ 2 even). For example to get a ”correction” factor on the last non dependence,

the probability that a random n is even is 1/2, so the probability to choose independently two

integers non divisible by 2 is (1 − 1
2
)2. Then the correction factor for the divisibility by 2 is

(1− 1
2

)

(1− 1
2

)2
= 2.

With the same argument the probability that a prime q does not divide p or p+2 is (1− 1
p
)2,

and we need p and p+2 to be non-zero modulo q, so p could be in the q−2 residues classes mod

q, then correction factor for the primes q grater than 2 is
(1− 2

q
)

(1− 1
q

)2
. Using the Chinese Reminder

Theorem we can expect to multiply the correction factors over all the primes. Indeed we should

just do it for finitely many primes, but here it will not really affect the result as the expected

error coming from large primes is very small. Finally we define the twin prime constant C2, as

C2 = 2
∏
q≥3

(1− 2
q
)

(1− 1
q
)2
≈ 1.32032363...

Now we can conjecture that

π2(x) ∼ C2
x

(log x)2
,

as x→∞. From Selberg sieve we will prove the following result
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Proposition 1.4.1. With the same notations above we have

π2(x)� x

(log x)2
+ x1/3.

Proof. We set

h(n) = n(n+ 2).

If p < x is a twin prime then p ≤ x1/3 or h(p) has no prime factors less than x1/3.

If we take y = x1/3, we get

π2(x) ≤ S(A,P (y)) + y.

By Selberg sieve we get

S(A,P (y)) ≤ x
( ∑
d|P (y)

ρ(d)

d

∏
p|d

(
1− ρ(p)

p

)−1
)−1

+ y
∏
p|d

(
1− ρ(p)

p

)−2
.

First we remark that for p = 2, ρ(p) = 1, and ρ(p) = 2 otherwise.

We will now estimate
∏

p≤x1/3
(
1− ρ(p)

p

)−1
. We remark that If p > 5 then

(
1− 2

p

)−1 ≤
(
1− 1

p

)−1(
1− 2

p2

)−1
.

But it’s known that

∏
p

(
1− 2

p2

)−1 ≤
∏
p

(
1− 1

p2

)−1
= ζ(2) =

π2

6
.

Then ∏
p

(
1− 2

p2

)−1
<∞

and by Mertens estimate

∏
p≤x1/3

(
1− 1

p2

)−1
= eγ log(x1/3) +O(1).

Finally we get ∏
p≤x1/3

(
1− ρ(p)

p

)−1 � (log x)2.
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It remains to estimate the contribution of
∑

d≤x1/3
ρ(d)
d

. We will use the fact that

ρ(d) ≤ d(d).

Letting d(n) be the number of divisors of n, in fact if writing n = pα1
1 ...p

αn
n . We obtain that

ρ(n) = 2α1 ...2αn , and d(n) = (α1 + 1)...(αn + 1).

From the multiplicativity of d(.), and ρ(.), we finally obtain

∑
d≤x1/3

ρ(d)

d
≥
∑
d≤x1/3

d(d)

d
≥
( ∑
d≤x1/3

1

d

)2

� (log x)2.

So we can finally write that

π2(x)� x

log(x)2
.

Indeed we are still far from proving the twin primes conjecture, and that leads number

theorists to investigate a more general situation of the twin prime conjecture, in the next

section we will present some of the spectacular results on this problem proved by Goldston,

Pintz and Yildirim.





Chapter 2

The work of Goldston, Pintz and
Yildirim

2.1 Primes in tuples

"This conjecture (2.1.2) is extremely difficult (containing the twin prime

conjecture, for instance, as a special case), and in fact there is no

explicitly known example of an admissible k-tuple with k ≥ 2 for which we can

verify this conjecture"

Terence Tao

Let us define a k−tuple H = (h1, ..., hk) as a collection of increasing positive integers. Our

aim here is to study the case when set n+H = {n+h1, ..., n+hk}, the translates of H, consists

entirely of primes. Obviously the case H = (0) is Euclid’s theorem, and H = (0, 2) is the twin

primes conjecture, to study the general case we should add another condition on the k−tuple,

which is the admissibility.

Definition 2.1.1. We said that a k−tuple H = (h1, ..., hk) is admissible if the hi with 1 ≤ i ≤ k

avoid at least one congruence class mod every prime.

In fact if the hi covers all the congruence classes modulo some prime p, at least one of the

elements of n+H = {n+ h1...n+ hk} will be divisible by p for every n.

Now we can state the so called Hardy-Littlewood conjecture.

Conjecture 2.1.2. If H is an admissible k−tuple, then there exists infinitely many translates

of H that consist entirely of primes.
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As in the heuristic discussion on the twin primes conjecture up to a given x the probability

to pick a k-tuple of primes is 1
(log x)k

, if we assume the independence between the k events, and

similarly we construct a correction factor

G(H) =
∏
p

(
1− ρ(p)

p

)
(1− 1

p
)k
. (2.1)

With h(n) =
∏

1≤i≤k(n+ hi) we define ρ(p) as the number of solutions of

h(n) ≡ 0 (mod p).

In the following we will call the quantity G(H) in (2.1) the singular series of this problem.

Assuming H admissible implies that ρ(p) < p and for large p we have ρ(p) = k so that gives

the non-vanishing of G(H).

We then have the quantitative form of the k-tuples conjecture.

Conjecture 2.1.3. Let H = (h1, ..., hk) be an admissible k-tuple then

|{n ≤ x, n+h1, ..., n+hk such that n+h1, ..., n+hk are all primes }| ∼ G(H)
x

(log x)k
x→∞.

To work on the GPY method, we will need an assortment of tools on the primes in arithmetic

progressions.

2.2 Primes in arithmetic progressions

As we mentioned in the introduction, Dirichlet in 1837, using the theory of L-functions, proved

that that the polynomial ax + b contains infinitely many primes for a and b co-primes, on

showing that the series ∑
p≡a (mod m)

(a,m)=1

1

ps
,

is divergent for s→ 1+. 59 years after Dirichlet, Hadamard and de la Valee-Poussin proved the

Prime Number Theorem, namely

π(x) ∼ x

log x
,

as x→∞.
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Taking

ϑ(x) =
∑
p prime
p≤x

log p and ϑ(x; a,m) =
∑
p prime

p≡a (mod m)
p≤x

log p,

one can prove that the prime number theorem is equivalent to ϑ(x) ∼ x as x −→∞, so we can

expect that for x→∞

ϑ(x; a,m) ∼ x

φ(m)
.

If this will hold for all (a,m) = 1 and m → ∞, we will say that the primes are (more or less)

equi-distributed amongst the arithmetic progression a (mod m).

One of the best known results on the distribution of primes is the Siegel-Walfisz theorem,

which gives the equi-distribution once x ≥ em
ε
. In general this is a limitation in applying this

theorem as we need x to be very large comparing to m. We can state Siegel-Walfisz in the

following form.

Theorem 2.2.1. For some c > 0, and for all (a,m) = 1 we have

ϑ(x; a,m) =
x

φ(m)
+O

(
x exp(−c

√
log x)),

for x ≥ em
ε
.

Assuming the Generalized Riemann Hypothesis (GRH) one can prove that (see Corollary

13.8 in [11])

ϑ(x; a,m) =
x

φ(m)
+O

(
x1/2(log x)2

)
,

for x ≥ em
ε
.

But in many applications we don’t need that the equi-distribution holds for all a and m,

but just for m up to some Q. The best unconditional result in this context is the Bombieri-

Vinogradov theorem.

Theorem 2.2.2. (Bombieri-Vinogradov)

For all A > 0 there exists a constant B = B(A), such that∑
m≤Q

max
amod m
(a,m)=1

|ϑ(x; a,m)− x

φ(m)
| �A

x

(log x)A
,

where Q = x1/2/(log x)B.
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We have the following definition.

Definition 2.2.3. Using the same notation as in (2.2.2) we say that the primes have a level

of distribution θ if Q = xθ−ε for all ε > 0.

By the Bombieri-Vinogradov theorem, the primes have a level of distribution θ = 1/2.

Eliott-Halberstam (1968) conjectured that θ = 1.

Conjecture 2.2.4. (Eliott-Halberstam) The primes have a level of distribution θ = 1.

Remark 2.2.5. In April 2013, Yitang Zhang [21] proved a weaker version of Elliott-Halberstam

conjecture when restricting to one particular residue class, considering m to be squarefree and

y−smooth integer (that is, when all the prime factors of q are less than y), and he proved that∑
m≤Q

(a,m)=1
m is y-smooth
m squarefree

|ϑ(x; a,m)− x

φ(m)
| �A

x

(log x)A
.

For Q = x1/2+η and y = xδ, for all η, δ > 0. And that was the key estimate in his breakthrough

on the bounded gaps between primes, namely the fact that there exist a calculable constant B,

such that there exist infinitely many pairs of primes which differ by no more than B, and he

even showed that we can take B = 70 000 000.

2.3 The work of Goldston Pintz and Yildirim

Indeed to prove the bounded gaps between infinitely many consecutive primes, it’s sufficient

to find a suitable k−tuple H = (h1, ..., hk), such that n + H contains at least two primes for

infinitely many values of n. In other words we have

lim
n→∞

inf(pn+1 − pn) ≤ |hk − h1|. (2.2)

For a long time equation (2.2) seemed to be out of reach, and here raised the problem of

proving the existence of infinitely many ”short” intervals containing consecutive primes. The

Prime Number Theorem tells us that in average the length of such intervals is C log x where C

is a positive constant. In order to be allowed to choose any ”small” positive constant C, one

should prove that ∆ = 0 where
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∆ = lim
n→∞

inf
pn+1 − pn

log pn
.

The first result on the topic is due to Hardy and Littlewood (1926): in fact they proved

that ∆ ≤ 3/2 with a conditional proof assuming GRH. This last bound was improved by many

specialists : Erdos showed that ∆ ≤ 1−c with c a calculable constant, Bombieri and Davenport

∆ ≤ 2+
√

3
8

, Huxley ∆ ≤ 0.4394, and Maier ∆ ≤ 0.2484.

In 2005 Goldston, Pintz and Yildirim developed a new sieve method to prove the following

theorem.

Theorem 2.3.1. Let

∆ν = lim
n→∞

inf
pn+ν − pn

log pn
.

We have

∆ν = max(ν − 2θ, 0),

Where θ is the level of distribution of primes. Taking θ = 1
2
, and ν = 1 it follows that ∆ = 0.

Theorem 2.3.2. Assume the primes have level of distribution θ ≥ 1/2, then there exist an

explicitly calculable constant C(θ), such that any admissible k−tuple with k ≥ C(θ) contains at

least two primes infinitely often.

Specifically, if θ > 20/21, then this is true for k ≥ 7, and, since the 7-tuple (n, n+2, n+6, n+

8, n+12, n+18, n+20) is admissible then, the following corollary is an immediate consequence

of the previous theorem.

Corollary 2.3.3. The Elliott-Halberstam conjecture implies that

lim inf(pn+1 − pn) ≤ 20.

Let us define the following function

θ(n) =

{
log(n) if n prime
0 otherwise.

Letting H = (h1, ..., hk) be an admissible k−tuple, to count the primes in the translates of

H we consider the following sum
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S =
∑

x<n≤2x

( k∑
i=1

(θ(n+ hi)− log(3x))
)
Wn, (2.3)

where Wn is a non-negative weight.

From the simple fact that x < n ≤ 2x implies that n + hi < 2x + hk < 2x + x for any

1 ≤ i ≤ k and large x, we obtain that θ(n+ hi) < log(3x) for i ∈ {1, . . . , k}.

If we prove that S > 0, then there exist at least two different elements hi and hj in H, such

that n + hi and n + hj are primes. The first difficulty in this method comes from choosing a

suitable Wn to evaluate (2.3).

2.4 On the weight Wn

Our aim in this section is to find a positive weight which is sensitive to the prime k-tuples. The

first propriety we need is that Wn has to vanish on the integers that have more than k prime

factors. Moreover from (2.3) we see that to get S > 0 we should consider Wn that maximizes

the quantity

κ =
1

log(3x)

Aθ(n)

A(n)
,

where

A(n) =
∑

x<n≤2x

Wn and Aθ(n) =
∑

x<n≤2x

(
k∑
i=1

θ(n+ hi)Wn.

We define

Λ(n,H) = Λ(n+ h1)Λ(n+ h2)...Λ(n+ hk),

where Λ(n) the von Mangoldt function defined as

Λ(n) =

{
log(n) if n = pm for m ≥ 1, p prime
0 otherwise.

We recall the following result on von Mangoldt function.

Proposition 2.4.1. For n ≥ 1 we have

log n =
∑
d|n

Λ(d).

The above proposition follows naturally from the fundamental theorem of arithmetic. We

will now use some results on the convolution of two arithmetic functions ([19]).
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Definition 2.4.2. Let f and g be two arithmetic functions (i.e a real or complex valued function

defined on the set of positive integers). We define f ∗ g, the Dirichlet convolution of f and g,

by

(f ∗ g)(n) =
∑
d|n

f(d)g(
n

d
).

Remark 2.4.3. • The set of arithmetic functions forms a commutative ring under the

usual addition and Dirichlet convolution.

• the function log defines a derivative on the ring R of arithmetic functions as an en-

domorphism of the additive group of R satisfying the Leibniz rule log(n).(f ∗ g)(n) =

f ∗ (log .g)(n) + g ∗ (log .f)(n)

We can write 2.4.1 as Λ = µ ∗ log, so we get the following identity as a direct application of

Möbius inversion formula, namely the fact that if g = f ∗ 1 then f = g ∗ µ with µ the Möbius

function:

Λ(n) =
∑
d|n

µ(d) log
n

d
. (2.4)

By definition, the von Mangoldt function detects only prime powers, and from (2.4) we can

study directly Λ(n) as a sum of arithmetic functions.

We define the generalized Mangold function for a positive integer k as

Λk(n) =
∑
d|n

µ(d)(log
n

d
)k.

Note that

Λ0(n) =

{
1 if n = 1
0 otherwise.

Let’s investigate the case k = 2.

Proposition 2.4.4. For all positive integers n we have

Λ2(n) = Λ(n) log(n) + Λ ∗ Λ(n).
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Proof. We have

log2 = log . log

= log×(1 ∗ Λ)

= 1 ∗ (log×Λ) + (log×1) ∗ Λ we used the fact that log is a derivative

= 1 ∗ (Λ× log) + log ∗Λ.

Then finally we get

Λ2 = µ ∗ log2 = µ ∗ 1 ∗ (Λ× log) + µ ∗ log ∗Λ = Λ× log +Λ ∗ Λ.

This proves the proposition.

From (2.4.4), it is easy to see that

Λ2(n) =


(2m− 1)(log p)2 if n = pm

2 log p log q if n = paqb for p 6= q
0 otherwise .

This shows that Λ2(n) is non-zero on the integers n that has at most two prime factors.

Indeed we have the general recurrent relation.

Proposition 2.4.5. For all positive integer k we have

Λk+1 = Λk log +Λ ∗ Λk.

Proof. By definition

Λk+1 = µ ∗ (logk . log)

= (µ ∗ logk) log +(−µ log) ∗ 1 ∗ Λk from log(n/d) = log(n)− log(d)

= Λk log +Λ ∗ Λk, from Λ = (−µ log) ∗ 1.

Proposition 2.4.6. Let k be a positive integer then

Λk(n) =


(αk + (α− 1)k)(log p)k if n = pα,
k!(log p1)(log p2)...(log pk) if n has k distinct prime factors pi,
0 n has more than k distinct prime factors .
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Proof. • If n = pα then by definition

Λk(n) = µ(1)(log pα)k + µ(p)(log pα−1)k = (αk − (1− α)k)(log p)k.

• Let n =
∏m

i=1 p
αi
i We assume that

Λk(n) =

{
k!(log p1)(log p2)...(log pk) if n has k distinct prime factors pi
0 n has more than k factors

(2.5)

which is true for k = 0. Now we prove by induction that (2.5) holds for k + 1 too, i.e.,

Λk+1(n) = (k + 1)!(log p1)(log p2)...(log pk+1)

From (2.4.5) and the inductive hypothesis we have

Λk+1(n) = Λ ∗ Λk(n)

=
∑
d|n

Λ(d)Λk(n/d)

= (log p1)k!
∏
i 6=1

log(pi) + (log p2)k!
∏
i 6=2

log(pi) + ...+ (log pk+1)k!
∏
i 6=k+1

log(pi)

= (k + 1)!(log p1)(log p2)...(log pk+1).

Then the generalized Mangolt function is non zero (i.e., supported) on the integers that has

at most k prime factors.

Assume now that h(n) has r prime factors p1, p2, ..., pr with r < k. Then there exists an

element n + hj ∈ {n + h1, . . . , n + hk} such that for all pαii ||n + hj there exists some other

element n+ hj′ ∈ {n+ h1...n+ hk} with pαii ||n+ hj, hence

pααi |n+ hj − n+ hj′ = hj − hj′ .

This holds for all the prime factors of n + hj, and that implies that n + hj|
∏

1≤i≤k
i 6=j

(hj − hi).

Then in this case n < n + hj ≤ hk−1
k . From this argument and (2.4.6) we conclude that for

n > hk−1
k if Λk(h(n)) 6= 0. So, h(n) has exactly k distinct factors.
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We define the truncated divisor sum as

ΛR(n) =
∑
d|n
d≤R

µ(d) log
R

d
,

and

Λk(n;H) =
1

k!
Λk(h(n)),

where {h1, . . . , hk} is an admissible k-tuple, and

h(n) = (n+ h1)(n+ h2)...(n+ hk).

We can approximate Λk(n;H) by the truncated sum

ΛR(n;H) =
1

k!

∑
d|h(n)
d≤R

µ(d)(log
R

d
)k,

in which we divide by k! to simplify the estimates.

We recall that our aim is to prove that S > 0 for

S =
∑

x<n≤2x

( k∑
i=1

(θ(n+ hi)− log(3x))
)
Wn. (2.6)

Inspired from Selberg’s work we take

Wn =
( ∑

d≤R
d|h(n)

λ(d)
)2

,

and we look for a function λ which maximizes the quantity

κ =
1

log 3x

Aθ(n)

A(n)
.

where

A(n) =
∑

x<n≤2x

Wn and Aθ(n) =
∑

x<n≤2x

(
k∑
i=1

θ(n+ hi)W .

In [17] Soundrarajan showed that for more general family of weights and, in particular for

ΛR(n;H), we can not unconditionally achieve the bounded gaps between primes. Indeed he

proved that κ < 1 if the level of distribution of primes is 1
2
.
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The idea behind the success of GPY sieve is modifying the classical k-tuples detecting

weights.

Letting ν(n) be the number of distinct prime factors of n, we have ν(h(n)) = k + l, where

0 ≤ l < k. Remark that if l = k, then H will not be admissible. By the pigeon-hole principle,

we can conclude that there exist k− l primes among n+h1, . . . , n+hk. Summing up, we define

ΛR(n;H, l) =
1

(k + l)!

∑
d|h(n)
d≤R

µ(d)
(

log
R

d

)k+l
,

and to prove ∆ = 0 our k−tuples detecting weight will be

Wn = ΛR(n;H, l)2.

2.4.7 Outline of the GPY method

In order to motivate the next sections we will discuss the general setting of the GPY method,

taking for instance the weight Wn to be

Wn =
( ∑

d≤R
d|h(n)

λ(d)
)2

,

for some R > 0 and

h(n) = (n+ h1)(n+ h2)...(n+ hk),

where λ(.) is a multiplicative function non zero only on the positive square-free integers less

than R.

Arguing analogously to Selberg’s method, and expanding (2.6), we obtain

S =
∑

x<n≤2x

k∑
i=1

(θ(n+ hi)
( ∑
d|h(n)
d≤R

λ(d)
)2

− log(3x)
∑

x<n≤2x

( ∑
d|h(n)
d≤R

λ(d)
)2

=
∑

d1,d2≤R
D=[d1,d2]

λ(d1)λ(d2)
( k∑
i=1

∑
x<n≤2x
D|h(n)

(θ(n+ hi)− log(3x)
∑

x<n≤2x
D|h(n)

1
)
.

Then

log(3x)
∑

x<n≤2x
D|h(n)

1 = log(3x)
(
x
ρ(D)

D
+O(ρ(D))

)
.
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By definition of D, we have D = [d1, d2] ≤ d1d2 ≤ R2, and hence we can choose R ≤ x1/2+o(1)

to be able to have a good final estimate for the error term.

We evaluate the sum on θ(n + hi) analogously except that here we insert an additional

condition, which is (D,n+ hi) = 1 as θ is zero whenever n+ hi is not a prime.

Letting

ρ∗i (D) = {m ∈ Z/DZ, such that D|h(n) and (D,m+ hi) = 1},

we have then

k∑
i=1

∑
x<n≤2x
D|h(n)

θ(n+ hi) =
k∑
i=1

∑
m∈ρ∗(D)

∑
x<n≤2x

n≡m (mod D)

θ(n+ hi).

Remarking that |ρ∗i (p)| = ρ(p)− 1 for p prime, we have now to evaluate a sum on primes over

an arithmetic progression.

By the Siegel-Walfisz theorem, we can get the estimate∑
x<n≤2x

n≡m (mod D)

θ(n+ hi) ∼
x

φ(D)
,

as x→∞.

As we mentioned before the best available result that can allow us to control the error term

is the Bombieri-Vinogradov theorem. To get an unconditional result we should assume that

D < x1/2−o(1).

Remark 2.4.8. Again from D = [d1, d2] ≤ d1d2 ≤ R2, the condition D < x1/2−o(1) forces us to

choose R < x1/4−o(1), and we will prove that exceeding the barrier 1
4

implies the bounded gaps

between primes.

So an application of the Bombieri-Vinogradov theorem gives us

k∑
i=1

∑
x<n≤2x
D|h(n)

θ(n+ hi)� xk
|ρ∗(D)|
φ(D)

.

Hence S has a main term Ms of the form

Ms = x
(
k
∑

d1,d2≤R
D=[d1,d2]

λ(d1)λ(d2)
|ρ∗(D)|
φ(D)

− log(3x)
∑

d1,d2≤R
D=[d1,d2]

λ(d1)λ(d2)
ρ(D)

D

)
. (2.7)
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Remark 2.4.9. The term between the parenthesis in Ms is negative if λ(.) is positive; it means

that we can’t choose λ(.) to be positive for all d.

Till now we used just combinatorial arguments to deal with our sums but to estimate the

two sums in Ms it will be more efficient to introduce another technique. As we expect that these

sums will involve the Möbius function which produces a lot of different terms of opposite signs

which makes the combinatorial arguments more complicated. Surprisingly Selberg introduced a

combinatorial argument to deal with such sums, but Goldston, Pintz and Yildirim transformed

the them into suitable integrals using the following discontinuous factor known as Perron’s

formula ([2]):

1

2iπ

∫
Re(s)=2

ys

s
ds =


1 if y > 1,
1/2 if y = 1,
0 if 0 < y < 1.

Let

M1,s = k
∑

d1,d2≤R
D=[d1,d2]

λ(d1)λ(d2)
|ρ(D)∗|
φ(D)

,

and

M2,s =
∑

d1,d2≤R
D=[d1,d2]

λ(d1)λ(d2)
ρ(D)

D
.

We will just study M2,s since M1,s can be studied in a similar way. To evaluate this sum with

the condition d < R we take y = R/d in Perron’s formula thus obtaining

M2,s =
1

(2iπ)2

∫
Re(s1)=2
Re(s2)=2

( ∑
d1,d2≥1
D=[d1,d2]

λ(d1)λ(d2)

ds11 d
s2
2

ρ(D)

D

)
Rs1+s2

ds1

s1

ds2

s2

. (2.8)

Obviously, the evaluation of the previous integral depends on the nature of the function

λ(.). In the next section we will show that the best choice for λ is λ(d) = 1
(k+l)!

µ(d)
(

log R
d

)k+l
.

To motivate the next sections we will assume for instance that λ(d) = µ(d), then we can write

∑
d1,d2≥1
D=[d1,d2]

λ(d1)λ(d2)

ds11 d
s2
2

ρ(D)

D
=

∑
d1,d2≥1
D=[d1,d2]

µ(d1)µ(d2)

ds11 d
s2
2

ρ(D)

D
.
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Clearly the function µ(d1)µ(d2)

d
s1
1 d

s2
2

ρ(D)
D

is multiplicative and supported on the square-free integers.

Hence ∑
d1,d2≥1
D=[d1,d2]

µ(d1)µ(d2)

ds11 d
s2
2

ρ(D)

D
=
∏

p prime

(
1− ρ(p)

ps1+1
− ρ(p)

ps2+1
+

ρ(p)

ps1+s2+1

)
.

Using the Euler product formula for the Riemann zeta-function, we multiply by a factor

F (s1, s2) = 1. To evaluate the integral using our understanding of the Riemann zeta func-

tion, we consider

F (s1, s2) =
ζ(1 + s1 + s2)k

ζ(1 + s1)kζ(1 + s2)k

∏
p prime

(
1− 1

p1+s1+s2

)k(
1− 1

p1+s1

)−k(
1− 1

p1+s2

)−k
.

Then, finally, we obtain

M2,s =
1

(2iπ)2

∫
Re(s1)=2
Re(s2)=2

ζ(1 + s1 + s2)k

ζ(1 + s1)kζ(1 + s2)k
G(s1, s2)Rs1+s2

ds1

s1

ds2

s2

,

where

G(s1, s2) =
∏

p prime

(
1− 1

p1+s1+s2

)k(
1− 1

p1+s1

)−k(
1− 1

p1+s2

)−k(
1− ρ(p)

ps1+1
− ρ(p)

ps2+1
+

ρ(p)

ps1+s2+1

)
.

Remark that under the hypothesis of admissibility, we have

G(0, 0) = G(H) 6= 0.

We can easily see that ρ(p) = k if p > hk, and that ρ(p) < k if there exists some hj < hi such

that hj ≡ hi (mod p). This holds if p|hj −hi for i < j, then we get also ρ(p) = k if p - V where

V =
∏

1≤i<j≤k

|hj − hi|

Then in order to evaluate G(s1, s2), we will fix an upper bound U for log V : using the trivial

bound V ≤ hk
2

k , we can choose

U = Ck2 log(2hk). (2.9)

Remark 2.4.10. We see that V is the absolute value of a Vandermonde’s determinant, so one

can use Hadamard’s inequality to bound V , namely V ≤ kk/2hkk.
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We take

G(s1, s2)�
∏

p prime

(
1− 1

p1+s1

)−k(
1− 1

p1+s2

)−k(
1− ρ(p)

ps1+1

)(
1− ρ(p)

ps2+1

)
.

Then we evaluate the products separately, taking for si = σi + iti, −1/4 ≤ σi ≤ 1, ti ∈ R

and δi = max(−σi, 0) for i ∈ {1, 2}. Recalling that ρ(p) is at most k, we obtain

|
∏
p≤U

(
1− ρ(p)

p1+s1

)
| ≤

∏
p≤U

(
1 +

ρ(p)

p1−δ

)
= exp

(∑
p≤U

log
(

1 +
k

p1−δ

))

≤ exp
(∑
p≤U

k

p1−δ

)
( from log(x+ 1) ≤ x for x ≥ 0)

≤ exp
(
kU δ

∑
p≤U

1

p

)
� exp(kU δ log logU) ( by Mertens’s estimate)

� exp(kU δ log log x) (U ≤ x).

By the inequality (1 − x)−1 ≤ 1 + 3x for 0 ≤ x ≤ 2/3, we have (1 − 1
p1−δ

) ≤ (1 + 3
p1−δ

), so

that, arguing analogously to the previous case, we get

∣∣∣ ∏
p≤U

(
1− 1

p1+s1

)−k∣∣∣ ≤ (∏
p≤U

(
1− 1

p1−δ

)−1)k
� exp(3kU δ log log x).

Similarly we prove that exists β0 > 0 such that

∏
p≤U

(
1− 1

p1+s2

)−k(
1− ρ(p)

ps2+1

)
� exp(β0kU

δ log log x).

Then we find for p ≤ U that

G(s1, s2)� exp(β1kU
δ1+δ2 log log x), (2.10)

where β1 > 0 is an absolute constant.

Now we prove that the upper bound in (2.12) holds also for the case p > U . Remark first

that in this case we have | k
ps+1 |≤ k

U1−δ ≤ 1
2
. Then we consider the case in which p|V but the

primes p will be replaced by the integers between U and 2U as we have just few divisors p|V .
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For the case p - V we have ρ(p) = k and we will use the Taylor formula for the logarithm.

Hence

∏
p≥U
p|V

(
1− 1

p1+s1

)−k(
1− ρ(p)

ps1+1

)
≤

∏
p≥U
p|V

(
1− 3

p1−δ

)k(
1 +

k

p1−δ

)

≤ exp
(∑
p≥U
p|V

4k

p1−δ

)
≤ exp

(
4k

∑
U<n≤2U

1

n1−δ

)

≤ exp
(

4k(2U)δ
∑

U<n≤2U

1

n

)
≤ exp(4kU δ)

and∣∣∣ ∏
p≥U
p-V

(
1− 1

p1+s1

)−k(
1− ρ(p)

ps1+1

)∣∣∣ =
∣∣∣ exp

(∑
p≥U
p-V

(
−
∞∑
m=1

1

m

( k

p1+s1

)m
+ k

∞∑
m=1

1

m

( 1

p1+s1

)m))∣∣∣
≤ exp

(∑
p≥U
p-V

∞∑
m=2

2

m

( k

p1−δ

)m)

≤ exp
(∑
p≥U
p-V

∞∑
m=2

( k

p1−δ

)m)
≤ exp

(
2k2

∑
n>U

1

n2−2δ

)

≤ exp
(4k2U δ

U1−δ

)
≤ exp(2kU δ).

Then for p > U we have

G(s1, s2)� exp(β2kU
δ), (2.11)

where β2 > 0 is an absolute constant.

Finally, from (2.12) and (2.11) we conclude that

G(s1, s2)� exp(CkU δ log log x), (2.12)

for a suitable absolute positive constant C.

Then integrating over some carefully chosen contours, Goldston, Pintz and Yildirim proved

that the main contribution in M2,s and M1,s comes from the pole at s1 = s2 = 0, but in order

to do that we should first give the final form of the weight Wn.
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2.4.11 The average of sifting functions

In this section we will prove that with λ(d) = 1
(k+l)!

µ(d)
(

log R
d

)k+l
. We will get κ > 1, recalling

that

κ =
1

log 3x

Aθ(n)

A(n)
,

where

A(n) =
∑

x<n≤2x

W2
n and Aθ(n) =

∑
x<n≤2x

(
k∑
i=1

θ(n+ hi)W2
n.

In order to do that we will prove the following propositions and we will see that they give

accurate approximations to the sifting functions A(n) and Aθ(n). This will supply κ > 1.

Proposition 2.4.12. Let H be an admissible k−tuple, with |H| = k, M = 2(k + l) . If

R� x1/2(log x)−4M and h ≤ RC for all positive C, then∑
n≤x

ΛR(n;H, l)2 =

(
2l

l

)
(logR)k+2l

(k + 2l)!

(
G(H) + oM(1))

)
x,

holds as R, x→∞.

Proposition 2.4.13. Let 1 ≤ h0 ≤ h, and H0 = H∪h0. If R�M x1/4(log x)−B(M) and h ≤ R,

then ∑
n≤x

ΛR(n;H, l)2θ(n+ h0) =

{ (
2l
l

) (logR)k+2l

(k+2l)!

(
G(H0) + oM(1))

)
x if h0 not in H(

2l+1
l+1

) (logR)k+2l+1

k+2l+1)!

(
G(H + oM(1))

)
x if h0 ∈ H1\H2

holds as R, x→∞.

We recall the following facts about Riemann zeta function ([2]) for s = σ + it, there exists

a constant c > 0, such that ζ(s) 6= 0 in the region

σ ≥ 1− 4c

log(|t|+ 3)
. (2.13)

We have also for all t ∈ R that

ζ(s)− 1

s− 1
� log(|t|+ 3). (2.14)

1

ζ(s)
� log(|t|+ 3), and

ζ ′

ζ
(s)− 1

s− 1
� log(|t|+ 3). (2.15)



40 Mohamed Taoufiq Damir

We choose c = 10−2 and define L to be the contour given by

s = − c

log(|t|+ 3)
+ it. (2.16)

To prove the Propositions 2.4.12 and 2.4.13 we will need a couple of lemmas from [3].

Lemma 2.4.14. For R ≥ C, k ≥ 2, B ≤ Ck,∫
L
(log(|s|+ 3))B|R

s

sk
ds| �C C

k
1R
−c2 + e−

√
c log(R

2
), (2.17)

where C1, c2 depends on C. Moreover if for a sufficiently small c3, we have k ≤ c3 log(R), then∫
L
(log(|s|+ 3))B|R

s

sk
ds| �C e

−
√
c log(R

2
). (2.18)

Lemma 2.4.15. Let q be a square-free integer and define dm(q) = mω(q), for all positive real

m. For x ≥ 1 we have

[∑
q≤x

dm(q)

q
≤ (dme+ log x)dme ≤ (m+ 1 + log x)m+1. (2.19)

[∑
q≤x

dm(q) ≤ x(dme+ log x)dme ≤ x(m+ 1 + log x)m+1, (2.20)

where the sum
∑[ indicate the sum over the square free integers.

Proof. (of the Proposition 2.4.12) We have for D = [d1, d2] that∑
n≤x

ΛR(n;H, l)2 =
x

(k + l)!2

∑
d1,d2

µ(d1)µ(d2)
ρ(D)

D

(
log

R

d1

)k+l(
log

R

d2

)k+l

+O(M), (2.21)

where

M =
x

(k + l)!2

∑
d1,d2

µ(d1)µ(d2)
(

log
R

d1

)k+l(
log

R

d2

)k+l

ρ(D).

A direct estimate gives

M � (logR)2(k+l)
∑

d1,d2≤R

kω(D) from ρ(d) ≤ kω(d)

� (logR)4k
∑
r≤R2

(3k)ω(r) using lemma (2.4.15)

� R2(logR)7k

� x1−ε imposing R < x1/2−ε.



Chapter 2. The work of Goldston, Pintz and Yildirim 41

Now we consider ΛR(n;H, l)2 =
∑

d≤R
d|h(n)

λ(d), with λ(d) = 1
(k+l)!

log(R
d

)(k+l) and we proceed as

in section 2.4.7. So using Perron’s formula, the main term in (3.5) becomes

M =
1

(2iπ)2

∫
Re(s1)=c
Re(s2)=c

ζ(1 + s1 + s2)k

ζ(1 + s1)kζ(1 + s2)k
G(s1, s2)

Rs1+s2

(s1s2)l+k+1
ds1ds2, (2.22)

where

G(s1, s2) =
∏

p prime

(
1− 1

p1+s1+s2

)k(
1− 1

p1+s1

)−k(
1− 1

p1+s2

)−k(
1− ρ(p)

ps1+1
− ρ(p)

ps2+1
+

ρ(p)

ps1+s2+1

)
.

Then we have

M =
1

(2iπ)2

∫
Re(s1)=c
Re(s2)=c

D(s1, s2)

(s1 + s2)k
Rs1+s2

(s1s2)l+1
ds1ds2, (2.23)

where

D(s1, s2) = G(s1, s2)
(ζ(1 + s1 + s2)(s1 + s2))k

(s1ζ(1 + s1)k(s2ζ(1 + s2))k
.

We have for δi = −min(σi, 0)

G(s1, s2)� exp(CMU δ1+δ2 log logU). (2.24)

With U = CM2 log(2hk), for some M > k.

Assuming that s1, s2 and s1 + s2 are on the right of the contour L and using 2.4.11 and

Lemma 2.4.14, we find

D(s1, s2)� (log(|t1|+ 3)2k(log |t2|+ 3))2k exp(CMU δ1+δ2 log logU). (2.25)

Letting

V = exp(
√

logR),

we define the following contours:

L′j = {4−jc(log V )−1 + it : t ∈ R},

Lj = {4−jc(log V )−1 + it : |t| ≤ 4−jV },

Lj = {−4−jc(log V )−1 + it : |t| ≤ 4−jV },

Hj = {σj ± i4−jV : |σj| ≤ 4−jc(log V )−1},
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where c > 0 is a sufficiently small constant and j = 1 or 2.

For the case j = 1 we illustrate the contours by the following figure

σ

it

O

L′1

L1

c
4 log(V )

− c
4 log(V )

L1

V
4

−V
4

H1

H1

From the estimate (2.25) we see that the integrand in M vanishes if |t1| → ∞ or |t2| → ∞

for s1 and s2 on the right of L′2. Our first aim is to truncate L′j to reach the contour Lj then

we will prove that the error term generated by this operation is O(exp(−c
√

logR)). Hence to

replace the sj-contours over Lj with Lj, we will consider the rectangle LjHjLj then, finally, we

will get a main term in the form of integrals over contours containing the poles at s1 = s2 = 0

and s1 = −s2. We will finish the proof by using the Cauchy theorem and observing that the

contribution of the pole s1 = −s2 is negligible.

Let us start by estimating the error term. Indeed there are two error terms (similar up to

a constant): one from truncating L′1 and the other from truncating L′2. For s1 and s2 on the

right of L2 we have

Rs1+s2

(s1 + s2)k
� (log V )kR

5c
16 log V . (2.26)

We have also ∫
L′2\L2

(log |s1|+ 3)2k

|s1|l+1
ds1 �

∫ ∞
V

(log t+ 3)2k

tl+1
dt� (log V )2k

V
(2.27)
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∫
L1

(log |s2|+ 3)2k

|s2|l+1
ds2 �

∫ c
4 log V

+i

c
4 log V

(log |s2|+ 3)2k

|s2|l+1
ds2 +

∫ c
4 log V

+i∞

c
4 log V

+i

(log |s2|+ 3)2k

|s2|l+1
ds2

� (log V )l+1.

Then recalling V = exp(
√

logR)∫
L1

∫
L′2\L2

D(s1, s2)Rs1+s2

(s1 + s2)k(s1s2)l+1
ds1ds2 � (logU)CMUδ1+δ2 (log V )2k+l+1R

5c
16 log V

V

� (log V )C2M

V 1− 5c
16

� exp(−c
√

logR).

Consequently we get

M =
1

(2πi)2

∫
L′2

∫
L′1

D(s1, s2)Rs1+s2

(s1 + s2)k(s1s2)l+1
ds1ds2

=
1

(2πi)2

{∫
L2

∫
L1

+

∫
L′2\L2

∫
L1

+

∫
L2

∫
L′1\L1

} D(s1, s2)Rs1+s2

(s1 + s2)k(s1s2)l+1
ds1ds2

=
1

(2πi)2

∫
L2

∫
L1

D(s1, s2)Rs1+s2

(s1 + s2)k(s1s2)l+1
ds1ds2 +O(exp(−c

√
logR).

Now we shift the Li contours to Li, and we consider the rectangle LjHjLj which contains a

pole at s1 = s2 = 0 of order l + 1 and a pole at s1 = −s2 of order k. We denote

Ci = Hi ∪ Li ∪ Li.

Then we get∫
L1

D(s1, s2)Rs1+s2

(s1 + s2)k(s1s2)l+1
ds1 =

∫
C1

D(s1, s2)Rs1+s2

(s1 + s2)k(s1s2)k+1
ds1 −

∫
H1∪L1

H(s1, s2)Rs1+s2

(s1 + s2)k(s1s2)l+1
ds1.

Consequently for

I1 =

∫
C1

D(s1, s2)Rs1+s2

(s1 + s2)k(s1s2)k+1
ds1.

We have

I1 = 2iπ
(
Ress1=−s2

( D(s1, s2)Rs1+s2

(s1 + s2)k(s1s2)k+1

)
+
(
Ress1=0

( D(s1, s2)Rs1+s2

(s1 + s2)k(s1s2)k+1

))
. (2.28)

Arguing analogously on L2 we obtain
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M = Ress2=0Ress1=0

( D(s1, s2)Rs1+s2

(s1 + s2)k(s1s2)k+1

)

+
1

2iπ

∫
H2∪L2

Ress1=0

( D(s1, s2)Rs1+s2

(s1 + s2)k(s1s2)l+1

)
ds2

+
1

2iπ

∫
H1∪L1

Ress2=0

( D(s1, s2)Rs1+s2

(s1 + s2)k(s1s2)l+1

)
ds1

+
1

2iπ

∫
L2

Ress1=−s2

( D(s1, s2)Rs1+s2

(s1 + s2)k(s1s2)l+1

)
ds2

+
1

(2iπ)2

∫
H2∪L2

∫
H1∪L1

( D(s1, s2)Rs1+s2

(s1 + s2)k(s1s2)l+1

)
ds2ds2

+ O(e−c
√

log x)

= J0 + J1 + J2 + J3 + J4 +O(e−c
√

log x),

say. We can write the residue in J0 as

J0 =
1

(2iπ)2

∫
Γ1

∫
Γ2

( D(s1, s2)Rs1+s2

(s1 + s2)k(s1s2)l+1

)
ds2ds2,

where

Γ1 = {|s1| = r : r > 0} and Γ2 = {|s1| = 2r : r > 0}.

If we choose s1 = s and s2 = λs, and Γ3 is the circle |λ| = 2, then J0 becomes

J0 =
1

(2iπ)2

∫
Γ1

∫
Γ3

( D(s, sλ)Rs(1+λ)

(1 + λ)kλl+1s2l+k+1

)
dsdλ.

For a fixed λ the integrand has a pole at s = 0 of order 2l + k + 1. Recalling the formula

Ress=0

(D(s, λs)Rs(1+λ)

s2l+k+1

)
=

1

(2l + k)!

(∂2l+k

∂s

)
s=0

(D(s, λs)Rs(1+λ)),

we get a main term

2iπD(0, 0)(logR)k+2l

(k + 2l)!
.
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By the well-known Cauchy estimate, we have

|f (j)(z0)| ≤ max
|z−z0|=η

|f(z)| j!
ηj
,

where f (j) is the j-th derivative of f , and f analytic on |z − z0| ≤ η.

Choosing z0 on the right of L, and

η =
1

C logU log T
,

for T = |s1|+ |s2|+ 3 we get that the partial derivatives of D(s1, s2) satisfies (2.25). In fact we

have

∂m

∂ms2

∂j

∂js2

D(s1, s2) ≤ j!m!(C logU log T )j+m max
|s′1−s1|≤η
|s′2−s2|≤η

|D(s1, s2)| (2.29)

� exp(CMU δ1+δ2 log logU). (2.30)

Hence

J0 =
D(0, 0)(logR)k+2l

2iπ(k + 2l)!

∫
Γ3

(1 + λ)2l

λl+1
dλ+O((logU)k+l−1(log logU)C).

By Newton’s formula we have∫
Γ3

(1 + λ)2l

λl+1
dλ = Resλ=0

(1 + λ)2l

λl+1
=

(
2l

l

)
.

Finally we can write

J0 =

(
2l

l

)
D(0, 0)(logR)k+2l

2iπ(k + 2l)!
+O((logU)k+l−1(log logU)C). (2.31)

Now to evaluate the integral J3, we should calculate the residue at s1 = −s2 of order k. By

the residue formula we have

Ress1=−s2

( D(s1, s2)Rs1+s2

(s1 + s2)k(s1s2)l+1

)
= lim

s1→−s2

1

(k − 1)!

∂k−1

∂k−1s1

D(s1, s2)Rs1+s2

(s1s2)l+1
.

Then by Leibniz rule we get

lim
s1→−s2

∂k−1

∂k−1s1

D(s1, s2)Rs1+s2

(s1s2)l+1
=

k−1∑
i=0

(logR)k−1−iBi(s2),
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where

Bi(s2) =

(
k − 1

i

) i∑
j=0

(
i

j

)
∂i−j

∂i−js1

D(s1, s2)
∣∣∣
s1=−s2

(−1)j(l + 1)...(l + j)

(−1)l+j+1s2l+j+2
2

.

Hence we can finally write

Ress1=−s2

( D(s1, s2)Rs1+s2

(s1 + s2)k(s1s2)l+1

)
=

1

(k − 1)!

k−1∑
i=0

(logR)k−1−iBi(s2).

Summing up we get

J3 =
1

2iπ(k − 1)!

k−1∑
i=0

(logR)k−1−i
∫
L2

Bi(s2)ds2.

Using again the Cauchy estimate and arguing analogously we obtain the estimaate

Bi(s2)� exp(CMU δ2 log logU)
log(|t2|+ 3)4M

|t2|4k+2 max(1, |t2|i)
,

which holds for s2 on the right of L. Now we can finally say that the contribution from J3 in

M is in fact an error term. For J1, J2 and J4 we repeat the same argument in (29)− (31), and

this completes the proof of the Proposition 2.4.12.

Proof. (of the Proposition 2.4.13) The proof is very similar to the one we used for proving the

Proposition 2.4.12; we just need to translate k in k − 1 and l in l + 1. Furthermore, instead of

G(s1, s2) we use

G∗(s1, s2) =
∏

p prime

(
1− 1

p1+s1+s2

)k−1(
1− 1

p1+s1

)−(k−1)(
1− 1

p1+s2

)−(k−1)

(
1− ρ(p)− 1

p− 1

( 1

ps1+1
+

1

ps2+1
− 1

ps1+s2+1

))
.

Remarking that

G∗(0, 0) = G(0, 0),

and using the previous propositions, by the Eliott-Halberstam conjecture, Goldston Pintz

and Yildirim proved the following theorem.



Chapter 2. The work of Goldston, Pintz and Yildirim 47

Theorem 2.4.16. Assume the primes have a level of distribution θ ≥ 1/2. Then there exists

an explicit constant C(θ), such that any admissible k−tuple with k ≥ C(θ) contains at least

two primes infinitely often.

Moreover, if θ > 20/21, then Theorem 2.4.16 holds for k ≥ 7, and the 7-tuple (n, n+ 2, n+

6, n + 8, n + 12, n + 18, n + 20) is admissible. Then the following corollary is an immediate

consequence of the previous theorem.

Corollary 2.4.17. The Elliott-Halberstam conjecture implies that

lim
n→∞

inf(pn+1 − pn) ≤ 20.

Proof. (of Theorem 2.4.16)

From Proposition 2.4.12, we get∑
n≤x

ΛR(n;H, l)2 ∼ 1

(k + 2l)!

(
2l

l

)
G(H)x(logR)k+2l,

as x→∞, and for all positive ε, hi ∈ H, and R� x
θ
2
−ε.

We also have from Proposition 2.4.13 that

∑
n≤x

ΛR(n;H, l)2θ(n+ hi) ∼
1

(k + 2l + 1)!

(
2l + 2

l + 1

)
G(H)x(logR)k+2l+1,

as x→∞. Choosing R = x
θ
2
−ε, we obtain for S defined in (2.6), that

S ∼ k

(k + 2l + 1)!

(
2l + 2

l + 1

)
G(H)x(logR)k+2l+1 − log 3x

1

(k + 2l)!

(
2l

l

)
G(H)x(logR)k+2l,

as x→∞. So we can write that

S ∼
( 2k

k + 2l + 1

2l + 1

l + 1
logR− log 3x

) 1

(k + 2l)!

(
2l

l

)
G(H)x(logR)k+2l,

as x→∞.

As we mentioned before, if S > 0 then there exists n ∈ [x+ 1, 2x] such that at least two of

the integers n+ h1, . . . , n+ hk will be primes. This follows from the condition

2k

k + 2l + 1

2l + 1

l + 1
θ > 1.
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Since for any θ > 1/2 and k, l→∞ with l = o(k), we have that

2k

k + 2l + 1

2l + 1

l + 1
θ → 2θ > 1

And this proves Theorem 2.4.16.

For the Corollary it is sufficient to take l = 1, k = 7 and θ = 20/21 to get that

2k

k + 2l + 1

2l + 1

l + 1
θ > 1.

Using the previous results we prove the following theorem.

Theorem 2.4.18. Letting

∆ν = lim
n→∞

inf
pn+ν − pn

log pn
,

we have

∆ν = max(ν − 2θ, 0),

where θ is the level of distribution of primes.

We will need a result of Gallagher [18] (for a simpler proof see also [12]).

Lemma 2.4.19. For h −→∞, we have

∑
1≤h1,...hk≤h

distinct

G(Hk) ∼ hk.

Proof. (Of Theorem 2.4.18)

We use the same idea already applied in (2.4.16), we just modify the sum S by considering

S =
2x∑

n=x+1

( k∑
i=1

θ(n+ hi)− ν log 3x
)

Λ(n;H, l)2,

where υ is positive. From Proposition 2.4.13 we have if h0 is not in Hk that

∑
n≤x

ΛR(n;Hk, l)
2υ(n+ h0) ∼ 1

(k + 2l)!

(
2l

l

)
G(Hk ∪ {h0})x(logR)k+2l,

as x→∞.
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Choosing now R = x
θ
2
−ε, we get

S ∼
∑

1≤h1,...hk≤h
distinct

( k

(k + 2l + 1)!

(
2l + 2

l + 1

)
G(Hk)x(logR)k+2l+1

+
∑

1≤h0≤h
h0≤h,1≤i≤k

1

(k + 2l)!

(
2l

l

)
G(Hk ∪ {h0})x(logR)k+2l

−ν log 3x
1

(k + 2l)!

(
2l

l

)
G(Hk)x(logR)k+2l

)
,

as x→∞. Assuming

h >
(
ν − 2k

k + 2l + 1

2l + 1

l + 1

(θ
2
− ε
))

log x,

we obtain

S ∼
( 2k

k + 2l + 1

2l + 1

l + 1
logR + h− ν log 3x

) 1

(k + 2l)!

(
2l

l

)
xhk(logR)k+2l,

as x → ∞. Hence, we have at least ν + 1 primes in the interval (n, n + h], for N < n ≤ 2N .

Letting k be large and choosing l = [
√
k/2] we get

h >
(
ν − 2θ + 4ε+O

( 1√
k

))
log x.

This proves Theorem 2.4.18.

By the Bombieri-Vinogradov Theorem we have θ = 1/2; so the following corollary is a trivial

consequence of the previous theorem.

Corollary 2.4.20. We have

∆1 = lim
n→∞

inf
pn+1 − pn

log pn
= 0.





Chapter 3

Higher dimensional analysis

3.1 The basic setting

Our aim in this section is to present the Maynard’s work on the bounded gaps between primes

[13], namely the following theorem

Theorem 3.1.1. We have

lim inf
n→∞

(pn+1 − pn) ≤ 600.

Assuming the Elliot-Halberstam conjecture we will prove the following result

Theorem 3.1.2. Assume that the primes have a level of distribution θ < 1. then

lim inf
n→∞

(pn+1 − pn) ≤ 12,

lim inf
n→∞

(pn+2 − pn) ≤ 600.

Definitions and notations

In the following, we will perform many multi-dimensional summations, so in order to simplify

the notations, we denote ∑
a1≥1

∑
a2≥1

· · ·
∑
ak≥1

by
∑

a1,...,ak

,

and ∑
a1≥1
a1|b1

∑
a2≥1
a2|b2

· · ·
∑
ak≥1
ak|bk

by
∑

a1,...,ak
ai|bi

.
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For the one dimensional sums we will use the usual notation
∑

m|n λ(m) to denote the sum

of the values of λ in all the divisors of n. But for the multi-dimensional sums, we will use∑
d1,...,dk
ai|di

λd1,....dk to denote the restriction of
∑

d1,...,dk
λd1,....dk to di divisible by ai. We will also

denote by

• Rk is the simplex {(x1, . . . , xk)} ∈ [0, 1]k :
∑k

i=1 xi ≤ 1}.

• Sk is the set of real valued Riemann integrable functions supported on Rk.

• αa1,...,ak is the real sequence indexed by (a1, . . . , ak) ∈ Zk≥0, where Z≥0 is the set of positive

integers.

For an admissible k-tuple H = {h1, . . . , hk}, we define the sum

S(x, ρ) =
∑

x≤n<2x

( k∑
i=1

χ(n+ hi)− ρ
)
W ′n, (3.1)

where ρ >. Here we consider the characteristic function of the primes

χ(n) =

{
1 if n prime
0 otherwise .

The key idea in Maynard’s improvement is to consider a multi-dimensional weight by taking

W ′n =
( ∑
d1,...,dk
di|n+hi

λd1,...,dk

)2

,

where (di, dj) = 1 for i 6= j.

We take D =
∏

p≤D0
p, where D0 = log log log x, and by the Prime Number Theorem we

have D � (log log x)2. Recall that the role of D is eliminating the contribution coming from the

primes less than D0, we remark that the optimal choice of D0 is not important in our context.

3.2 Maynard’s combinatorial approach

In the rest of the thesis, we assume that

d ≤ R, (d,D) = 1, and d square-free, (3.2)

where, (d1, . . . , dk) is the support of λd1,...,dk , and d =
∏k

i di.
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We remark that, if S(x, ρ) > 0, then by the positivity of W ′n, we have that there exists at

least one element n0 ∈ [x, 2x[ such that
∑k

i=1 χ(n0 + hi) > ρ, that implies that, at least bρ+ 1c

of the n0 + hi are primes, where 1 ≤ i ≤ k. If that’s true for any large x, then there exists

infinitely many integers n for which at least bρ+ 1c of the n+ hi are primes, where 1 ≤ i ≤ k.

Taking 0 ≤ h1 ≤ h2 ≤ · · · ≤ hk, we obtain lim infn→∞ pn+1 − pn ≤ hk − h1.

In the same fashion as in the GPY method, we write

S(x, ρ) = S2 − ρS1,

where

S1 =
∑

x<n≤2x
n≡m (mod D)

W ′n, (3.3)

and

S2 =
∑

x<n≤2x
n≡m (mod D)

( k∑
i=1

χ(n+ hi)
)
W′n. (3.4)

Maynard proved the following proposition on estimating S1 and S2.

Proposition 3.2.1. Assume that the primes have a level of distribution θ > 0, and let R =

xθ/2−δ for a fixed δ > 0. Then

λd1,...,dk =
( k∏
i=1

µ(di)di

) ∑
r1,...,rk
di|ri

(ri,D)=1

µ
(∏k

i=1 ri

)2

∏k
i=1 φ(ri)

F
( log r1

logR
, . . . ,

log rk
logR

)
,

whenever (
∏k

i=1 di, D) = 1, and λd1,...,dk = 0 otherwise, where F is a fixed smooth function.

Moreover, if F is supported on Rk, then we have

S1 =
(1 + o(1))φ(D)kx(logR)k

Dk+1 log x
Ik(F ),

S2 =
(1 + o(1))φ(D)kx(logR)k+1

Dk+1

k∑
m=1

J
(m)
k (F ),

as x→∞, where Ik(F ) 6= 0, J
(m)
k (F ) 6= 0, and

Ik(F ) =

∫ 1

0

. . .

∫ 1

0

F (t1, . . . , tk)
2dt1 . . . dtk,

J
(m)
k (F ) =

∫ 1

0

. . .

∫ 1

0

(∫ 1

0

F (t1, . . . , tk)dtm

)2

dt1 . . . dtm−1dtm+1dtk,
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We will start by proving the following lemma, as a first step toward proving the Proposition

3.2.1.

Lemma 3.2.2. Let S1 be as in 3.2.1, and assuming that λd1,...,dk is a sequence of real numbers

supported on (d1, . . . , dk) satisfying the conditions in 3.2. We have

S1 =
x

D

∑
d1,...,dk
e1,...,ek

(ei,di)=1∀i 6=j

λd1,...,dkλe1,...,ek∏k
i=1[di, ei]

+O
(
λ2

maxR
2(logR)2k

)
,

where λmax = supd1,...,dk |λd1,...,dk |.

Proof. We have

S1 =
∑

x≤n<2x
n≡m (mod D)

 ∑
di|n+hi

λd1,...,dk

2

=
∑

d1,...,dk
e1,...,ek

λd1,...,dkλe1,...,ek
∑

x≤n<2x
n≡m (mod D)

[di,ei]|n+hi

1.

If D, [d1, e1], . . . , [di, ei] are pairwise coprime, then using the Chinese Remainder Theorem, we

can write the sum over a residue class modulo D
∏2

i=1[di, ei]. From the conditions (di, dj) = 1

and (D, di) = 1 for all i and j, we conclude that (D, [di, ei]) = 1. It remains the case where

([di, ei], [dj, ej]) > 1 for some 1 ≤ i, j ≤ k. Again from the condition (di, dj) = 1, that is satisfied

if only there exist a prime p dividing di and ej for 1 ≤ i, j ≤ k. But in this case we will have

p|n+ hi − n+ hj, that implies p|hi − hj. If we choose D0 > max |hi − hj|, this will contradict

the fact that (D, di) = 1, and that justifies our choice of D0 = log log log x for x sufficiently

large. Hence we have ∑
x≤n<2x

n≡m (mod D)
[di,ei]|n+hi

1 =
x

D
∏2

i=1[di, ei]
+O(1).

We recall that λd1,...,dk is supported on the di’s such that (di, dj) = 1 and (D, di) = 1 for all i

and j. Hence, we have

S1 =
∑

d1,...,dk
e1,...,ek

(di,ei)=1∀i 6=j

λd1,...,dkλe1,...,ek
x

D
∏k

i=1[di, ei]
+O

( ∑
d1,...,dk
e1,...,ek

(di,ei)=1∀i 6=j

|λd1,...,dkλe1,...,ek |
)
.

It is easy to see that

O
( ∑

d1,...,dk
e1,...,ek

(di,ei)=1∀i 6=j

|λd1,...,dkλe1,...,ek |
)
� λ2

max

(∑
n<R

τk(n)
)2

,
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where τk(n) is the number of ways expressing n as a product of k factors, and we have the

following lemma.

Lemma 3.2.3. We have ∑
n<R

τk(n)� R(logR)k−1,

as R→∞

Proof. We will show the result by induction. We see that the result is trivial for k = 1, then

assuming the estimate for k − 1 we prove the estimate for k. We have

τk(n) =
∑
d|n

τk − 1(n/d).

Hence

∑
n<R

τk(n) =
∑
n<R

∑
d|n

τk−1(n/d) ≤
∑
d<R

∑
m<R/d

τk−1(m)

�
∑
d≤R

R

d
log
(R
d

)k−2

� R(logR)k−2
∑
d≤R

1

d
� R(logR)k−1

For our purpose, it will be sufficient to take

∑
n<R

τk(n)� R(logR)k.

Hence

S1 =
x

D

∑
d1,...,dk
e1,...,ek

(ei,di)=1∀i 6=j

λd1,...,dkλe1,...,ek∏k
i=1[di, ei]

+O
(
λ2

maxR
2(logR)2k

)
. (3.5)

Recalling that the main term in S1 depends in the condition (ei, di) = 1,∀i 6= j, we can

remove this condition multiplying by the well known discontinuous factor

∑
si,j |ei,di

µ(si,j) =

{
1 if (ei, di) = 1
0 otherwise .
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Replacing 1
[di,ei]

in (3.5) by 1
d1e1

∑
ui|di,ei φ(ui), we get a main term of the form

M1 =
x

D

∑
d1,...,dk
e1,...,ek

(ei,di)=1∀i 6=j

λd1,...,dkλe1,...,ek∏k
i=1[di, ei]

=
x

D

∑
d1,...,dk
e1,...,ek

(∏
i 6=j

∑
si,j |ei,di

µ(si,j)
) λd1,...,dkλe1,...,ek∏k

i=1 di
∏k

i=1 ei

k∏
i=1

( ∑
ui|di,ei

φ(ui)
)

=
x

D

∑
u1,...,uk

k∏
i=1

φ(ui)
(∏
i 6=j

∑
si,j

µ(si,j)
) ∑
d1,...,dk
e1,...,ek
ui|di,ei
si,j |di,ej

λd1,...,dkλe1,...,ek∏k
i=1 di

∏k
i=1 ei

Remarking that with the assumptions ui|di, ei and si,j|di, ej, we have (si,j, ui) = 1 (resp.

(si,j, uj) = 1), from (ei, ej) = 1 (resp. (di, dj) = 1), otherwise λe1,...,ek (resp. λd1,...,dk ) will

be zero. Hence, si,j is coprime to uj and ui. Furthermore, from si,j|di, ej and (di, dj)(ei, ej) = 1

for all i 6= j, we get (si,j,
∏

i′ 6=i si′,j) = 1, and (si,j,
∏

j′ 6=j si,j′) = 1. Now, we take

aj = uj
∏
i 6=j

sj,i, and bj = uj
∏
i 6=j

si,j. (3.6)

This implies that

∑
d1,...,dk
e1,...,ek
ui|di,ei
si,j |di,ej

λd1,...,dkλe1,...,ek∏k
i=1 di

∏k
i=1 ei

=
∑

d1,...,dk
ai|di

λd1,...,dk∏k
i=1 di

∑
e1,...,ek
bi|di

λe1,...,ek∏k
i=1 ei

.

Hence

M1 =
x

D

∑
u1,...,uk

k∏
i=1

φ(ui)
(∏
i 6=j

∑
si,j

µ(si,j)
) ∑
d1,...,dk
ai|di

λd1,...,dk∏k
i=1 di

∑
e1,...,ek
bi|di

λe1,...,ek∏k
i=1 ei

. (3.7)

Obviously, a meaningful simplification of M1, could be done by replacing the sums

∑
e1,...,ek
bi|di

λe1,...,ek∏k
i=1 ei

, and
∑

d1,...,dk
ai|di

λd1,...,dk∏k
i=1 di

,

by a quantity satisfying the conditions (3.2).

In order to do that we will need the following lemma, which can be seen as a multi-

dimensional Möbius inversion formula.
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Lemma 3.2.4. Let βd1,...,dk and αa1,...,ak be two sequences of real numbers supported on a finite

number of k-tuples of integers (d1, . . . , dk) and (a1, . . . , ak). If

αa1,...,ak =
∑

d1,...,dk
ai|di

βd1,...,dk ,

then

βd1,...,dk =
∑

a1,...,ak
di|ai

k∏
i=1

µ(
di
ai

)αa1,...,ak ,

Proof. We have

∑
a1,...,ak
di|ai

k∏
i=1

µ(
ai
di

)αa1,...,ak =
∑

a1,...,ak
di|ai

k∏
i=1

µ(
ai
di

)
∑
c1,...,ck
ci:ai|ci

βc1,...,ck

=
∑
c1,...,ck

βc1,...,ck
∑

a1,...,ak
di|ai|ci

k∏
i=1

µ(
ai
di

).

We put mi = ai
di

. Hence

∑
a1,...,ak
di|ai|ei

k∏
i=1

µ(
ai
di

) =
∑

m1,...,mk
mi|

ei
di

k∏
i=1

µ(mi) =
k∏
i=1

∑
m1,...,mk
mi|

ei
di

µ(mi).

We know that ∑
mi|

ei
di

µ(mi) =

{
1 if ei = di
0 otherwise .

Hence ∑
a1,...,ak
di|ai

k∏
i=1

µ(
ai
di

)αa1,...,ak = βd1,...,dk .

Corollary 3.2.5. Let βd1,...,dk and αa1,...,ak be two sequences of real numbers supported on finitely

many k-tuples of square-free integers (d1, . . . , dk) and (αa1,...,ak), then

αa1,...,ak =
k∏
i=1

µ(ai)
∑

d1,...,dk
ai|di

βd1,...,dk ,
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if and only if

βd1,...,dk =
k∏
i=1

µ(di)
∑

a1,...,ak
di|ai

αa1,...,ak .

Proof. By symmetry, it’s sufficient to prove just one implication. Assuming that

αa1,...,ak =
k∏
i=1

µ(ai)
∑

d1,...,dk
ai|di

βd1,...,dk ,

We apply the lemma 3.2.4 to βd1,...,dk and
αa1,...,ak∏k
i=1 µ(ai)

, Hence

βd1,...,dk =
∑

d1,...,dk
di|ai

k∏
i=1

µ(
ai
di

)µ(ai)
∑

a1,...,ak
di|ai

αa1,...,ak .

Using the fact that ai and di are square-free, we get µ(ai
di

)µ(ai) = µ(di). Hence

αa1,...,ak =
∑

d1,...,dk
ai|di

βd1,...,dk ,

Then

βd1,...,dk =
∑

a1,...,ak
di|ai

k∏
i=1

µ(
di
ai

)αa1,...,ak =
∑

a1,...,ak
di|ai

k∏
i=1

µ(di)αa1,...,ak .

Hence

βd1,...,dk =
k∏
i=1

µ(di)
∑

a1,...,ak
di|ai

αa1,...,ak .

Now we set

ya1,...,ak =
( k∏
i=1

µ(ai)φ(ai)
) ∑
d1,...,dk
ai|di

λd1,...,dk∏k
i=1 di

,

Then, applying the corollary 3.2.5, with

βd1,...,dk =
λd1,...,dk∏k

i=1 di
,

αa1,...,ak =
ya1,...,ak∏k
i=1 φ(ai)

,
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We obtain
λd1,...,dk∏k

i=1 di
=

k∏
i=1

µ(di)
∑
ai|di

ya1,...,ak∏k
i=1 φ(ai)

.

Hence

λd1,...,dk =
( k∏
i=1

µ(di)di

)∑
di|ai

ya1,...,ak∏k
i=1 φ(ai)

. (3.8)

Remark 3.2.6. With any choice of ya1,...,ak satisfying (3.2), we can get a suitable wight func-

tion λd1,...,dk . We comment that the conditions (3.2) will be satisfied if we take ya1,...,ak =

F ( a1
logR

, . . . , a1
logR

), where F is a smooth function supported on Rk, ai square-free for all 1 ≤ i ≤

k, and
∏k

i=1 ai < R.

The change of variable above, gives

M1 =
x

D

∑
u1,...,uk

k∏
i=1

φ(ui)
(∏
i 6=j

∑
si,j

µ(si,j)
) k∏
i=1

µ(ai)

φ(ai)

µ(bi)

φ(bi)
ya1,...,akyb1,...,bk .

Recalling that from (3.6), we have

φ(ai) = φ(ui)
∏
j 6=i

φ(si,j), µ(ai) = µ(ui)
∏
j 6=i

µ(si,j),

φ(bi) = φ(ui)
∏
j 6=i

φ(sj,i) and µ(bi) = µ(ui)
∏
j 6=i

µ(sj,i).

Then
µ(ai)

φ(ai)

µ(bi)

φ(bi)
=
µ(ui)

2
∏

j 6=i µ(sj,i)
2

φ(ui)2
∏

j 6=i φ(si,j)2

Hence

M1 =
x

D

∑
u1,...,uk

( k∏
i=1

µ(ui)
2

φ(ui)

)(∏
i 6=j

∑
si,j

µ(si,j)

φ(si,j)2

)
ya1,...,akyb1,...,bk .

Now we split the sum over si,j to a sum over si,j = 1 for all 1 ≤ i, j,≤ k, and a sum over

si,j > 1. By hypothesis, we have, if si,j = 1 then ai = bi = ui. So, we can write

M1 =
x

D

∑
u1,...,uk

( k∏
i=1

1

φ(ui)

)
y2
u1,...,uk

+ EM ,

where EM is the term coming from the contribution of si,j > 1. Remarking that the condition

si,j|di, ej implies that (si,j, D) = 1 and si,j < R, we deduce that the contribution of si,j > 1
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comes from D0 < si,j ≤ R. We have also that, from (ei, ej) = 1 and (di, dj) = 1 for all i 6= j,

we have (si,j, si,k) = 1 for all k 6= j, and (si,j, sl,j) = 1 for all l 6= i. Additionally, we have the

product over i 6= j have k2 − k elements, then factoring by
(∑

D0<si,j≤R
(si,j ,D)=1

µ(si,j)
2

φ(si,j)2

)
, we get

(∏
i 6=j

∑
si,j

µ(si,j)

φ(si,j)2

)
�
( ∑
D0<si,j≤R
(si,j ,D)=1

µ(si,j)
2

φ(si,j)2

)( ∑
1≤m≤R
(m,D)=1

µ(m)2

φ(m)2

)k2−k−1

Hence

EM � x

D

∑
u1,...,uk

( k∏
i=1

µ(ui)
2

φ(ui)

)( ∑
D0<si,j≤R
(si,j ,D)=1

µ(si,j)
2

φ(si,j)2

)( ∑
1≤m≤R
(m,D)=1

µ(m)2

φ(m)2

)k2−k−1

ya1,...,akyb1,...,bk

� y2
max

x

D

( ∑
1≤u≤R
(u,D)=1

µ(ui)
2

φ(ui)

)k( ∑
D0<si,j≤R
(si,j ,D)=1

µ(si,j)
2

φ(si,j)2
)
)( ∑

1≤m≤R
(m,D)=1

µ(m)2

φ(m)2

)k2−k−1

.

In order to continue our analysis, we will need the following lemma.

Lemma 3.2.7. Let x be a large positive real number.

1. We have ∑
n≤x

µ(n)2

φ(n)
� log x.

2. Let D be a square-free integer, then we have∑
n≤x

(n,D)=1

µ(n)2

φ(n)
� φ(D)

D
log x.

Proof. 1. For the first estimate we apply the Abel’s summation formula to
∑

n≤x
µ(n)2n
φ(n)

1
n
,

remarking that ∑
n≤x

µ(n)2

φ(n)n
≤ ζ(2).

We find ∑
n≤x

µ(n)2n

φ(n)
≤ x

∑
n≤x

µ(n)2

φ(n)n
+O

(∑
n≤x

1

φ(n)

)
� x.

Hence ∑
n≤x

µ(n)2

φ(n)
� x

x
+

∫ x

1

t× 1

t2
dt� log x.
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2. It is easy to see that ( ∑
n≤x

(n,D)=1

µ(n)2

φ(n)

)(∑
d|D

µ(d)2

φ(d)

)
≤
∑
n≤Dx

µ(n)2

φ(n)
.

For D square-free, we have

∑
d|D

µ(d)2

φ(d)
=
µ(D)2D

φ(D)
=

D

φ(D)
,

then the result follows from the first estimate.

Remarking that ∑
D0<si,j≤R
(si,j ,D)=1

µ(si,j)
2

φ(si,j)2
� 1

D0

,

and ( ∑
1≤m≤R
(m,D)=1

µ(m)2

φ(m)2

)k2−k−1

� 1.

Then, by the Lemma 3.2.7, we have

EM � y2
max

x

DD0

(φ(D)(logR)

D

)k
.

Now we can write

S1 =
x

D

∑
u1,...,uk

y2
u1,...,uk∏k
i=1 φ(ui)

+O
(
x
y2

maxφ(D)k(logR)k

Dk+1D0

)
+O

(
λ2
maxR

2(logR)2k
)
. (3.9)

It remains to compare the error terms above. Recall that

λd1,...,dk =
( k∏
i=1

µ(di)di

)∑
ai|di

ya1,...,ak∏k
i=1 φ(ai)

.

Hence

λmax ≤ ymax sup
a1,...,ak

( k∏
i=1

di

) ∑
a1,...,ak
di|ai

µ(ai)
2

φ(ai)
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≤ ymax

k∏
i=1

di
φ(di)

( ∑
n≤R/

∏
di

µ(n)2τk(n)

φ(n)

)

≤ ymax

( k∏
i=1

∑
l|di

µ(l)2

φ(l)

)( ∑
n≤R/

∏
di

µ(n)2τk(n)

φ(n)

) (
because

di
φ(di)

=
∑
l|di

µ(l)2

φ(l)

)

≤ ymax

∑
n≤R

µ(n)2τk(n)

φ(n)
≤ ymax

(∑
n≤R

µ(n)2τk(n)

φ(n)

)k
� ymax(logR)k.

Combining the two error terms in (3.9), we get

S1 =
x

D

∑
u1,...,uk

( k∏
i=1

1

φ(ui)

)
y2
u1,...,uk

+O
(
x
y2

maxφ(D)k(logR)k

Dk+1D0

+ y2
maxR

2(logR)4k
)
. (3.10)

By hypothesis, we have R = x1/2−δ and D � (log log x)2, and hence

S1 =
x

D

∑
u1,...,uk

y2
u1,...,uk∏k
i=1 φ(ui)

+O
(
x
y2

maxφ(D)k(logR)k

Dk+1D0

)
(3.11)

3.3 Sums of multiplicative functions

Now taking ya1,...,ak = F ( a1
logR

, . . . , a1
logR

), where F is a smooth function supported on Rk, ai

square-free integers for all 1 ≤ i ≤ k, and
∏k

i=1 ai < R. By the Corollary 3.2.5, F defines a

weight function λd1,...,dk satisfying the conditions (3.2). Hence, the main term in S1 becomes

M1 =
x

D

∑
u1,...,uk

F ( u1
logR

, . . . , u1
logR

)2∏k
i=1 φ(ui)

.

We have that ui is a square-free for all i, hence we can also write

M1 =
x

D

∑
u1,...,uk

k∏
i=1

µ(ui)

φ(ui)
F (

u1

logR
, . . . ,

u1

logR
)2.

Our main goal in this section is to get an accurate estimate of the main term in S1. Indeed,

using the lemma 3.2.7, we can get

M1 � y2
max

x

D

( ∑
(u≤R(u,D)=1)

µ(u)2

φ(u)

)k
� y2

max

x

D

(φ(D)(logR)

D

)k
.

We see that we gained a factor D0 comparing with the error term. Recall that our main goal

is to maximize the ratio S2

ρS1
, but unfortunately, this rough estimate will not serve our purpose.
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In order to get a better estimate, we will introduce some tools from Analytic Number Theory

[10].

Definition 3.3.1. Let f be an arithmetic function, the Dirichlet series associated to f , is

formally defined by

Df (s) =
∑
n≥1

f(n)

ns
,

where s is a complex variable. The von Mangolt function Λf associated to f is defined by the

formal equality

−
D′f (s)

Df (s)
=
∑
n≥1

Λf (n)

ns
.

Remark 3.3.2. 1. For f(n) = 1 for all n ≥ 1, we have Df (s) = ζ(s) and Λf (n) = Λ(n).

2. If f is a multiplicative function and Re(s) > 1, then Df (s) has an Euler product

Df (s) =
∏
p

(
1 +

f(p)

ps
+
f(p)

p2s
+ . . .

)
,

and

Λf (n) = Λ(n)f(n).

Lemma 3.3.3. Let f be a multiplicative function satisfying

∑
n≤x

Λf (n) = κ log x+O(1),

and ∑
n≤x

|f(n)| � (log x)k,

where κ > −1/2. Then

∑
n≤x

f(n) =
Gf

Γ(κ+ 1)
(log x)k +O(log x)|κ|−1,

where

Gf =
∏
p

(1− 1

p
)k(1 + f(p) + f(p2 + . . . ),

and Γ the Euler Gamma function.
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Proof. For the proof see [[10],Theorem 1.1]

The following corollary follows from the Lemma above.

Corollary 3.3.4. Let f be a multiplicative function satisfying the conditions in (3.3.3), and F

be a smooth function on [0, 1], with

Fmax = sup
x∈[0,1]

|F (x)|+ |F ′(x)|.

Then ∑
n≤x

f(n)F
( log n

log x

)
=
Gf logκ x

Γ(κ)

∫ 1

0

tκ−1F (t)dt+O(Fmax(log x)κ−1).

We establish the corollary using the summation formula and replacing
∑

n≤x f(n) by its

value in the Lemma (3.3.3), for the error term, we use an integration by parts with a change

of variable u = xt.

Lemma 3.3.5. Let F be a smooth function on [0, 1], with

Fmax = sup
x∈[0,1]

|F (x)|+ |F ′(x)|.

Then ∑
n≤x

(n,D)=1

µ(n)2

φ(n)
F
( log n

log x

)2
=
φ(D) log x

D

∫ 1

0

F (t)2dt+O(Fmax),

where D is a square-free integer.

Proof. We apply the corollary 3.3.4 to f(n) = µ(n)2

φ(n)
supported on n which is co-prime to D.

From the estimate (3.2.7), we have ∑
n≤x

|f(n)| � (log x),

and ∑
n≤x

Λf (n) =
∑
n≤x

Λ(n)f(n) =
∑
p≤x

log p

p− 1
� log x+O(1).

Recalling that f is supported on square-free integers, we get

Gf =
∏
p-D

(
1− 1

p

)−1
∏
p

(
1− 1

p

)
=
∏
p|D

p− 1

p
=
φ(D)

D
.
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With k applications of Lemma 3.3.5, we obtain

∑
u1,...,uk

k∏
i=1

µ(ui)

φ(ui)
F
( log u1

log x
, . . . ,

log uk
log x

)2
=
(φ(D) log x

D

)k ∫ 1

0

. . .

∫ 1

0

F (t1, . . . .tk)dt1 . . . dtk,

(3.12)

where

Fmax = sup
(t1,...,tk)∈Rk

(
|F (t1, . . . , tk)|+

k∑
i=1

|∂F
∂ti

(t1, . . . , tk)|
)
.

Remark 3.3.6. To get the estimate (3.12), Maynard used the Lemma 3 in ([7]).

Let now

yu1,...,uk = F
( log u1

log x
, . . . ,

log uk
log x

)
Recalling that

S1 =
x

D

∑
u1,...,uk

y2
u1,...,uk∏k
i=1 φ(ui)

+O
(
x
y2

maxφ(D)k(logR)k

Dk+1D0

)
by substitution, S1 becomes

S1 =
x

D

∑
u1,...,uk

(ui,uj)=1
(ui,D)=1

y2
u1,...,uk∏k
i=1 φ(ui)

+O
(
x
y2

maxφ(D)k(logR)k

Dk+1D0

)

To apply the estimate (3.12), we should definitely discard the condition (ui, uj) = 1 from

the sum in the main term above. To do so, we multiply again by the discontinuous factor∑
s′i,j |ui,ui

µ(s′i,j =

{
1 if (ui, uj) = 1
0 otherwise .

(3.13)

Then we proceed as in 3.3.5, recalling that this cancellations will cost an error term of size

F 2
maxφ(D)kx(logR)k

Dk+1D0
. Hence

S1 = x
φ(D)k(logR)k

Dk+1

∫ 1

0

. . .

∫ 1

0

F (t1, . . . .tk)
2dt1 . . . dtk +O

(F 2
maxφ(D)kx(logR)k

Dk+1D0

)
,

This completes the proof of the first part of Proposition 3.1.1.

Recalling that

S2 =
∑

x<n≤2x
n≡m (mod D)

( k∑
i=1

χ(n+ hi)
)( ∑

d1...,dk
di|n+hi

λd1,...,dk

)2

,
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we write

S2 =
k∑
l=1

S
(l)
2 ,

where

S
(l)
2 =

∑
x<n≤2x

n≡m (mod D)

χ(n+ hl)
( ∑
d1...,dk
di|n+hi

λd1,...,dk

)2

.

Hence

S
(l)
2 =

∑
d1...,dk
e1,...,ek

λd1,...,dkλe1,...,ek
∑

x<n≤2x
n≡m (mod D)

[di,ei]|n+hi

χ(n+ hl).

We can restrict again our sum to the elements ei and di such that (e1, di) = 1 and (di, D) = 1;

additionally, the condition χ(n+ hl) 6= 0 and [di, ei]|n+ hl, implies di = ei = 1

By the Chinese Remainder Theorem, we can see that the inner sum counts the primes in

the arithmetic progression m (mod D
∏k

i=1[di, ei]). That justifies that the accurate choice of

m is to take (m,D
∏k

i=1[di, ei]) = 1. Hence, we write

∑
x<n≤2x

n≡m (mod D)
[di,ei]|n+hi

χ(n+ hl) =
Xx

φ(D
∏k

i=1[di, ei])
+O(E(x,D

k∏
i=1

[di, ei])),

where

E(x,D) = sup
(m,q)=1

max
m≤D

∣∣∣ ∑
x<n≤2x

n≡m (mod D)

χ(n)− 1

φ(D)

∑
x<n≤2x

χ(n)
∣∣∣,

and

Xx =
∑

x<n≤2x

χ(n).

Hence

S
(l)
2 =

Xx

φ(D)

∑
d1...,dk
e1...,ek

(di,ei)=1
dl=el=1

λd1,...,dkλe1,...,ek∏k
i=1 φ([di, ei])

+O
( ∑
d1...,dk
e1,...,ek

λd1,...,dkλe1,...,ekE(x, q)
)
,

where q = D
∏k

i=1[di, ei].
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By hypothesis, we have that q is a square-free integer, and from
∏

i di < R, we deduce

q < DR2. Then using the fact that the number of ways of writing D
∏k

i=1[di, ei] = r, where r

is a square-free integer is bounded by τk(r). Hence

∑
d1...,dk
e1,...,ek

λd1,...,dkλe1,...,ekE(x, q)� λ2
max

∑
r<DR2

µ(r)2τk(r)E(x, r).

We prove the following proposition.

Proposition 3.3.7. Let

y(m)
r1,...,rk

=
( k∏
i=1

µ(ri)g(ri)
) ∑
si,j |di,ei

µ(si,j)
) ∑
d1...,dk
dm=1
ri|di

λ′d1,...,dk∏k
i=1 φ(di)

,

where g is the totally multiplicative function defined on primes by g(p) = p − 2. Let y
(m)
max =

supr1,...,rk |y
(m)
r1,...,rk |. Then for any fixed A > 0, we have

S
(l)
2 =

x

φ(D) log x

∑
u1...,uk
ul=1

(y
(l)
max)2∏k

i=1 g(ui)
+O

(
x
y

(l)
maxφ(D)k−2(logR)k−2

Dk−1D0

)
.

Proof. By the Prime Number Theorem in arithmetic progressions, we have E(x,D)� x
φ(D)

, but

as we mentioned in the previous chapter, assuming that the primes have a level of distribution

θ, we have
∑

q≤xθ−δ E(x,D) � x
(log x)A

, for any fixed A > 0. Thus using the Cauchy-Shwarz

inequality, and recalling that λmax � y2
max(logR)2k, we obtain

∑
d1...,dk
e1,...,ek

λd1,...,dkλe1,...,ekE(x, q) � λ2
max

∑
r<DR2

µ(r)2τk(r)E(x, r)1/2E(x, r)1/2

� λ2
max

( ∑
r<DR2

µ(r)2τk(r)
2 x

φ(r)

)1/2( ∑
r<DR2

µ(r)2E(x, r)
)1/2

� x1/2(log x)6k x1/2

(log x)1/2
� y2

max

x

(log x)A
.

Now we will study the main term in S
(l)
2 . First, we drop the condition (ei, dj) = 1 using the

same factor defined in (3.13). Recall that in the estimation of the main term in S1, we replaced



68 Mohamed Taoufiq Damir

1
[di,ei]

by 1
d1e1

∑
ui|di,ei φ(ui). Using the same technique, we define g to be an arithmetic function

satisfying

1

φ((di, ei))
=

1

φ(d1)φ(e1)

∑
ui|di,ei

g(ui).

It’s not hard to prove that for di and ei square-free, we have

φ(di)φ(ei)

φ([di, ei])
= φ((di, ei)).

By Möbius inversion formula, we find that

g((di, ei)) =
∑
r|di,ei

µ(r)φ((di, ei)/r).

Hence, g is multiplicative and g(p) = p− 2.

This gives a main term of

M
(l)
2 =

Xx

φ(D)

∑
d1...,dk
e1...,ek
dl=el=1

(∏
i 6=j

∑
si,j |di,ei

µ(si,j)
) λd1,...,dkλe1,...,ek∏k

i=1 φ(di)φ(ei)

∑
ui|di,ej

g(ui).

Using the same change of variable above

aj = uj
∏
i 6=j

sj,i, and bj = uj
∏
i 6=j

si,j

we obtain

M
(l)
2 =

Xx

φ(D)

∑
u1...,uk
ul=1

k∏
i=1

g(ui)
( ∏

i 6=j
i,j 6=l

∑
si,j |di,ei

µ(si,j)
) ∑
d1...,dk
dl=1
ai|di

λd1,...,dk∏k
i=1 φ(di)

∑
e1...,ek
el=1
bi|ei

λe1,...,ek∏k
i=1 φ(ei)

.

Now we make the following invertible change of variable

y(m)
r1,...,rk

=
( k∏
i=1

µ(ri)g(ri)
) ∑
d1...,dk
dm=1
ri|di

λ′d1,...,dk∏k
i=1 φ(di)

.

Remark 3.3.8. We denoted λd1,...,dk by λ′d1,...,dk to avoid the confusion.
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Substituting this change of variable into M
(l)
2 , we obtain

M
(l)
2 =

Xx

φ(D)

∑
u1...,uk
ul=1

k∏
i=1

µ(ui)
2

g(ui)

( ∏
i 6=j
i,j 6=l

∑
si,j |di,ei

µ(si,j)

g(si,j)2

)
y(l)
a1,...,ak

y
(l)
b1,...,bk

.

As we have seen before, splitting the sum on si,j to si,j = 1 and si,j > D0, M
(l)
2 becomes

M
(l)
2 =

Xx

φ(D)

∑
u1...,uk
ul=1

( k∏
i=1

µ(ui)
2

g(ui)

)
(ylmax)2 +O

(
x
ylmaxφ(D)k−2(logR)k−2

Dk−1D0

)
.

(Remark that here we have k− 2 instead of k− 1, this shift of exponents arises naturally from

the condition ul = 1).

Now, we can write

S
(l)
2 =

Xx

φ(D)

∑
u1...,uk
ul=1

(y
(l)
max)2∏k

i=1 g(ui)
+O

(
x
y

(l)
maxφ(D)k−2(logR)k−2

Dk−1D0

)
+O

(
x

(λ′max)2

(log x)A
)
.

Using the inversion formula, and with the same argument we used to compare λmax and ymax,

we prove that

(λ′max)2 � (y(l)
max)2(logR)2k.

Hence

S
(l)
2 =

Xx

φ(D)

∑
u1...,uk
ul=1

(y
(l)
max)2∏k

i=1 g(ui)
+O

(
x
y

(l)
maxφ(D)k−2(logR)k−2

Dk−1D0

)
.

By the Prime Number Theorem

Xx =
x

log x
+O(x/(log x)2).

The contribution of the error term of Xx in S
(l)
2 , is of size

O
(
x

(y
(l)
max)2

φ(D)(log x)2

( ∑
u<R

(u,D)=1

µ(u)2

g(u)

)k−1)
= O

(
x

(y
(l)
max)2

φ(D)(log x)2

(φ(D) log x

D

)k−1)

= O
(
x

(y
(l)
max)2φ(D)k−2(log x)k−3

Dk−2

)
.

Hence

S
(l)
2 =

x

φ(D) log x

∑
u1...,uk
ul=1

(y
(l)
max)2∏k

i=1 g(ui)
+O

(
x
y

(l)
maxφ(D)k−2(logR)k−2

Dk−1D0

)
.
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This completes the proof of Proposition 3.3.7.

The following lemma give a relation between y
(m)
r1,...,rk and yr1,...,rk .

Lemma 3.3.9. If rm = 1, then

y(m)
r1,...,rk

=
∑
am

yr1,...,rm−1,am,rm+1,...,rk

φ(am)
+O

(ymaxφ(D) logR

DD0

)
.

Proof. Recalling that

y(m)
r1,...,rk

=
( k∏
i=1

µ(ri)g(ri)
) ∑
d1...,dk
dm=1
ri|di

λ′d1,...,dk∏k
i=1 φ(di)

,

and

λd1,...,dk =
( k∏
i=1

µ(di)di

)∑
ai|di

ya1,...,ak∏k
i=1 φ(ai)

,

we obtain

y(m)
r1,...,rk

=
( k∏
i=1

µ(ri)g(ri)
)) ∑

d1...,dk
dm=1

ri|di,di|ai

k∏
i=1

µ(di)di
φ(di)

=
( k∏
i=1

µ(ri)g(ri)
)) ∑

d1...,dk
dm=1

ri|di,di|ai

∏
i 6=m

µ(ai)ai
φ(ai)

.

Considering the support of yr1,...,rk , only the terms ai, such that (ai, D) = 1 contribute to the

above sum. Then, again splitting the sum over ai to ai = ri and ai > D0rj, by Lemma ?? and

the same argument used in 3.3.7, we find

y(m)
r1,...,rk

=
( k∏
i=1

g(ri)ri
φ(ri)2

)∑
am

yr1,...,rm−1,am,rm+1,...,rk

φ(am)
+O

(ymaxφ(D) logR

DD0

)
.

But we have that g(p) = p− 2, hence g(p)p
φ(p)2

= 1 +O( 1
p2

), and for any prime p such that p|ri, we

have p > D0. Hence
k∏
i=1

g(ri)ri
φ(ri)2

= 1 +O(
1

D0

).
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Without loss of generality, we take l = k. Recalling that

yr1,...,rk = F
( log r1

log x
, . . . ,

log rk
log x

)
,

from Lemma 3.3.9, we obtain

y
(k)
r1,...,rk−1,1

=
∑
ak≤R

(ak,W
∏
ri)=1

µ(ak)
2

φ(ak)
F

(
log r1

logR
, · · · , log rk−1

logR
,
log ak
logR

)
+O

(
Fmaxφ(D) logR

DD0

)
.

We remark that the main term in y
(k)
r1,...,rk−1,1

is a sum of multiplicative functions, then

applying 3.2.5, with κ = 1, and f(n) = µ(n)2

φ(n)
, we obtain

y
(k)
r1,...,rk−1,1

=

(
k−1∏
i=1

φ(ri)

ri

)
φ(D) logR

D

∫ 1

0

F (r1, . . . , rk−1, t)dt+O

(
Fmaxφ(D) logR

DD0

)
.

Using again

ymax �
φ(D)Fmax logR

D
, (3.14)

we get

S=
2

x

φ(W ) log x

∑
r1,...,rk−1

(ri,rj)=1∀i,j
(ri,D)=1∀i

(
k−1∏
i=1

µ(ri)
2

g(ri)

)
(y

(k)
r1,...,rk−1,1

)2 +O

(
x

(F 2
maxφ(D)k(logR)k

Dk+1D0

)
.

We drop the condition (ri, rj) = 1 using the same argument we used to find (3.7).

Hence

S2 =
x

φ(W ) log x

∑
r1,...,rk−1

(ri,D)=1∀i

(
k−1∏
i=1

µ(ri)
2

g(ri)

)
(y

(k)
r1,...,rk−1,1

)2 +O

(
x

(F 2
maxφ(D)k(logR)k

Dk+1D0

)
.

Then the result follows by k − 1 application of 3.2.5, with κ = 1, and f(n) = µ(n)2φ(n)2

g(n)n2 , if

(n,D
∏
ri) = 1, 0 otherwise.

Remark 3.3.10. Let q be a real quadratic form, i.e., q—is a homogeneous polynomial of degree

2 in k variables with coefficients in R. Hence we can write

q(x1, . . . , xn) =
k∑
i=1

k∑
j=1

aijxixj.
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It is well known that, we can write q(x1, . . . , xn) = vtMv, where v = (x1, . . . , vk) and M =

(aij)1≤i,j≤k a symmetric matrix. The theory of quadratic forms tells us that any real quadratic

form over a field of characteristic different than 2 is diagonalizable, that means that we can

write q in the following form

q(y1, . . . , yk) = b1y
2
1 + b2y

2
2 + . . .+ bky

2
k.

Indeed, we can see S1 and S2 as quadratic forms in λd1,...,dk , and Proposition 3.2.1 gave the

diagonal form of S1 and S2. The same concept applies to the sums in the GPY method. This

serve our purpose, which is maximizing the ratio of S1 and S2 to get a positive S, because the

diagonal form is easier to manipulate and it’s a sum of positive terms.

3.4 An optimization problem

We recall that if we show that S(x, ρ) = S2 − ρS1 > 0, then there exist infinitely many n such

that at least bρ+ 1c of the n+ hi are all prime, for 1 ≤ i ≤ k. We define

Mk = sup
F∈Sk

∑k
m=1 J

m
k (F )

Ik(F )
, (3.15)

where Jmk and Ik(F ) as in 3.2.1 and

rk = dθMk

2
e,

where θ is the level of distribution of primes. By hypothesis, there exist a function F0 such that∑k
m=1 J

m
k (F0) > (Mk − 2δ)Ik(F0), for a small δ > 0. Hence, from Proposition 3.2.1, and taking

R = xθ/2−δ, we get

S(x, ρ) = x
φ(D)k(logR)k

Dk+1

( logR

log x

k∑
m=1

Jmk (F0)− ρIk(F0) + o(1)
)

≥ x
φ(D)k(logR)kIk(F0)

Dk+1

(
(θ/2− δ)(Mk − δ) + o(1)

)
,

as x→∞.

We see that to prove that S(x, ρ) > 0. Indeed if we take ρ = θMk/2 − ε, and choosing δ

such that 1 + ε/2δ > Mk, we will get the desired result.
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That means that, to prove the unconditional bounded gap between primes (taking θ = 1/2)

it’s enough to prove that Mk > 4, and assuming Elliott-Halberstam conjecture we need just

Mk > 2. With this, our problem turns out to be a pure optimization problem.

3.4.1 Optimizing the ratio of two quadratic forms

We can see easily that
∑k

m=1 J
m
k (F ) and Ik(F ) are symmetric (i.e., if any of the variables are

interchanged the value remains the same), then we can find some symmetric function Fmax

defined on Rk, such that

Mk = sup
F∈Sk

∑k
m=1 J

m
k (Fmax)

Ik(Fmax)

.

We have that if Fmax is a symmetric and continuous function on a compact, then we can

approximate it with a symmetric polynomial P . Such polynomials are polynomial expressions

in the jth power-sum polynomials

Pj =
k∑
i=1

tji .

Indeed Goldston, Pintz, and Yildirim argument is equivalent to choose F = P1 in the actual

setting. With a basic integral calculation, we can prove that this choice we cannot get Mk > 4.

The key idea in Maynard’s lower bound of Mk, is to consider symmetric polynomials in P1 and

P2. In particular he focused focused on the polynomials of the form (1−P1)aP b
2 . The following

lemmas give formulas to calculate the integrals above.

Lemma 3.4.2. We have∫
Rk

(
1−

k∑
i=1

ti

)a k∏
i=1

tbii dt1 . . . dtk =
a!
∏k

i=1 bi!

(k + a+
∑k

i=1 bi)!
,

where a and bi for 1 ≤ i ≤ k are positive integers.

Proof. We consider the following integral∫ 1−
∑k

2 ti

0

(
1−

k∑
i=1

ti

)a k∏
i=1

tbii dt1.

Then, we insert a change of variables u = t1
1−

∑k
i=2 ti

. Hence, using the beta function integral

(i.e.
∫ 1

0
ta(1− t)b = a!b!

(a+b+1)!
) we find∫ 1−

∑k
2 ti

0

(
1−

k∑
i=1

ti

)a k∏
i=1

tbii dt1 =
k∏
i=2

tbii

(
1−

k∑
i=2

ti

)a+b1+1 ∫ 1

0

(1− u)aub1du
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=
a!b1!

(a+ b1 + 1)!

k∏
i=2

tbii

(
1−

k∑
i=2

ti

)a+b1+1

.

And the result follows by induction.

Lemma 3.4.3. Let Pj denotes the jth symmetric power polynomial in t1, . . . , tk, then

∫
Rk

(1− P1)aP b
2dt1 . . . dtk =

a!

k + a+ 2b!

∑
b1+...+bk=b

b!

b1! . . . bk!

k∏
i=1

(2bi)!.

Proof. By the multinomial theorem,

P b
2 =

∑
b1+...+bk=b

b!

b1! . . . bk!

k∏
i=1

t2bi .

Using Lemma 3.4.2, we have∫
Rk

(1− P1)aP b
2dt1 . . . dtk =

∫
Rk

(1− P1)a
∑

b1+...+bk=b

b!

b1! . . . bk!

k∏
i=1

t2bidt1 . . . dtk

=
∑

b1+...+bk=b

b!

b1! . . . bk!

∫
Rk

(1− P1)a
k∏
i=1

t2bidt1 . . . dtk

= a!
∑

b1+...+bk=b

b!

b1! . . . bk!

∏k
i=1(2bi)!

(k + a+
∑k

i=1 2bi)!
.

Taking

F =
k∑
i=1

aibi(1− P1)αiP βi
2 ,

we find

Ik(F ) =
k∑

i,j=1

aibi

∫
Rk

(1− P1)αi+αjP
βi+βj
2 .

Then we apply the previous lemma. For Jmk (F ) we apply 3.4.2.

Indeed we expressed Jmk (F ) and Ik(F ) as positive definite quadratic forms. Hence, we can

write

Jmk (F ) = vTM
(m)
2 v , and Ik(F ) = vTM1v,



Chapter 3. Higher dimensional analysis 75

where M1 and M
(m)
2 are symmetric positive definite matrices. To get a lower bound for Mk,

we should maximize the ratios
vTM

(m)
2

vTM1v
. We recall the definition of the norm of a matrix M

‖M‖ = sup
‖v‖=1

‖Mv‖.

From linear Algebra, we can write

M = ADBT ,

where D = diag(λ1, . . . , λk), and A, D are two orthonormal matrices (i.e., ‖A‖ = ‖B‖ = 1).

Taking v = (v1, . . . , vk), we get

‖M‖ = sup
‖v‖=1

‖Dv‖.

By the usual inner product, we have that

‖Dv‖2 =
k∑
i=1

λ2
i v

2
i .

We want to find sup ‖Dv‖, under the constraint
∑

i v
2 = 1. This holds, when λl = max |λi|,

vl = 1, and vi = 0 for i 6= l. Hence

‖M‖ = λmax.

By hypothesis, we have that M1 is a symmetric positive definite matrix, so M1 defines an inner

product

< a, b >M1= aTM1b.

Using this product, we find

‖M−1
1 (M

(m)
2 )v‖ = vTM1M

−1
1 (M

(m)
2 )v = vT (M

(m)
2 )v.

Hence, vT (M
(m)
2 )v is maximal when v is the eigenvector corresponding the maximal eigenvalue

of M−1
1 (M

(m)
2 ).

Theorem 3.4.4. We have

lim inf
n→∞

pn+1 − pn = 600

Proof. Taking F to be a linear combination of symmetric polynomials in the form (1−P1)aP b
2 .

To work in a finite dimensional vector space, we impose a bound on a and b. We let a+2b ≤ 11,
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so finding F is equivalent to work in a vector space of dimension 42 spanned by (1 − P1)aP b
2 .

we use the integration formulas in 3.4.2 to calculate M1 and M
(m)
2 , and then we calculate the

maximal eigenvalue λ of M−1
1 M

(m)
2 . This process is feasible by computer. indeed Maynard was

able to get that for k = 105 and a+ 2b ≤ 11

M105 ≥ 4.0020679 > 4

. To complete the proof, we should find a 105-tuple. By an exhaustive search we can prove

that the minimal diameter of an admissible 105-tuple is 600, explicitly the following 105-tuple

([13]) H = {0, 10, 12, 24, 28, 30, 34, 42, 48, 52, 54, 64, 70, 72, 78, 82, 90, 94, 100, 112, 114,

118, 120, 124, 132, 138, 148, 154, 168, 174, 178, 180, 184, 190, 192, 202, 204, 208, 220,

222, 232, 234, 250, 252, 258, 262, 264, 268, 280, 288, 294, 300, 310, 322, 324, 328,

330, 334, 342, 352, 358, 360, 364, 372, 378, 384, 390, 394, 400, 402, 408, 412, 418, 420,

430, 432, 442, 444, 450, 454, 462, 468, 472, 478, 484, 490, 492, 498, 504, 510, 528, 532,

534, 538, 544, 558, 562, 570, 574, 580, 582, 588, 594, 598, 600}, is what we want to prove.

Theorem 3.4.5. Assuming the Elliott-Halberstam conjecture, we have

lim inf
n→∞

pn+1 − pn = 12.

Proof. Taking k = 5, and

F = (1− P1)P2 + 7/10(1− P1)2 +
1

14
P2 − 3/14(1− P1)

Maynard showed that ∑k
m=1 J

m
k (F )

Ik(F )
=

1417255

708216
= 2.00116 > 2.

The minimal 5-tuple is {0, 2, 6, 8, 12}.

We saw that to get the bounded gap between primes, Maynard translated the problem to

an optimization problem, and he used an optimization method based on basic linear Algebra,

so it was believed that the bound in Theorem 3.1.1 could be improved combining more so-

phisticated tools from Optimization Theory and Analytic Number Theory. Few months after
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Maynard’s breakthrough, Tao administered an on-line collaboration project called Polymath8b

[?] to improve Maynard’s result, and they succeeded to prove that

lim inf
n→∞

pn+1 − pn = 246,

and assuming Elliott-Halberstam conjecture, they showed that

lim inf
n→∞

pn+1 − pn = 6.

We will not prove this results here, but we will present an upper bound for Mk proved by

Polymath8b.

Proposition 3.4.6. Let Mk be as defined in 3.15, we have

Mk ≤
k log k

k − 1

Proof. By the Cauchy-Schwarz inequality we have(∫ 1−t1−···−tk−1

tk=0

F (t1, . . . , tk)dtk

)2

≤
∫ 1−t1−...−tk−1

tk=0

dtk
1− t1 − . . .− tk−1 + (k − 1)tk

×
∫ 1−t1−···−tk−1

tk=0

F (t1, . . . , tk)
2(1− tk − . . .− tk−1 + (k − 1)tk)dtk

Let u = C + (k − 1)t we have∫ C

0

dt

C + (k − 1)t
=

1

k − 1

∫ kC

C

du

u
=

log k

k − 1
.

Taking C = 1− t1 − . . .− tk, t = tk, and , we find by induction that

k∑
m=1

Jkm(F ) ≤ log k

k − 1

∫
Rk
F (t1, . . . , tk)

2

k∑
j=1

(1− t1 − . . .− tk + ktj)dtk . . . dt1.

Recalling that on Rk, we have that
∑k

i=1 ti ≤ 1, we get

log k

k − 1

∫
Rk
F (t1, . . . , tk)

2

k∑
j=1

(1− t1 − . . .− tk + ktj)dtk . . . dt1 ≤
k log k

k − 1

∫
Rk
F (t1, . . . , tk)

2dt1 . . . dtk.

Hence

Mk ≤
k log k

k − 1
.
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This upper bound turns to be very meaningful. Maynard obtained that

M105 ≥ 4.0020679 and M5 ≥ 2.00116.

With the upper bound in 3.4.6, we find

M105 ≤ 4.698709 and M5 ≥ 2.011797.

That means that Maynard’s bounds were optimal.

Using the upper bound in 3.4.6, we get M50 ≤ 3.99, we have seen that for an unconditional

gap we need Mk to be greater than 4, that means that we still far from proving the twin prime

conjecture, even assuming the Elliot-Halberstam conjecture, we need Mk > 2, and we have

M2 = 1.3862 < 2 (remark that the only admissible 2-tuple is {0, 2}). Using Maynard’s method

its even impossible to prove unconditionally that there exist infinitely many gaps of length 240,

as we have M49 ≤ 3.97, and for k = 49, the shortest admissible k−tuple is of diameter 240. To

hope to improve Maynard’s unconditional gap using a variant of his method, one should start

from k = 51 as M50 ≤ 3097 and M51 ≤ 4.01. We have also M52 ≤ 4.02 and M53 ≤ 4.0466.

Indeed, Polymath8b proved that M53 > 4.

3.5 Conclusion

To summarize, we have seen that Maynard’s improvment of the GPY mathod was to consider

weights in a higher dimension, keeping the same basic setting on detecting the prime k-tuples,

considering a weighted sum say S, and proving that S is strictly positive. The first step in both

methods was to express S as a difference of two quadratic forms S1 and S2. The main difficulty

here lies in expressing S1 and S2 in a simple from, in other words diagonalizing the quadratic

forms S1 and S2, and this could be achieved making the accurate change of basis (variable).

Estimating sums of multiplicative functions is another difficulty that arises during the di-

agonalization process, In this context, Goldston, Pintz, and Yildirim’s favorite method was

transforming this sums to integrals using Perron’s formula, then treating this integrals using

the theory of Riemann zeta function and the Dirichlet series associated to a multiplicative func-

tion. Maynard introduced a relatively simple combinatorial argument, where he generalized a
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sort of Möbius inversion formula in a higher dimension to estimate sums of multi-dimensional

multiplicative functions. Historically speaking that was few months after Y.Zhang approach

[21] and the complicated machinery he used to get a bounded gap, so coming up with an elegant

combinatorial sieve setting that improves considerably Zhang’s bound was surprising.

We should also mention that an analytic approach to estimate the multiplicative functions

in Maynard’s work is available. Indeed, Tao introduced a multi-dimensional analytic method

in [6] based on Fourier Analysis, with this he also obtained (unpublished work) the theorem

3.1.1 with a weaker bound.

Few weeks after publishing Maynard’s paper, many results were derived from their work.

To name just few, for example, Pintz ([14]) proved that there exists a positive integer B

such that there are infinitely many arithmetic progressions of primes pn, . . . , pn+k such that

pn + B, . . . , pn+k + B are all primes. Thorner [16] Proved that, in a Galois extension K of Q,

there exists infinitely many pairs of prime ideals of the ring of integers of K whose norms are

distinct primes that differ by a positive constant B. and until writing this lines mathematical

journals still receiving applications of Maynard’s method. Unfortunately, Maynard and even

Polymath8b’s methods are inadequate to prove the twin prime conjecture, and that’s an open

problem that we leave for the reader.
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[17] K. Soundararajan, Small gaps between prime numbers: the work of Goldston-Pintz-

Yildirim, Bull. Amer. Math. Soc. 44 (2007).

[18] P. X. Gallagher, On the distribution of primes in short intervals, Mathematika 23 (1976)

4-9, Corrigendum, Mathematika 28 (1981) 86.

[19] T. Apostol, Introduction to Analytic Number Theory, Springer-Verlag 1976.

[20] Y. Motohashi, ”The twin prime conjecture”, http://www.arxiv.org/abs/1401.6614v2, 12-

16 .

[21] Y. Zhang, Bounded gaps between primes, Ann. of Math. 1121-1174 Vol 179 (2014).




	Selberg sieve
	Definitions and notations
	Numbers given by polynomial expression
	Selberg sieve
	Application : twin primes 

	The work of Goldston, Pintz and Yildirim
	Primes in tuples
	Primes in arithmetic progressions
	The work of Goldston Pintz and Yildirim
	On the weight Wn
	Outline of the GPY method
	The average of sifting functions 


	Higher dimensional analysis
	The basic setting
	Maynard's combinatorial approach
	Sums of multiplicative functions
	An optimization problem
	Optimizing the ratio of two quadratic forms

	Conclusion

	References

