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Chapter 1

Introduction

From Fermat's work we know that any prime p ≡ 1 mod 4, is of the form:

p = a2 + b2. (1.1)

Fouvry and Iwaniec proved that there are in�nitely many primes of the form p = a2+
(p′)2 where p′ is a prime number. Moreover they found an asymptotic distribution
for prime numbers of this kind. In particular they proved the following theorem:

Theorem 1.0.1. Let λl be complex numbers with |λl| ≤ 1 then:∑
l2+m2≤x

Λ(l2 +m2)λl =
∑

l2+m2≤x

ψ(l)λl +O(x(log x)−A) (1.2)

where Λ is the von Mangoldt function and:

ψ(l) =
∏

(p,l)=1

(
1− χ(p)

p− 1

)
(1.3)

where χ is the non trivial character modulus 4, A is any positive number and the

implied constant depends only on A.

As an application of this theorem, if we choose λl = Λ(l)
log x , we infer:∑

l2+m2≤x

Λ(l2 +m2)Λ(l) = H
∑
l≤
√
x

γ(l)Λ(l) +O(x(log x)−A) (1.4)

where:

H =
∏
p

(
1− χ(p)

p− 1

)
, γl =

∏
p|l

(
1− χ(p)

p− 1

)−1√
x− l2. (1.5)

By summation by parts we deduce:∑
l2+m2≤x

Λ(l2 +m2)Λ(l) =
π

4
Hx+O(x(logx)−A). (1.6)
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Chapter 2

Notation

We �x the notation that will be used from now on. Let d > 1 and k, l be integers.
We de�ne:

ρk,l(d) :=
∑

ν2+l2≡0 mod d

e

(
νk

d

)
(2.1)

this function plays a fundamental role in the proof of the Main Theorem 1.0.1. so we
present some properties. First of all notice that if (d, l) = 1 we can rewrite (2.1) as:

ρk,l(d) :=
∑

(ν/l)2+1≡0 mod d

e

(
(ν/l)kl

d

)
= ρkl,1(d) (2.2)

If l and d are not coprime, let (l, d) = ab2 with a square-free. We can write d = ab2d1

and l = abl1 with (al1, d1) = 1. Suppose we have a solution to the equation ν2+l2 ≡ 0
mod d; if m ≡ ν mod d then ab | m which means that we can replace ν by abν1:

ab2d1 | (abν1)2 + (abl1)2 (2.3)

and so one obtains that ν2
1 + l21 ≡ 0 mod d1, thus (2.1) becomes:

ρk,l(d) :=
∑

abν1 mod ab2d1
ν21+121≡0 mod d1

e

(
abν1k

ab2d1

)
=

∑
ν1 mod bd1

ν21+l21≡0 mod d1

e

(
ν1k

bd1

)
. (2.4)

Now we have to distinguish two cases:

i) k 6= 0 mod b. Then (2.4) vanishes by the orthogonality of the additive char-
acters,

ii) k = bk1, then (2.4) becomes:

ρk,l(d) =
∑

ν1 mod bd1
ν21+l21≡0 mod d1

e

(
ν1k1

d1

)
= bρk1,l1(d1) = bρk1l1,1(d1) (2.5)
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CHAPTER 2. NOTATION 3

We will denote ρ0,l(d) = ρl(d) and simply ρ(d) when k = 0 and l = 1. Observe
that by the previous discussion ρl(d) = (r(d), l)ρl(d/(d, l

2)) where r(d) is the larger
square which divides d. It is interesting to study the sums of the type:∑

n≤y

µ(n)ρl(nc)

n
(2.6)

with l, c ≥ 1. To semplify we will study only the case for l = 1, then by the previous
remark we deduce from this simpler case the general one. The �rst step in order to
obtain a bound for (2.6) is to study the sums:∑

p≤y

ρ(cp) log(p)

ρ(c)p
(2.7)

Using the Siegel-Wal�tz Theorem we get the following proposition:

Proposition 2.0.2. For any c ≥ 1 there exists a costant Cc such that:∑
p≤y

ρ(cp) log(p)

ρ(c)p
= Cc + log(y) +O((log y)−A) (2.8)

for any A > 0.

Proof. If c = 1 then we know that ρ(p) = 2 if p ≡ 1 mod 4 and ρ(p) = 0 otherwise,
and the result follows by the Siegel-Wal�tz Theorem. If c > 1 it is enough to take:

Cc := C1 +
∑
p|c

ρ(pc) log(p)

ρ(c)p
− ρ(p) log(p)

p
. (2.9)

In fact we deduce

Cc + log(y) +O((log y)−A) = C1 +
∑
p|c

ρ(pc) log(p)

ρ(c)p
− ρ(p) log(p)

p
+

+ log(y) +O((log y)−A) =

=
∑
p≤y

ρ(p) log(p)

p
+O((log y)−A)+

+
∑
p|c
p≤y

ρ(pc) log(p)

ρ(c)p
− ρ(p) log(p)

p
=

=
∑
p≤y

ρ(cp) log(p)

ρ(c)p
+O((log y)−A)

(2.10)
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Let g be a multiplicative function such that:1

i) 0 ≤ g(p) < 1

ii) there exists a constant C such that for any A > 0,
∑

p≤y g(p) log(p) = C +

log(y) +O((log y)−A)

then we have the bound
∑

n≤y µ(n)g(b) � (log y)−A. By this and the previous
proposition we can deduce that:∑

n≤y

µ(n)ρ(nc)

n
� ρ(c)(log y)−A (2.11)

We will introduce the classical notation of sieve theory: let {λl}l∈N be any se-
quence of complex numbers and de�ne:

an :=
∑

l2+m2=n

λl. (2.12)

For x > 1 and for any d ≥ 1 de�ne:

Ad(x) :=
∑
n≤x

n≡0 mod d

an =
∑
n≤x

n≡0 mod d

∑
l2+m2=n

λl =
∑
l≤
√
x

λl
∑

l2+m2≡0 mod d
l2+m2≤x

1. (2.13)

It is reasonable to expect that the main term of Ad(x) is:

Md(x) =
1

d

∑
l2+m2≤x

λlρl(d) (2.14)

where ρl(d) is like in (2.1). Then we de�ne the error term Rd(x) := Ad(x)−Md(x).
To �nish one de�nes for every D > 1, R(x,D) :=

∑
d<D |Rd(x)|

1For a proof of this fact one can see [2] for the related argument



Chapter 3

The Vaughan's identity

We are interested in a sum of the type:

P (x) :=
∑
n≤x

anΛ(n) (3.1)

where an is any sequence of complex numbers. Using the following identity:

Λ(n) = −
∑
d|n

µ(d) log d (3.2)

we can rewrite P (x) as :

P (x) =
∑
d≤x

γdAd(x) (3.3)

where γd := −µ(d)log(d). Suppose that we know a reasonable approximation of Ad,
i.e. Ad(x) = Xg(d)+rd(x) where g is a multiplicative function such that 0 ≤ g(p) < 1
and g(p)� 1/p for every prime p. Suppose moreover that∑

p<y

g(p) = C + log log y +O((log y)−A) (3.4)

for any A > 0. Then we can deduce that:

P (x) = XH(1 +O((log x)−1)) +
∑
d≤x

γdrd(x) (3.5)

where H = −
∑

d µ(d)g(d) log(d). In general, we cannot control the size of sec-
ond term in (3.5) which could be larger than the main term. This problem is the
well known parity problem. To solve this problem, Fouvry and Iwaniec used the
Vaughan's identity. With this combinatorial device one exploits a bilinear form
which can be well estimated thanks to the oscillation of the Moebius function. Thus
�xing y, z < x, by Vaughan's identity we can write:

P (x) = P (z) +A(x, y; z) +B(x, y; z) (3.6)
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CHAPTER 3. THE VAUGHAN'S IDENTITY 6

where1:
A(x, y; z) :=

∑
b≤y

{
A
′
b(x)−Ab(x) log b−

∑
c≤z

Λ(c)Abc(x)
}

(3.7)

and
B(x, y; z) :=

∑
bd<x,b>y

µ(b)
( ∑
c|d,c>z

Λ(c)
)
abd (3.8)

introducing the notation which we have presented before, with some technical passage
we can infer2:

Proposition 3.0.3. Let λl be complex numbers with |λl| ≤ 1, suppose 0 < ε < 1/3
such that y, z > xε and yz < x1−ε then:∑
l2+m2≤x

Λ(l2 +m2)λl =
∑

l2+m2≤x

ψ(l)λl +B(x, y, z) +R(x, y, z) +OA(x(log x)−A)

(3.9)
with any A ≥ 2 and where B(x, y, z) is like in (3.8) and:

R(x, y, z) :=
∑
b≤y

µ(b)
{
Rb(x) log

x

b
−
∫ x

1
Rb(t)

dt

t
−
∑
c≤z

Λ(c)Rbc(x)
}
. (3.10)

1A
′
b(x) :=

∑
n≤x,n≡0 mod b an logn

2note that to prove this proposition we need the bound in 2.11 from the previous chapter



Chapter 4

The remainder term

The �rst step to conclude the proof of the Main Theorem 1.0.1. is to obtain a
good estimate of R(x, y, z) which appears in (3.10). One can easily obtain by the
de�nition of R(x, y, z) that:

|R(x, y, z)| ≤ R(x, yz) log(x) +

∫ x

1
R(t, y)

dt

t
. (4.1)

Thus if we want a good bound for R(x, y, z) we need to �nd a good bound for
R(x,D). Let's �rst see what happens if we try to estimate trivially R(x,D). By
de�nition we know that

R(x,D) :=
∑
d≤D
|Rd(x)| (4.2)

and we can trivially estimate |Rd| ≤ 4x
1
2
∑

l |λl|
ρl(d)
d , for d ≤

√
x. It follows that:

R(x,D)� x
1
2

+ε‖λ‖1 (4.3)

where ‖λ‖1 :=
∑

l |λl|. However this bound is too large, in fact if we specialize (4.3)
to our case we obtain that R(x, y, z)� x1+ε which exceeds the main term.
The right way to approach this problem is to prove the following:

Lemma 4.0.4. Let λl ∈ C be any complex numbers for 1 ≤ l ≤
√
x. Then for any

1 ≤ D ≤ x we have that:

R(x,D)� x
1
2

+εD
1
4 ‖λ‖ (4.4)

for any ε > 0. Where ‖λ‖2 :=
∑

l |λl|2 and implied constant depends only on ε.

Remark that with Lemma 4.0.4 we can choose a very large distribution D in the
setting of Proposition 3.0.3 In fact if D = x1−ε with ε > 0, an application of the
bound (4.4) gives us:

R(x,D)� x1−ε′ (4.5)

using (4.5) in (4.1) one obtains

R(x, y, z)� x1−ε′ (4.6)

as we wanted.
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CHAPTER 4. THE REMAINDER TERM 8

Before proving Lemma 4.0.4 we need another lemma which gives an estimate for
sums of the form:

Ad(f) =
∑

n≡0 mod d

anf(n) (4.7)

where f : R+ −→ R+ is a smooth function which satis�es the following conditions:

i) f(u) = 0 if u ≥ x

ii) f (j)(u)� ∆j if 1 < u < x

with x−1 ≤ ∆ ≤ 1. Notice that in the summation (4.7) we can relax the condition
n ≤ x because the size of n is controlled by the compact support of the function f .
Using Poisson's summation formulas for (4.7) we get:

Ad(f) =
1

d

∑
k

∑
l

λlρk,l(d)Fl

(
k

d

)
(4.8)

where ρk,l(d) is like in (2.1) and

Fl(z) =

∫ ∞
−∞

f(l2 + t2)e(−zt)dt (4.9)

As before we de�ne a main term and an error term as follows:

Md(f) :=
1

d

∑
l

λlρ0,l(d)Fl(0) (4.10)

with Rd(f) := Ad(f)−Md(f). With this notation we can state:

Lemma 4.0.5. Let f : R+ −→ R+ smooth which satis�es (i) and (ii) for some

x−1 ≤ ∆ ≤ 1; let λl any complex numbers for 1 ≤ l ≤
√
x. Then for any 1 ≤ D ≤ x

we have that: ∑
d≤D
|Rd(f)| � x

5
4

+ε∆D
1
2 ‖λ‖ (4.11)

for any ε > 0, the implied costant depends only on ε.

Proof. (sketch) Let's consider for any d ≤ D the remainder term:

Rd(f) =
2

d

∞∑
k=1

∑
l

λlρk,l(d)Fl

(
k

d

)
(4.12)

The basic idea of the proof is that the series in (4.12) converges rapidly and so we
can truncate it. In fact by integrating by parts Fl(z) and using the condition on the
support and on the derivates of f one infers that:

Fl

(
k

d

)
� k−2D−1, if k ≥ K = D∆x

1
2

+ε. (4.13)
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Then (4.12) becomes:

Rd(f) =
2

d

K∑
k=1

∑
l

λlρk,l(d)Fl

(
k

d

)
+O

(
‖λ‖1
d

)
. (4.14)

Using the fact that e(t) = cos(2πt)+ i sin(2πt), that f(t2 + l2) is a even function and
that the integration domain in the de�nition of Fl(z) is symmetric, we infer, after
changing the variable t = v

√
(x)/d:

Fl

(
k

d

)
= 2π

√
xk−1

∫ ∞
0

f(l2 + v2xk−2) cos

(
2π
v
√
x

d

)
dv. (4.15)

If we insert this in (4.12) we obtain:

∑
d≤D

d|Rd(f)| ≤ 4
√
x
∑
d≤D

∫ K

0

∑
v<k<K
0<l<

√
x

∣∣∣λlf(l2 +v2xk−2)ρk,l(d)dv
∣∣∣+O(D‖λ‖1) (4.16)

note that we can truncate the integral in K because for v > K we have that vxk−2 ≥
x and this implies that the inner sum vanishes by the assumption on f . Assume for
now the following lemma which we will prove in the next chapter:

Lemma 4.0.6. Let αk,l any complex number then:∑
d≤D

∣∣∣∣ ∑
0<l≤L

∑
0<k≤K

αk,lρk,l(d)

∣∣∣∣ ≤ 150(log 3D)3D
1
2 (D +KL)

1
2 ˜‖α‖ (4.17)

where ˜‖α‖
2

:=
∑

k,l |αk,l|2τ(kl)

Applying this lemma for αk,l = λlf(l2 + vxk−2) one obtains:∑
d≤D

d|Rd(f)| � ‖λ̃‖(DKx)
1
2 (D +K

√
x)

1
2 (log x)4 +O(D‖λ‖1). (4.18)

The result follows if we replace K = D∆x
1
2

+ε and if we observe that D‖λ‖1 �
D‖λ‖x

1
4 .

We are �nally ready to prove Lemma 4.0.4:

Proof. Fix y < x and consider f : R+ −→ R+ which satis�es the following condition:

i) f(u) = 1 if 0 < u ≤ x− y

ii) f(u) = 0 if u ≥ x

iii) f (j)(u)� y−j if x− y < u < x
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then by triangle inequality we infer:

|Rd(x)| ≤ |Ad(f)−Md(f)|+ |Ad(x)−Ad(f)|+ |Md(x)−Md(f)| (4.19)

For the term
∑

d≤D |Ad(f)−Md(f)| we can use Lemma 4.0.5, so now the problem is
to give a bound for the other two terms. The idea now is to use the de�nition of f : up
to y it is the characteristic function of the interval (0, x−y] so the size of both terms is
given by the terms for n > x−y: in fact one can write Ad(x) =

∑
n≡0 mod d anφ[0,x]

1

and this means that up to x− y the terms in Ad(x) and Ad(x) must be equal. Thus
we have ∑

d≤D
|Ad(x)−Ad(f)| � ‖λ‖(y

1
2 + yx−

1
4 )xε (4.20)

and the same bound holds for
∑

d≤D |Md(x)−Md(f)|. To �nish the proof it is enough
to put everything together and to choose y = D

1
4x

3
4 . In this way the contribution

of
∑

d≤D |Ad(x)−Ad(f)| and
∑

d≤D |Md(x)−Md(f)| become negligible and by the
previous Lemma 4.0.5:

R(x,D)� x
1
2

+εD
1
4 ‖λ‖ (4.21)

as we wanted.

1φ[0,x] is the characteristic function of the interval (0, x]



Chapter 5

Well-spaced points

During the proof of Lemma 4.0.5 we assumed:

Lemma 5.0.7. Let αk,l any complex number then:∑
d≤D

∣∣∣∣ ∑
0<l≤L

∑
0<k≤K

αk,lρk,l(d)

∣∣∣∣ ≤ 150(log 3D)3D
1
2 (D +KL)

1
2 ˜‖α‖ (5.1)

where ˜‖α‖
2

:=
∑

k,l |αk,l|2τ(kl)

The strategy to prove this lemma is based on the large sieve applied on the
arithmetic points of the form ν/d mod 1 where the ν runs over the roots of:

ν2 + 1 = 0 mod d. (5.2)

Fix D > 1, if we consider ν1/d1 and ν2/d2 with d1, d2 < D and ν1/d1 6= ν2/d2 we
trivially obtain: ∥∥∥∥ν1

d1
− ν2

d2

∥∥∥∥ ≥ 1

D2
. (5.3)

An apllication of the large sieve gives us:

Proposition 5.0.8. For any complex number αn we have:∑
d≤D

∑
ν2+1≡0 mod d

∣∣∣∣ ∑
n≤N

αne

(
νn

d

)∣∣∣∣2 ≤ (D2 +N)‖α‖2 (5.4)

where ‖α‖2 :=
∑

n |αn|2

For our application this is not in enough, in fact the factor D2 is too big to obtain
the bound we need.
The key point to lower the exponent of D is to observe that we can associate to each
point of this kind a primitive representation of d as sum of two square, i.e.:

d = s2 + r2, (s, r) = 1, − s < r < s (5.5)

11
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In fact if we have a primitive representation of d we can �nd a root of (5.2) by
considering the solution of the equation sν = r mod d. By this arithmetic property
we can rewrite ν

d mod 1 in a di�erent way:

ν

d
=

r

sd
− r

s
mod 1, where rr = 1 mod s. (5.6)

In this way we replace ν/d with the sum of r/s (which has denominator much
smaller then ν/d) and r/sd (which is negligible). Consider the points ν/d for which
the corresponding r has �xed sign and 8D < d ≤ 9D, where D is �xed and greater
than one, then by (5.6) and using the fact that 2

√
2
√
D < s ≤ 3

√
D, we infer:∥∥∥∥ν1

d1
− ν2

d2

∥∥∥∥ ≥ 1

36D
(5.7)

then thanks to the large sieve we obtain the following:

Lemma 5.0.9. For any complex number αn we have :

∑
8D<d≤9D

∑
ν2+1≡0 mod d

∣∣∣∣ ∑
n≤N

αne

(
νn

d

)∣∣∣∣2 ≤ 72(D +N)‖α‖2 (5.8)

Note that if we apply Lemma 5.0.9 for N = 1 and α1 = 1 we get:∑
8D<d≤9D

ρ(d) ≤ 72(D + 1) (5.9)

From the Lemma 5.0.9 and this remark we can infer the following:

Corollary 5.0.10. For any complex number αn :∑
d≤D

∑
ν2+1≡0 mod d

∣∣∣∣ ∑
n≤N

αne

(
νn

d

)∣∣∣∣ ≤ 150D
1
2 (D +N)

1
2 ‖α‖ (5.10)

Proof. First of all observe that we can split the interval [1, D] in :

[1, D] = [D,
8

9
D) ∪ [

8

9
D,

82

9
D) ∪ [

82

9
D,

83

9
D)... (5.11)

so if we use the Cauchy-Schwarz inequality for each interval, the Lemma 5.0.9, and
the remark above to count the points ν/d inside a quarter of a disk then the result
follows.

If we de�ne an :=
∑

kl=n αk,l then we obtain:∑
d≤D

∑
ν2+1≡0 mod d

∣∣∣∣ ∑
0<l≤L

∑
0<k≤K

αk,le

(
νkl

d

)∣∣∣∣ ≤ 150D
1
2 (D +KL)

1
2 ˜‖α‖. (5.12)
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We are ready to prove Lemma 5.0.7:

Proof. The �rst step is to see what happens if one adds the condition (d, l) = 1 in
(5.12), and this can be done by the Moebius inversion formula. In fact one obtains:∑
d≤D

∑
ν2+1≡0 mod d

∣∣∣∣ ∑
0<l≤L
(d,l)=1

∑
0<k≤K

αk,le

(
νkl

d

)∣∣∣∣
≤
∑
b≤D

ρ(b)
∑

d≤Db−1

∑
ν2+1≡0 mod d

∣∣∣∣ ∑
0<l≤Lb−1

∑
0<k≤K

αk,le

(
νkl

d

)∣∣∣∣
.

(5.13)

Using now (5.12) one can infer that∑
d≤D

∑
ν2+1≡0 mod d

∣∣∣∣ ∑
0<l≤L
(d,l)=1

∑
0<k≤K

αk,le

(
νkl

d

)∣∣∣∣ ≤ 150(log 3D)D
1
2 (D +KL)

1
2 ˜‖α‖

(5.14)
where the factor log 3D comes out by the bound

∑
b≤D ρ(b)b−1 which is obtained

from (5.9) by partial summation. Thanks to the property of ρk,l(d) which we have
seen in the �rst chapter ((2.1),(2.4)) we can deduce that:∑
d≤D

∣∣∣∣ ∑
0<l≤L

∑
0<k≤K

αk,lρk,l(d)

∣∣∣∣ ≤ ∑
ab2d≤D

b
∑

ν2+1≡0 mod d

∣∣∣∣ ∑
0<l≤L(ab)−1

(l,d)=1

∑
0<k≤Kb−1

αbk,able

(
νkl

d

)∣∣∣∣.
(5.15)

Applying (5.14) we infer:∑
ab2d≤D

b
∑

ν2+1≡0 mod d

∣∣∣∣ ∑
0<l≤L(ab)−1

(l,d)=1

∑
0<k≤Kb−1

αbk,able

(
νkl

d

)∣∣∣∣.
≤ 150

( ∑
ab2≤D

b

ab2

)
(log 3D)D

1
2 (D +KL)

1
2 ˜‖α‖.

(5.16)

To conclude the proof it's enough to observe that
∑

ab2≤D(ab)−1 < (log 3D)2



Chapter 6

The bilinear form

The �nal step to �nish the proof of the Main Theorem 1.0.1. is the estimation of
the bilinear form:

B(x, y; z) :=
∑

bd<x,b>y

µ(b)
( ∑
c|d,c>z

Λ(c)
)
abd. (6.1)

We want to get:
B(x, y, z)� x∆(log x)5 (6.2)

where ∆ = (log x)−A for any A > 5. The crucial part of this argument is the
oscillation of the Moebius function, which we will explain at the end of this chapter
after having presented the strategy behind this last step.
Let's start by using the triangle inequality and the fact that

∑
c|d Λ(c) = log d. We

obtain:
|B(x, y; z)| ≤ (log x)

∑
d>z

∣∣∣ ∑
y<b≤x/d

µ(b)abd

∣∣∣ (6.3)

in order to separate the variables b and d, we break the sum into shorter sum

B(M,N) :=
∑

M<m≤2M

∣∣∣ ∑
N<n≤N ′

µ(n)amn

∣∣∣ (6.4)

where N ′ := e∆N . Using these sums with M = 2jz and N = ek∆y we get:

B(x, y; z) ≤ (log x)
∑

x∆<MN<x
M≥y,N≥z

B(M,N) +O(x∆(log x)2) (6.5)

where the error term comes out by the contribution the abd's such that bd ≥ 2∆x
and e−2∆x < bd ≤ x. Now observe that we have, by the condition on M and N , at
most 2∆−1(log x)2 shorter sums B(M,N), therefore to obtain (6.2) it is enough to
prove that:

B(M,N)� ∆2x(log x)2. (6.6)

14
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By a series of technical devices, which we skip, one can show that to �nd the bound
(6.2) it is equivalent to the bound, for any j > 0:

Cc,r(M,N)� MN

(logN)j
(6.7)

for every r < ∆−2, c < ∆−4, M ≥ ∆4z, N > ∆3y, and x∆5 < MN < x, where1:

Cc,r(M,N) :=

∗∑
M<|w|2≤2M

∣∣∣ ∑
N<|z|2≤N ′

µ(r|z|2)λ(cz · w)
∣∣∣. (6.8)

We present a general result for bilinear forms on gaussian integers. Let's �rst de�ne
the setting where we are going to work. Let α, β : Z −→ C two arithmetic functions
on gaussian integers and suppose that:

i) the support of α is contained in {|z| ≤ A}

ii) the support of β is contained in the anulus {B ≤ w| ≤ 2B}

with 1 < B ≤ A, then let λ : Z −→ C and consider:

C(α, β, λ) :=
∗∑

w

∑
z

α(z)β(w)λ(z · w) (6.9)

By the assumption on α and β one can assume that the support of λ is contained in
the interval [−2AB, 2AB]. In this context one can prove the following proposition

Proposition 6.0.11. Let α, β and λ like before, let Λ > 1 such that:

AεΛ7 < B < AΛ−1 (6.10)

for some ε > 0. Then we have

C(α, β, λ)� ‖α‖‖β‖‖λ‖(AB)
1
2 Λ−

1
2 + ‖β‖‖λ‖(AB)

1
2 Λ2

( ∑
d<Λ6

d2Dd(α)

) 1
2

(6.11)

where

Dd(α) := 2πA−2
∑

z1≡z2 mod d

α(z1)α(z2) exp(−2π|z1 − z2|A−1). (6.12)

1The simbol
∑∗ means that we restrict the sum on the primitive elements
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This result for bilinear form of the form (6.9) is not enough for our aim, in fact
if one tries to trivially estimate Dd(α), one obtains by Cauchy-Schwarz:

Dd(α) ≤ 2πA−2
∑

δ mod d

( ∑
z≡δ mod d

1

) 1
2
(∑
z1≡δ
z2≡δ

|α(z1)|2|α(z2)|2
) 1

2

� A−2
∑

δ mod d

A2

d2

(∑
z≡δ
|α(z)|2

)
� ‖α‖

2

d2

(6.13)

But now if we insert this bound in (6.11) we get:

C(α, β, λ)� ‖α‖‖β‖‖λ‖(AB)
1
2 Λ8 (6.14)

Going back to our discussion, consider for example C1,1(M,N) to see why (6.14)
it is too large. One can prove that if we choose y = xθ and z = xϑ subject to
1/2 < θ < 1 and 0 < ϑ < 1− θ the hypothesis of the Proposition 6.0.11 are satis�ed
for Λ = (log x)j for any j > 0. But now if we apply (6.14) we have:

C1,1(M,N)� x(log x)8j (6.15)

which exceeds the main term in (3.10). But in our case α(z) = µ(r|z|), and we have
not used yet the oscillation of the Moebius function: this property will be crucial.
In fact one can prove an equivalent version of the Theorem of Siegel-Wal�tz for the
Gaussian integers:

Theorem 6.0.12. Let χ mod q any Dirichlet's character on Z[i] with q ∈ Z then:∑
|z|≤x

µ(z)χ(z)�j x(log(x))−j (6.16)

if one applies Theorem 6.0.12 adding the condition (z, z) | i − 1 and (z, r) = 1
with r < ∆−2, one �nd that:

Dd(µ(r| · |))� ‖µ(r| · |)‖2

(logN)−j
. (6.17)

Notice that (6.17) is not trivial if d < (logN)j . By this and the choice of Λ =
(logN)j/23, the second term in (6.11) for C(µ(r| · |, β, λ))2 becomes negligible and so
one gets:

Cc,r(M,N) ≤ MN

(logN)j
(6.18)

2β in this case the characteristic function of primitive Gaussian integers in the annulus {M <
|w|2 ≤ 2M} and λ(z · w) := λz·w
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for r < ∆−2, c < ∆−4, M ≥ ∆4z, N > ∆3y, and x∆5 < MN < x which is the
bound we needed.
As we said before, in the argument above the oscillation of the Moebius function plays
a crucial role. The technique used in [1] was the �rst prototype of a sieve which was
developed after in [2]. We have already discussed at the beginning of chapter three
the parity problem which apperas in the classical setting of sieve theory. In [2] the
parity problem is solved for sequence {an} of non-negative real numbers by adding
in the classical setting the following assumption:

B) 1. ∀x > 1, ∃x2/3 < D < x,∃0 < ε < 1
2 , ∃2 < δ(x),∆(x) < D1/2−ε such that

∀
√
D∆−1 < N < δ−1√x and ∀1 ≤ C ≤ xD−1 we have:∑

m

∣∣∣∣ ∑
N<n<2N
mn≤x

γ(C, n)µ(mn)amn

∣∣∣∣� X(log x)−222 . (6.19)

where:

γ(C, n) :=
∑

d|n,d≤C

µ(d) (6.20)

This suggests us a re�ection on the classical Selberg's example of the parity
problem. Fix C = 13, let's de�ne:

an :=
1

2
(1 + λ(n)) (6.21)

where here λ is Liouville's function. In practice an is the charateristc function of
the numbers with a even number of prime factors. This means that the Moebius
function which appears in (6.19) cannot vary so B) does not hold.

3this implies γ(1, n) = 1 for every n
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