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Chapter 1

Introduction

The girth of a graph is the length of the smallest cycle in a graph. Given a graph

G, there is an upper bound for the girth G (denoted g(G))(see [4]), as follow:

for k ≥ 3, any k − regular graph G verifies: g(G) ≤ 2 logk−1 |G|,

where |G| denotes the number of vertices of the graph. This motivates the defi-

nition of graph with large girth by Biggs [1], that is,

a family {Gi}i of k-regular graphs is of large girth if and only if there exists some

positive constant c such that for any graph in this family, we have

g(Gi) ≥ c logk−1 |Gi|.

A question might arise in mind, ”Why a graph with large girth is interesting?”.

From the point of view of combinatorics, graphs of large girth which satisfy (or

come close to) the upperbound of the girth are extremal object. From the point

of view of coding theory, for example: low-density parity-check codes (LDPC),

the graph of large girth is needed in order to get a good decoding performance.

Margulis [7] first proposed an algebraic construction of LDPC codes of unbounded

minimum distance by providing explicit families of regular graphs of large girth.

The research for constructing the large girth graphs has been conducted since

long time ago. However, for a long time, the best result was the non-constructive

result of Erdos and Sachs [1963] and its improvement by Sauer and Walther
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1. Introduction

which showed the existence of families of graphs with c = 1. The first explicit

constructions were obtained by Margulis[7], with the constant c strictly smaller

than 1.

There are some methods that we can use to construct a graph with large

girth. One of them is by using random method to obtain random graph with

large girth. In this thesis, we will only discuss about the algebraic approach,

that is, the graph construction based on quaternions and octonions algebra. The

construction based on quaternions is a result by A. Lubotzky, R. Phillips and P.

Sarnak [6], where the construction is a (p+ 1)-regular Cayley graph on the group

PGL2(q) or PSL2(q) depending on the Legendre symbol
(
p
q

)
, where p, q are prime

numbers with q > p, congruent to one modulo 4. This result then improved to

any prime numbers greater than 2 in [5]. This graph achieve c = 4
3
> 1 for the

bound on the girth.

The idea of the construction is, firstly, we construct (p+1)-regular infinite tree

in an arithmetic way using quaternion and then obtain the finite graph by taking

suitable finite quotients of this tree which do not create small cycles. The regular

infinite tree is obtained by constructing a Cayley graph with p + 1 generators.

Those p + 1 generators are the four tuples (a0, a1, a2, a3) which are the integer

solutions of the equations:

a20 + a21 + a22 + a23 = p,

whose a0 is a positive odd integer and aj even for j = 1, 2, 3 ( p ≡ 1(mod4)), or

if p ≡ 3(mod4), a0 is a positive even integer and aj odd for j = 1, 2, 3 together

with one of each conjugate pair of the tuples where a0 is zero and aj odd for

j = 1, 2, 3. These tuples are considered later on as an element of quaternion over

integer ring, which has norm p.

The set of the vertices of the Cayley graph, which is a set containing those

generators will be the set of quaternions α over integer of norm a power of p,

such that α ≡ 1(mod2) or α ≡ i+ j + k(mod2), but being quotient by a certain

equivalence relation that make this set a group. The generators of the Cayley

graph are then the image of those generators in this quotient.

Obtaining a (p + 1)-regular infinite tree, now, we need to define a suitable

2



1. Introduction

finite quotient in order to obtain a finite graph. Taking quaternions over integers

modulo a prime q, we arrive to quaternion over a finite field Fq. This mapping

is indeed a well-defined homomorphism from the set of vertices defined above to

a quaternion over finite field Fq modulo the center of it. The finite graph will be

the Cayley graph of the image of this homomorphism with the symmetric set is

the image of the generators of previous Cayley graph under this homomorphism.

The girth of this graph will achieve the constant c = 4
3

if the Legendre symbol(
p
q

)
= −1.

Furthermore, using the isomorphism between the quaternions over Fq and the

set of 2×2 matrices over Fq, we will develop a computer program, using MAGMA

Computer Algebra, that will generate the graph and return the result the girth

of the graph, given the prime numbers p and q by user. The graph is a Cayley

graph over PGL2(q) if
(
p
q

)
= −1 (bipartite graph) or over PSL2(q) if

(
p
q

)
= 1

(non-bipartite graph). Unfortunately, due to the lack of the memory, the program

is only applicable for small prime numbers.

We will continue the discussion with a result of a better bound. Recently, X.

Dahan and J.-P. Tilich [4], succeedly improve the bound from 4
3

to 12
7

, by mim-

icking the construction process by Lubotzky et.al, but replacing the quaternion

algebra by the octonion algebra. The result is a (p3 + 1)-regular graph, where p

is a prime number. However, the construction based on octonions is more com-

plicated than quaternions since it is not associative. The graph is a Cayley graph

on loops, not on groups as in quaternions case. Moreover, the vertex-transitivity

of the resulting graph is unknown.

The thesis is organized as follows: In Chapter 2, we will give detail construc-

tion of the graph based on quaternions, determine the lower bound for the girth,

and provide an algorithm of graph construction using Magma computer algebra.

In Chapter 3, we will give the detail construction of the finite graph based on

octonions that achieve the constant c = 12
7

for the bound. We will give a short

conclusion in Chapter 4. Appendix A is provided to recall about the quater-

nions and octonions algebra, while Appendix B gives an introduction to Cayley

graph, both on groups and on loops. The full Magma program will be provided

in Appendix C.
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Chapter 2

Construction of Graph with

Large Girth Based on

Quaternions

In this chapter, we will study the construction of graph with large girth based on

quaternions by Davidoff et. al. [5] which is the generalization of the construction

by Lubotzky et. al [6].

Given two primes p = 3 and q = 5. Let the group G be PGL2(F5) and define

a symmetric set

S :=
{[ 3 1

3 2

]
,

[
3 2

4 2

]
,

[
3 3

1 2

]
,

[
3 4

2 2

]}
.

Consider the Cayley graph G(G,S) (see Appendix B) which is shown in Figure

2.1.

The graph should be continuosly extended until the number of vertices equal

to |G| = |PGL2(F5)| = 120 (see that this is a finite graph). However, since we are

interested only on the girth, which is the length of the smallest cycle, to simplifiy

the picture, we stop drawing the Cayley graph after we find cycles. In Figure 2.1,

at that point, there are some vertices appear twice as leaves of the tree, which

means, the graph has contained a cycle. The same vertices are denoted by the

circle of the same colour. Note that there are 2 pairs of dash circles. The matrices

4



2. Construction of Graph with Large Girth Based on Quaternions

Figure 2.1: Cayley graph G(PGL2(F5), S)
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2. Construction of Graph with Large Girth Based on Quaternions

in each pair looks different, but they actually differ only by a scalar matrix. Since

we are dealing with PGL2(F5), matrices that differ by scalar matrices lie in the

same equivalence class, thus they coincide. The graph contains 6 cycles of length

6 and there is no smaller cycle, thus, the girth of the graph is 6. Since

6 ≥ 4

3
log3 120− log3 4 ≈ 4.55,

this Cayley graph is the graph with large girth that we want (achieving the

constant c = 4
3
).

If we replace F5 by Z, the determinant of matrices in each depth is increasing

by the factor of the determinant of the generator and therefore, we will obtain all

different vertices. The resulting graph will be a 4-regular infinite tree. Hence, we

can say that the graph in Figure 2.1 is actually a quotient of an infinite regular

tree.

If we observe further, the set of generators S is not arbitrarily chosen. It is a

symmetric set, S = S−1, and each element of the set S has determinant p = 3.

Moreover, we can write elements in the set of generator S in the form:[
a0 + a1x+ a3y −a1y + a2 + a3x

−a1y − a2 + a3x a0 − a1x− a3y

]

where x = 3, y = 0 satisfying x2 + y2 + 1 = 0 in F5. The determinant of the

matrices becomes:

a20 + a21 + a22 + a23.

Hence, to obtain the set of generators, we need to find x, y such that x2+y2+1 ≡
0(mod5) and solve the equation:

a20 + a21 + a22 + a23 = 3.

If we see the tuple (a0, a1, a2, a3) as a quaternion a0 + a1i + a2j + a3k, then the

problem of solving the equation above turns to a problem of finding a quaternion

with norm 3.

More generally, to construct the desired Cayley graph with large girth, we need

to have two different primes p and q, find integers x, y satisfying x2 + y2 + 1 ≡

6



2. Construction of Graph with Large Girth Based on Quaternions

0(modq), then solve the equation a20 + a21 + a22 + a23 = p. By Jacobi’s Theorem,

there are 8(p + 1) solutions α = (a0, a1, a2, a3). Among them (see next section)

there are p + 1 solutions satisfying: a0 is a positive odd integer and aj even for

j = 1, 2, 3 ( p ≡ 1(mod4)), or if p ≡ 3(mod4), a0 is a positive even integer and

aj odd for j = 1, 2, 3 together with one of each conjugate pair of the tuples where

a0 is zero and aj odd for j = 1, 2, 3. To each solution α, we associate the matrix

α̃ in PGL2(Fq) [
a0 + a1x+ a3y −a1y + a2 + a3x

−a1y − a2 + a3x a0 − a1x− a3y

]
Form the Cayley graph of PGL2(Fq) relative to the above p+ 1 elements. This is

a (p + 1)-regular graph with n = q(q2 − 1) vertices. This graph will achieve the

constant c = 4
3

for the bound of the girth whenever
(
p
q

)
= −1, i.e. when p is not

a square modulo q.

We will elaborate in more detail the construction of the graph in the following

sections in this chapter. We will do it in the language of quaternions, since there

is an isomorphism between the quaternions H(Fq) and the set of 2-by-2 matrices

M2(Fq). We will start this chapter by constructing the (p + 1)-regular infinite

tree in Section 2.1 and we will show how to define the finite quotients to obtain

the desired finite graph in Section 2.2. In Section 2.3, we will determine the lower

bound on the girth. In Section 2.4, we will provide an algorithm that deal with

the construction of the graph and return the girth of the graph for the given p

and q.

2.1 The Construction of the (p + 1)-Regular In-

finite Tree

The (p + 1)-regular infinite tree is obtained by constructing a Cayley graph on

group (see Appendix B) with p+ 1 generators. Hence, we need to define a group

(that will be the set of vertices of the graph) and determine the p + 1 elements

of the group to be the generators. Initially, those p + 1 generators are the four

7



2. Construction of Graph with Large Girth Based on Quaternions

tuples (a0, a1, a2, a3) which are the integer solutions of the equations:

a20 + a21 + a22 + a23 = p,

whose a0 is a positive odd integer and aj even for j = 1, 2, 3 if p ≡ 1(mod4), or

for the case p ≡ 3(mod4), it is a tuple where a0 is a positive even integer and aj

odd for j = 1, 2, 3 together with one of each conjugate pair of the tuples where

a0 is zero and aj odd for j = 1, 2, 3.

These solutions exist due to the following theorem of Jacobi [5], that is known

in number theory.

Theorem 2.1.1. Let n be an odd positive integer. Then the number of possible

ways to write n as sum of four squares is

8
∑
d|n

d

Now, let p be an odd prime. Then, by Jacobi’s Theorem, the equation:

a20 + a21 + a22 + a23 = p

has 8(p+ 1) solutions, where:

• If p ≡ 1(mod4) : Only one of the ai can be odd and the rest are even.

• If p ≡ 3(mod4) : Only one of the ai can be even and the rest are odd.

Since the solutions are four tuples (a0, a1, a2, a3) of integers satisfying a20 +

a21 + a22 + a23 = p, we can consider them as quaternions over integers of norm p

(see Appendix A to recall about quaternions). From the 8(p + 1) solutions, we

need to choose p + 1 of them to be generators that satisfied the given criterion.

We can do it as follows: denote the distinguished ai in each case as: a0i .

For p ≡ 1(mod4), the distinguished one, a0i is odd, and hence a0i 6= 0. Among

the 8 associates εα of α (ε is the unit quaternion), exactly one will have |a0i | as

its zero-th component. We named this as ”distinguished” solution.

For p ≡ 3(mod4), if a0i 6= 0, we define the distinguished solution as in the case

p ≡ 1(mod4). If a0i = 0, then two associates, εα and −εα, will each has a0 = 0.

8



2. Construction of Graph with Large Girth Based on Quaternions

In this case, we may choose either one as distinguished solution.

Now, among 8(p+ 1) solutions, we have found (p+ 1) distinguished solutions

of

a20 + a21 + a22 + a23 = p

such that each corresponding quaternion solution α satisfies either α ≡ 1(mod2)

or α ≡ i+ j + k(mod2). If the distinguished coordinate a0i 6= 0, then both α and

ᾱ will appear as distinguished solution, but if a0i = 0 (which can only appear in

the case p ≡ 3(mod4)), only one of the pair is included.

Define Sp, the set of all distinguished solutions. Therefore,

Sp = {α1, ᾱ1, . . . , αr, ᾱr, β1, . . . , βs}

where αi has a
(i)
0 > 0, βj has b

(j)
0 = 0, αiᾱi = −β2

j = p and 2r + s = |Sp| = p+ 1.

Having the p + 1 generators in the form of quaternions over integers, we can

move forward to construct the Cayley graph. Now, we need to have the set of

quaternions, that will be used as vertices of the graph. The set must contain

those generators. In order to do so, define a set of quaternions α over integers

of norm a power of p such that α ≡ 1(mod2) or α ≡ i + j + k(mod2). This set

(denoted by Λ′) clearly contains all the p+ 1 generators in Sp. Hence, for a given

prime number p,

Λ′ = {α ∈ H(Z) : α ≡ 1(mod2)or α ≡ i+ j + k(mod2), N(α) a power of p}.

A problem arises because Λ′ is not a group. This problem can be overcomed

by reducing Λ′ modulo the following equivalence relation:

for α, β ∈ Λ′, α ∼ β if there exist m,n ∈ N such that pmα = ±pnβ.

We denote [α] the equivalence class of α ∈ Λ′. Define

Λ = Λ′
/
∼

9



2. Construction of Graph with Large Girth Based on Quaternions

the set of equivalence classes, and

Q : Λ′ → Λ

the quotient map Q(α) = [α]. Note that ∼ is compatible with multiplication,

that is, α1 ∼ β1, α2 ∼ β2, then α1α2 ∼ β1β2. This shows that Λ comes equipped

with an associative product with unit. Therefore, to prove that Λ is a group, it

is sufficient to show that every element of Λ has an inverse. This is indeed true

because for α ∈ Λ′ : αᾱ = ᾱα ∼ 1; hence, [α]−1 = [α].

With this group, we have to modify our set of generators, since the set of

generators should be a subset of the group. Therefore, take the generators to be

the image of Sp under the quotient map Q. Note that, for all α, β ∈ Sp, α ∼ β

implies α = β. So, again, |Q(Sp)| = p+ 1.

At this point, we have a group Λ and set of generators Q(Sp) ⊂ Λ with

cardinality p + 1. According to Appendix B, we can have a well-defined Cayley

graph G(Λ, Q(Sp)) if Q(Sp) is symmetry. To see its symmetricity, let [δ] ∈ Q(Sp).

It corresponds to a δ ∈ Sp. In the notation of Sp, δ can be either αi or βj. If δ = αi,

then we know that there also exists ᾱi ∈ Sp, which means [ᾱi] ∈ Q(Sp). Since

αiᾱi = p, then [ᾱi] ∈ Q(Sp) is the inverse of [δ] = [αi], because [αi][ᾱi] = [p] = [1]

in Λ. Now, consider the case δ = βj. Since

−βj = −1(βj) = −p0βj,

this implies that [βj] = [−βj] in Λ. And since −β2
j = p, then [δ]2 = [βj][−βj] =

[p] = [1] in Λ. For every element [δ] ∈ Q(Sp), we can find its inverse in Q(Sp),

this shows that Q(Sp) is symmetry.

Now, we have constructed the Cayley graph G(Λ, Q(Sp)). This graph is the

(p+ 1)-regular tree that we want. However, in order to prove that it is a regular

tree, we need to study the factorization of quaternions over integers into primes.

We know that there is no unique factorization into primes in H(Z) (not even

up to associate), for example, we can write

13 = (1 + 2i+ 2j + 2k)(1− 2i− 2j − 2k) = (3 + 2i)(3− 2i).

10



2. Construction of Graph with Large Girth Based on Quaternions

Fortunately, for the set of integral quaternions α with N(α) = pk, where p is

an odd rational prime (hence, for α in Λ′), we can recover a sort of unique

factorization for these α’s. Before we go on for the factorization, we need to have

the following definition.

Definition 2.1.2. A reduced word over Sp is a word over the alphabet Sp, which

has no subword of the form αiᾱi, ᾱiαi, β
2
j (i = 1, . . . , r, j = 1, . . . , s). The length

of a word is the number of occuring symbols.

The following theorem will give the property of the factorization in quater-

nions over integers.

Theorem 2.1.3. Let k ∈ N; let α ∈ H(Z) be such that N(α) = pk. Then α

admits a unique factorization α = εprwm, where ε is a unit in H(Z), wm is a

reduced word of length m over Sp, and k = 2r +m.

Proof. We will prove this in two parts.

• Existence

Let α be a fixed element of H(Z) with N(α) = pk. As stated in Proposition

A.0.9, α is a product of primes in H(Z):

α = δ1δ2 . . . δn.

δi are all prime quaternions, then by Lemma A.0.8, we have N(δi) = p (i =

1, . . . n). Since norm is multiplicative, then we should have n = k. For

N(δi) = p, we find a unit εi and γi ∈ Sp, such that δi = εiγi; hence

α = ε1γ1ε2γ2 . . . εkγk.

Since for every γ ∈ Sp and every unit ε of H(Z), we can find some γ′ ∈ Sp
and some unit ε′, such that γε = ε′γ′, then the previous factorization of α

can be rewritten in the form:

α = εγ′1 . . . γ
′
k,

with γ′i ∈ Sp and ε unit in H(Z). Now we found that we have written

α as a product of a unit and a word in Sp. However, the word is not

11



2. Construction of Graph with Large Girth Based on Quaternions

necessarily reduced. If it is not reduced, then we can replace each of the

factors αiᾱi, ᾱiαi, β
2
j that occur in the factorization by p. Moving all p’s to

the left, we will obtain α = εprwm, where wm is a reduced word over Sp.

This proves the existence.

• Uniqueness

We will prove uniqueness by a counting argument. From one side, we know

that by Jacobi’s Theorem, there are exactly

8
k∑
i=0

pi = 8
(pk+1 − 1

p− 1

)
quaternions α ∈ H(Z) with N(α) = pk.

From another side, we need to count how many possibility to have α in the

form α = εprwm. There are 8 units in H(Z), hence there are 8 choices for ε.

For wm, a reduced word of length m, over Sp, we have 1 choice if m = 0 and

for m > 1, we have p+1 choices for the first letter (since |Sp| = p+1) and p

choices for each of the following letter (since we need to avoid subwords of

the form αiᾱi, ᾱiαi and β2
j ). Hence, the number of reduced words of length

m can be summarized as:

Number of reduced word of length m =

{
1 if m = 0,

(p+ 1)pm−1 if m ≥ 1.

Hence, the total number of α expressed in this form, is,
8

(
1 + (p+ 1)

∑ k
2
−1

r=0 p
k−2r−1

)
if k is even,

8

(
(p+ 1)

∑ k−1
2

r=0 p
k−2r−1

)
if k is odd.

In both cases, we find 8

(
pk+1−1
p−1

)
expressions. This number coincide with

the number that we get from Jacobi’s Theorem. Since, by existence part,

every such α can be written in such a from, this factorization must be

unique.

12



2. Construction of Graph with Large Girth Based on Quaternions

If we restrict our attention only to Λ′, not to H(Z) in general, then Theorem

2.1.3 gives the following corollary:

Corollary 2.1.4. Every element α ∈ Λ′ with N(α) = pk has a unique factoriza-

tion α = ±prwm, where r ∈ N, wm is a reduced word of length m over Sp, and

k = 2r +m.

Proof. By Theorem 2.1.3, α can be written in a unique way as α = εprwm,

with r and wm having the desired properties and ε as a unit in H(Z). Reducing

modulo 2, we get α ≡ εwm(mod 2). Any αi, βj ∈ Sp that appears in wm has

αi, βj ≡ 1(mod 2) or αi, βj ≡ i + j + k(mod 2). For the moment, denote the

latter as γ. Then, in modulo 2, we have the congruences:

α ≡

{
ε if an even number of γ’s appears in wm,

ε(i+ j + k) if an odd number of γ’s appears in wm.

On the other hand, since α ∈ Λ′, α itself must satisfy α ≡ 1(mod 2) or α ≡
i + j + k(mod 2). Therefore , we see that in every case we must have ε ≡
1(mod 2); in other words, ε = ±1.

With this knowledge of factorization, now we can prove the following propo-

sition.

Proposition 2.1.5. The Cayley graph G(Λ, Q(Sp)) is the (p+ 1)-regular tree.

Proof. • Regularity of the graph.

By Proposition B.0.18, it is sufficient to prove that Q(Sp) generates Λ. This

is true since by the existence part of Corollary 2.1.4, any α ∈ Λ′ is equivalent

to a reduced word over Sp. Hence, the graph G(Λ, Q(Sp)) is (p+ 1)-regular

and connected.

• The resulting Cayley graph is a tree.

To prove that it is a tree, we have to show that it does not contain any

circuit. So suppose by contradiction that it does contain a circuit

x0, x1, x2, · · · , xg−1, xg = x0

13



2. Construction of Graph with Large Girth Based on Quaternions

of length g ≥ 3. By vertex-transitivity, we may assume x0 = [1]. By defini-

tion of Cayley graph, we have x1 = [γ1], x2 = [γ1γ2], · · · , xg = [γ1γ2 · · · γg]
for some γ1, γ2, · · · , γg ∈ Sp. Since xk−1 6= xk+1 for 1 ≤ k ≤ n− 1, the word

γ1γ2 · · · γg over Sp is reduced, i.e. it contains no occurrence of αiᾱi, ᾱiαi or

β2
j (1 ≤ i ≤ s; 1 ≤ j ≤ t). The equality [1] = [γ1γ2 · · · γg] in Λ becomes, in

Λ′,

pm = ±pnγ1γ2 · · · γg.

However, since γ1γ2 · · · γg is a nontrivial reduced word over Sp, this contra-

dicts the uniqueness part in Corollary 2.1.4, and the proof is complete.

2.2 Finite Graph Y p,q

Having the infinite (p + 1)-regular tree, we are now going to define the finite

quotient for it. Let q be a prime and we consider reduction modulo q:

τq : H(Z)→ H(Fq)

which sends Λ′ to the group H(Fq)× of invertible elements in H(Fq). Let Zq be

the following central subgroup of H(Fq)×:

Zq = {α ∈ H(Fq)× : α = ᾱ}.

Let α, β ∈ Λ′: if α ∼ β, then τq(α)−1τq(β) ∈ Zq. This means that τq : Λ′ →
H(Fq)× descends to a well-defined group homomorphism

Πq : Λ→ H(Fq)×
/
Zq.

We denote the kernel of Πq by Λ(q) and we identify the image of Πq with the

quotient group Λ/Λ(q). We set

Tp,q = (Πq ◦Q)(Sp).

14



2. Construction of Graph with Large Girth Based on Quaternions

We define the graph Y p,q as the Cayley graph of Λ/Λ(q) with respect ot Tp,q:

Y p,q = G(Λ/Λ(q), Tp,q).

The graph Y p,q is the (p+ 1)-regular finite graph as desired. This is true since by

Proposition 2.1.5, Λ is generated by Q(Sp) and it follows from Proposition B.0.18

that for q > 2
√
p, the graph Y p,q is regular and connected. The graph Y p,q will

be p+ 1-regular if we can show that the cardinality of Tp,q is p+ 1. This is given

by the following lemma:

Lemma 2.2.1. If q is large enough with respect to p (for example, if q > 2
√
p),

then |Tp,q| = p+ 1.

Proof. We have

Πq : Λ→ H(Fq)×
/
Zq.

Since Tp,q = (Πq ◦Q)(Sp) and we have already known that |Q(Sp)| = p + 1, it is

sufficient to prove that the map Πq restricted to Q(Sp) is injective. For simplicity,

denote by Π′q the map Πq restricted to Q(Sp), that is,

Π′q : Q(Sp)→ H(Fq)×
/
Zq.

Let [α], [β] be two different elements in Q(Sp), then they correpond to α = a0 +

a1i + a2j + a3k, β = b0 + b1i + b2j + b3k ∈ Sp, where ai 6= bi for some i. By

definition, N(α) = N(β) = p, we have aj, bj ∈ (−√p,√p) for j ∈ {0, 1, 2, 3}.
Thus, if q > 2

√
p, we have ai 6≡ bi(modq). Therefore, [α] and [β] have different

image in H(Fq)×. Now, suppose

Π′q([α]) = Π′q([β])

in H(Fq)×
/
Zq, it means that there exists δ ∈ Zq such that Π′q([α]) = δ.Π′q([β]).

The δ corresponds to an element γ = c0 + c1i + c2j + c3k ∈ H(Z) such that

q|c1, c2, c3. This implies, [α] = [γ][β]. Since N(α) = N(β) = p, then N(γ) = 1,

and the fact that q|c1, c2, c3 implies γ = ±1. Hence

α = ±β ⇒ [α] = [β].

15



2. Construction of Graph with Large Girth Based on Quaternions

This contradicts to our assumption that [α], [β] are two different elements in

Q(Sp).

2.3 Bound on the Girth

Before we are able to determine the lower bound for the girth of Y p,q, we need to

identify the ”congruence subgroup” Λ(q).

Lemma 2.3.1. Λ(q) = {[α] ∈ Λ : α = a0 + a1i+ a2j + a3k, q|a1, a2, a3}.

Proof.

[α] ∈ Λ(q) ⇔ τq(α) ∈ Zq
⇔ q does not divide a0 and q|a1, a2, a3
⇔ q|a1, a2, a3,

where the equivalence between the second and third lines follows from the fact

that N(α) is a power of p and p 6= q.

We can now give a lower bound for the girth of Y p,q.

Proposition 2.3.2. One has g(Y p,q) ≥ 2 logp q. If
(
p
q

)
= −1, we have the better

inequality g(Y p,q) ≥ 4 logp q − logp 4.

Proof. For simplicity’s sake, write g for g(Y p,q). Let x0, x1, · · · , xg−1, xg = x0 be

the vertices of a circuit of length g in Y p,q. By vertex-transitivity of Y p,q (see

Proposition B.0.18), we may assume that x0 = xg = 1 in Λ/Λ(q). Since Y p,q is a

Cayley graph, we find t1, · · · , tg ∈ Tp,q, such that

xi = t1t2 · · · ti (1 ≤ i ≤ g).

Now, ti = Πq([γi]) for a unique γi ∈ Sp (i = 1, · · · , g). Write α = γ1 · · · γg ∈ Λ′

with α = a0 + a1i + a2j + a3k. Note that α is a reduced word over Sp, and

[α] = [γ1] · · · [γg] is distinct from [1] in Λ, by Proposition 2.1.5(b). Thus, α is not

equivalent to 1 in Λ′, which implies that at least one of a1, a2, a3 is nonzero. On

16



2. Construction of Graph with Large Girth Based on Quaternions

the other hand,

Πq([α]) = t1t2 · · · tg = xg = 1,

so that [α] ∈ Λ(q). By Lemma 2.3.1, the prime q must divide a1, a2, a3. Since

one of them is nonzero, we get

pg = N(α) = a20 + a21 + a22 + a23 ≥ q2

Taking logarithms in base p, we get the first statement. Suppose now that
(
p
q

)
=

−1. Since pg ≡ a20( mod q), we have

1 =
(pg
q

)
=
(p
q

)g
= (−1)g,

so that g is even, say g = 2h. Now actually

p2h ≡ a20(modq2).

Lemma 2.3.3. Let q be an odd prime; let a, b be integers, not divisible by q, such

that a2 ≡ b2(modq2). Then a ≡ ±b(modq2)

Proof.

a2 ≡ b2(modq2) ⇔ a2 − b2 ≡ 0(modq2)

⇔ (a− b)(a+ b) ≡ 0(modq2)

⇔ q2|(a− b)(a+ b)

Since q|q2|(a− b)(a + b) and q is prime, then q|(a− b) or q|(a + b). However, in

our case, q cannot divide both in the same time, otherwise

q|(a− b) + (a+ b)⇒ q|2a⇒ q|a

(q is an odd prime, so q - 2). This contradicts to the fact that a is not divisible

by q. Hence, only one of these holds, q|(a − b) or q|(a + b). We may assume

that q|(a − b). This together with the fact that q2|(a − b)(a + b) implies that

q2|(a − b). Thus, we obtain a ≡ b(modq2). Similarly, for q|(a + b), we obtain

17



2. Construction of Graph with Large Girth Based on Quaternions

a ≡ −b(modq2). This complete the proof.

By Lemma 2.3.3 above, it follows that

ph ≡ ±a0(modq2).

On the other hand, a20 ≤ pg, so |a0| ≤ ph. Assume by contradiction that g <

4 logp q− logp 4 = logp
q4

4
, so ph < q2

2
and implies |ph∓a0| < q2. From the previous

congruence, we get ph = ±a0, then pg = a20, which forces a1 = a2 = a3 = 0. This

leads to contradiction.

2.4 Construction of the Graph using Magma

Computer Algebra

The idea of developing a computer program is the same as the general abstract

construction, except that in the computer program, we represent the quaternions

over the finite field Fq in the form of matrices. This is possible since the following

isomorphism exists.

Proposition 2.4.1. Let K be a field, not of characteristic 2. Assume that there

exists x, y ∈ K, such that x2 + y2 + 1 = 0. Then H(K) is isomorphic to the

algebra M2(K) of 2× 2 matrices over K.

Proof. Define

ψ : H(K) → M2(K)

a0 + a1i+ a2j + a3k 7→

(
a0 + a1x+ a3y −a1y + a2 + a3x

−a1y − a2 + a3x a0 − a1x− a3y

)

By a little calculation, we check that ψ(q1q2) = ψ(q1)ψ(q2) for q1, q2 ∈ H(K).

Since ψ is a K-linear map between two K-vector spaces of the same dimension 4,

to prove that ψ is an isomorphism it is enough to show that ψ is injective. But

ψ(a0 + a1i + a2j + a3k) = 0 leads to a 4-by-4 homogeneous linear system in the

18



2. Construction of Graph with Large Girth Based on Quaternions

variables a0, a1, a2, a3, with determinant∣∣∣∣∣∣∣∣∣∣
1 x 0 y

0 −y 1 x

0 −y −1 x

1 −x 0 −y

∣∣∣∣∣∣∣∣∣∣
= −4(x2 + y2) = 4 6= 0.

(since char K 6= 2).

The isomorphism exists for K = Fq because q is an odd prime and the follow-

ing proposition.

Proposition 2.4.2. Let q be an odd prime power. There exists x, y ∈ Fq, such

that x2 + y2 + 1 = 0.

Proof. Counting 0, there are q+1
2

squares in Fq. Define then

A+ = {1 + x2 : x ∈ Fq};A− = {−y2 : y ∈ Fq}.

Since |A+| = |A−| = q+1
2

, we have

A+ ∩ A− 6= ∅,

hence the result.

The algorithm of the program is as follow:

19



2. Construction of Graph with Large Girth Based on Quaternions

Algorithm 1 Constructing the Cayley graph and determining the girth

Require: p, q prime numbers, q > 2
√
p

Ensure: The girth of finite graph Y p,q

1. (Defining the set Sp) Compute the solutions of the equations: a20 +a21 +a22 +
a23 = p.
if p ≡ 1(mod4) then

include the solutions with a0 an odd positive integer to the set Sp
else

include the solutions with a0 an odd positive integer and the solutions with
a0 = 0 but a1 > 0 to the set Sp

end if
2. (The generators of the graph that associate to Sp in the form of element of
GL2(Fq) ) Find x, y ∈ Fq that satisfy x2 + y2 + 1 = 0. Apply isomorphism in
the Proposition 2.4.1 to Sp, reduce each entry modulo q, to obtain the set of
generators in the form matrices in GL2(Fq).
3. (Initializing set of vertices) Define an array SET of sets of matrices, with
SET[0] is the set of Identity matrix of GL2(Fq). Set[i] := Set of vertices that
has distance i from the identity matrix.
4. (Constructing the graph) Multiply all elements in SET[i − 1] with all gen-
erators and modulo scalar matrices. SET[i] will be the set of the resulting
matrices which are not contained in SET[i− 2].
5. (Checking girth)
if SET[i]∩ SET[i− 1] 6= ∅ then

STOP
Output : 2i− 3.

else if |SET[i]| < (p+ 1) ∗ p(i−1) then
STOP
Output: 2i

else
Repeat step 4 with new i := i+ 1

end if

20



Chapter 3

Construction of Graph with

Large Girth Based on Octonions

We have seen in Chapter 2, the construction of the finite graph based on quater-

nions that achieve the constant c = 4
3
. In this chapter, we will discuss the result

of X. Dahan and J.-P. Tillich in their recent paper[4] about the construction of

finite graph that achieve the constant c = 12
7

. The idea of this construction is the

same as the construction by A. Lubotzky, R. Phillips and P. Sarnak, replacing

the quaternions by octonions.

Given two different primes p, q with q > p, we will first construct the infinite

regular tree of degree p3 + 1. It will be obtained from the Cayley graph on loops

(see Appendix B). Similarly to the Cayley graph on groups, the graph has a set

of vertices and the set of generators. However, in this case, the set of vertices will

be elements of a loop, instead of a group, and the generators will be the subset

of it with the cardinality (p3 + 1).

In Appendix A, we have described the set of integral elements C ⊂ O. We

define set of generators P(p) as follows

P(p) := {α ∈ O(Z) : α > 0, N(α) = p, α− 1 ∈ 2C}.

We will prove in the next section that the cardinality of P(p) is indeed p3 +

1. The loop Λ that will be the set of vertices of the graph is the set of all

irreducible products with elements in P(p) (with the convention that the void
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3. Construction of Graph with Large Girth Based on Octonions

product belongs to it and is equal to 1). Finally, the infinite (p3 + 1)- regular tree

will be defined as the following Cayley graph

G(Λ,P(p)).

(For the detail construction, see Section 3.1.)

Having constructed the infinite (p3 + 1)-regular tree, mimicking the construc-

tion for quaternions case, we will define finite quotient for the tree. Since all

elements in Λ has norm a power of p which is therefore invertible modulo q, then

reducting the octonions over integers by a prime q will gives us element is O(Fq)×.

Consider the reduction modulo q:

τq : O(Z)→ O(Fq)×.

Let Z be the center of O(Fq)×, i.e.

Z = {α ∈ O(Fq)× : α = ᾱ}.

By definition of the product ∗ in the loop Λ (see Section 3.2), we will see that

τq(α ∗ β) and τq(α)τq(β) differ only by element in the center. Hence, taking

quotient of the codomain by the center, we obtain the following well-defined

map:

Πq : Λ→ O(Fq)×/Z.

If we denote the kernel of Πq by Λ(q) and set

Sp,q = Πq(P(p)),

then the finite graph will be:

G(Im(Πq), Sp,q),

where Im(Πq) denotes the image of Πq. We will prove later in Section 3.3 that

this graph achieve the constant c = 12
7

as desired whenever
(
p
q

)
= −1, i.e. when

p is not a square modulo q. However, before we are able to determine the girth,
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we need to know what the image and the kernel of the map Πq are. This will be

given in detail in Section 3.1.

Unfortunately, the actual replacement is not that direct, by just replacing all

quaternions with octonions. It gives rise to some problems since octonions is not

associative (see Appendix A). The vertex-transitivity of the resulted graph is also

unknown, so it brings difficulty to determine the girth. In order to overcome those

problems, we need to have some extra properties that will be found throughout

this chapter.

3.1 The Construction of the (p3 + 1)-Regular In-

finite Tree

As mentioned earlier in this chapter, to construct the infinite tree, we will start

by defining the set of generators P(p) that is given by

P(p) := {α ∈ O(Z) : α > 0, N(α) = p, α− 1 ∈ 2C}.

Recall that the set of vertices will be the loop Λ and the infinite (p3 + 1)- regular

tree will be defined as the following Cayley graph

G(Λ,P(p)).

Now, we will show step by step that the graph G(Λ,P(p)) is indeed a (p3+1)-

regular infinite tree and is a Cayley graph on loop (i.e to show that Λ is a loop).

It is sufficient to show that the cardinality of P(p) is equal to p3 + 1 and Λ is

indeed a loop.

3.1.1 Cardinality of P(p)

In order to determine the cardinality of the set P(p), we need the following two

lemmas. Let us denote reduction modulo p byˆin order not to confuse with the

conjugation (¯).

23



3. Construction of Graph with Large Girth Based on Octonions

Lemma 3.1.1. If p is a prime number then there are (p4 − 1)(p3 + 1) classes

α̂ ∈ Ĉ = C/Cp such that α̂ 6= 0 and N̂(α) = 0.

Proof. Using the isomorphism between Ĉ and the vector matrix algebra which

respects norm and trace, it is enough to count the vector matrices A 6= 0 such

that N(A) = 0 or the 0 6= (a, d,b, c) ∈ F8
p such that ad = −bc.

To count this, suppose

b = (b1, b2, b3), c = (c1, c2, c3) ∈ F3
p,

and write the vector matrix as:(
a b1 b2 b3

c1 c2 c3 d

)
.

In order to satisfy ad = −bc, we can choose the elements of the matrix in two

ways:

• There are p4−1 ways of choosing the first row to be nonzero, but for second

row, we can only choose 3 elements arbitrarily, and the last one depends on

all chosen elements. So, there are only p3 ways to choose the second row.

• If the first row is 0 (only one way to do this), then we can choose second

row arbitrarily, as long as it is not equal to 0. Hence, there are p4− 1 ways

of doing so.

Hence, the total number of the vector matrices that satisfies 0 6= (a, d,b, c) ∈ F8
p

such that ad = −bc is:

(p4 − 1)p3 + 1(p4 − 1) = (p4 − 1)(p3 + 1).

Lemma 3.1.2. If m ∈ N,m > 4 and M := {α ∈ M |N(α) = m}, then the

reduction map M → C/Cm is injective.

Now, the following proposition will give the cardinality of P(p).
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Proposition 3.1.3. If p is an odd prime number then there are exactly p3 + 1

prime octonions π such that n(π) = p, π ≡ 1(mod2), π > 0. In other word, the

cardinality of P(p) is equal to p3 + 1.

Proof. For p = 2, 3, this can be established easily by explicit enumeration. Let

p > 3, then P(p) = P can be identified (by Lemma 3.1.2) with the subset P̂ of

N , where

N := {α̂ ∈ Ĉ|N̂(α) = 0, α̂ 6= 0}.

For α̂ and β̂ define an equivalence relation as follow: α̂ ∼ β̂ if there exists a

π ∈P such that

α̂π̄ = 0 = β̂π.

This means that π is a right divisor of representatives α, β of the classes α̂,

respectively β̂.

Since p - α but p | N(α) we have, by definition of P(p), a unique π ∈ P which

is a right divisor of α. This implies the transitivity of the relation ∼ which is

therefore an equivalence relation. Obviously α̂ ∼ π̂ hence we may take P̂ as a

full set of representatives of the equivalence classes. The classes are Ĉπ\{0} and

contain p4 − 1 elements because |Ĉπ| = (Cπ : Cp) = N(π)4 = p4 (see Lemma 3.1

in [10]). Using the isomorphism between C/Cp and the Zorn algebra over Fp we

conclude from Lemma 3.1.1 that N contains (p4− 1)(p3 + 1) elements. Hence P̂

and P contain p3 + 1 elements.

3.1.2 The Loop Λ

After proving the cardinality of P(p), we are going to study the set Λ, which is

defined as the set of all irreducible products with elements in P(p). Consider

the products of elements of C of the following form

(
. . . ((︸ ︷︷ ︸

open brackets

εα1)α2)α3) . . .
)
αs.

with ε ∈ C×, αi ∈ C− C×. This product is called irreducible product if αi 6= αi+1

for i = 1, . . . , s − 1. For the products of elements of C which are not irreducible

can be simplified by using Corollary A.0.12.
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In order to show that Λ is a loop, we need the main result of Rehm [10], the

property of irreducible product in P(p), and the unique factorization property

for certain element in O(Z), which will be stated below. We will prove them

in the next section, when we discuss about the unique factorization of integral

octonions in detail.

Theorem 3.1.4. (Rehm) Let α ∈ C be primitive. Suppose that N(α) = p1 · · · ps
where the pi’s are prime integers, not necessarily distinct. There exists a unique

ε ∈ C× and unique πi ∈P(pi) for i = 1, . . . , s, such that:

α =
(
. . . ((︸ ︷︷ ︸

open brackets

επ1)π2)π3) . . .
)
πs.

Lemma 3.1.5. Any irreducible product
(
. . . ((επ1)π2)π3) . . .

)
πt of an invertible

element ε in C× and elements π1, . . . , πt of P(p) is primitive.

Proposition 3.1.6. Any element α ∈ O(Z) of norm N(α) = pt and with α ≡
1(mod2C), can be uniquely written as:

α = ±ps((. . . (π1π2) · · · πt−2s−1)πt−2s,

where ((. . . (π1π2) · · · πt−2s−1)πt−2s is an irreducible product with elements πi ∈
P(p).

Moreover, we need to endow the set Λ with the following operation.

Definition 3.1.7. Let α, β be two elements of Λ. By Proposition 3.1.6 the ele-

ment of Λ can be written in a unique way as irreducible products over P(p), α =

(. . . (α1α2) . . .)αs, β = (. . . (β1β2) · · · )βt. By using Proposition 3.1.6 again, there

exists a unique irreducible product γ in P(p) such that αβ = ±plγ, with

N(γ) = ps+t−2l, that is γ is an irreducible product of length s + t − 2l. We

define

α ∗ β = γ.

This operation implies

Proposition 3.1.8. The set Λ endowed with the multiplicative law ∗, is a Mo-

ufang loop generated by P(p).
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Proof. Clearly 1 ∗ α = α ∗ 1 = α for any α ∈ Λ.

Let α be some element of Λ. It belongs to 1 + 2C and is primitive by Lemma

3.1.5. Therefore, this is also the case for ᾱ. By Proposition 3.1.6, we know that

either ᾱ or −ᾱ belongs to Λ. If ᾱ ∈ Λ, then since αᾱ = ps where ps = N(α), we

obtain α ∗ ᾱ = 1. Similarly for the case −ᾱ ∈ Λ. This show that Λ is a loop.

In order to prove that Λ is a Moufang loop, it is sufficient to show that ∗ sat-

isfies one of the Moufang identities. From the definition of ∗, we can derive the

following:

(α ∗ (β ∗ α)) ∗ γ = (α ∗ (p−s1βα)) ∗ γ

= p−s1(p−s2α(βα)) ∗ γ

= p−s1−s2p−s3(α(βα))γ

for some non-negative integers s1, s2 and s3. From the Moufang identities, we

have

(α(βα))γ = α((βα)γ),

it implies that

(α ∗ (β ∗ α)) = α ∗ ((β ∗ α) ∗ γ).

The following subsection will provide the proofs for the tools that we used

above.

Unique Factorization for Integral Octonions

An integral octonion µ ∈ C, µ 6= 0, is called a right (left) divisor of α ∈ C if

αµ−1 ∈ C (µ−1α ∈ C, respectively).

Since we are dealing with nonassociative algebra, the usual division algorithm

that computes common right divisors of 2 elements of maximal norm, as in as-

sociative Euclidean domains, is not applicable. Nevertheless, Rehm[10] provide

an algorithm based on Corollary A.0.15 computing left or right factors of α and

prescribed norm dividing N(α), as given in the proof of the following proposition.
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Proposition 3.1.9. Let 0 6= α ∈ C,m ∈ N such that m|N(α). Then there exist

at least 240 right and 240 left divisors µ of α such that N(µ) = m.

(See [10] for the proof) The proposition (and the algorithm) can be used to

factorize α ∈ C. Let us write

n∏
i=0

γi = (· · · ((γ0γ1)γ2) . . .)γn.

Then by induction on n, we will have the following corollary:

Corollary 3.1.10. Let α ∈ C, N(α) = m1 · · ·mn,m1, . . . ,mn ∈ N. Then there

are integral octaves µ1, . . . , µn such that

n∏
i=1

µi and N(µi) = mi (i = 1, . . . ,m)

In order to obtain uniqueness property (up to certain requirements), we need

the following propositions.

Proposition 3.1.11. Let τ, τ ′, µ, µ′ ∈ C such that α = τµ = τ ′µ′, N(µ) = N(µ′)

is odd, and N(τ) and N(µ) are relatively prime. Then µ ≡ µ′ mod 2 implies

µ = µ′ or µ = −µ′.

Fix a total ordering of C and make C an ordered additive group (e.g lexico-

graphic with respect to the coordinates in a fixed Z-base of C). The proposition

then gives

Corollary 3.1.12. Let α ∈ C, N(α) = um, u,m ∈ N relatively prime, and m

odd. Then there are exactly 240 right divisors µ ∈ C of α such that N(µ) = m.

Exactly one of these divisors is ≡ 1 mod 2 and > 0.

There is also a corollary in the case of norms which are not relatively prime.

Proposition 3.1.13. Let p be an odd prime number, and α ∈ C such that p |
N(α) and p - α. If τ, π, τ ′, π′ ∈ C, α = τπ = τ ′π′, and N(π) = N(π′) = p, then

π = π′ mod 2 implies π = π′ or π = −π′.
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Proof. By Corollary A.0.15, there exist ρ, γ ∈ C such that α = γp + ρ and

N(ρ) ≤ 1
2
p2. Since

N(α) = N(γp) +N(ρ) + tr(γpρ̄) and p | N(α)

implies p divides N(ρ), thus N(ρ) = lp for some l. Because of l ≤ 1
2
p the numbers

l and p are relatively prime and we can apply Proposition 3.1.11 to factorize ρ.

But the right divisors π of α and ρ such that N(π) = π̄π = p are the same.

The argument proving Corollary 3.1.12 now yields this corollary:

Corollary 3.1.14. Let p, α as in the Proposition 3.1.13. Then there are exactly

240 right divisors π ∈ C of α such that N(π) = p. Exactly one of these divisors

is ≡ 1 mod 2 and > 0.

Therefore, by induction on n, the proposition and the corollary gives the main

result of Rehm[10], which has been mentioned in the previous subsection.

Theorem 3.1.4(Rehm) Let α ∈ C be primitive. Suppose that N(α) = p1 · · · ps
where the pi’s are prime integers, not necessarily distinct. There exist a unique

ε ∈ C× and unique πi ∈P(pi) for i = 1, . . . , s, such that:

α =
(
. . . ((︸ ︷︷ ︸

open brackets

επ1)π2)π3) . . .
)
πs.

Furthermore, consider the products of elements of C of the following form

(
. . . ((︸ ︷︷ ︸

open brackets

εα1)α2)α3) . . .
)
αs.

with ε ∈ C×, αi ∈ C − C×. If we restrict our attention to elements in P(p) ⊂ C,

we will have Lemma 3.1.5 mentioned in previous subsection.

Lemma 3.1.5 Any irreducible product
(
. . . ((επ1)π2)π3) . . .

)
πt of an invertible

element ε in C× and elements π1, . . . , πt of P(p) is primitive.
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3. Construction of Graph with Large Girth Based on Octonions

Proof. We will prove by contradiction.

Suppose α is an irreducible product of an invertible element and elements of P(p)

of minimal length that is not primitive. Then α can be written as:

α = βπ

where β is a primitive irreducible product of an invertible element and elements

of P(p) and π is an element of P(p).

Note: If α, γ ∈ C, c(α), c(γ) denote their content respectively, and π̄ ∈P(p),

then we have:

c(α)|c(απ̄)

because the coefficients of απ̄ are integer linear combinations of the coefficients

of α in a Z basis.

Since

απ̄ = (βπ)π̄

= β(ππ̄) by Corollary A.0.12

= pβ

This together with the note implies that c(α) = p and that p divides α. Therefore,

we may write α as :

α = γp = γ(π̄π) = (γπ̄)π (Corollary A.0.12)

for some γ ∈ C.

In the beginning of this proof, we write α = βπ, thus, β = γπ̄. Since β is

primitive, then γ is necessarily primitive. By Theorem 3.1.4 (Rehm), we can

write γ uniquely as an irreducible product of a unit ε and elements π1, . . . , πs of

P(p):

γ = (. . . ((επ1)π2) · · · )πs.

This implies that β is of the form:

β = ((. . . ((επ1)π2) · · · )πs)π̄.
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3. Construction of Graph with Large Girth Based on Octonions

This is again an irreducible product, for if πs = π, then β will be divisible by

p, which contradicts to our assumption that β is primitive. Again by applying

Theorem 3.1.4, we know that this is the only way we can write β as an irreducible

product, and therefore the product α is necessarily of the form:

α = βπ = (((. . . ((επ1)π2) · · · )πs)π̄)π.

The occurence of π̄, π consecutively, implies that the product is no longer irre-

ducible, which contradicts to the irreducibility of α.

Now, we can prove Proposition 3.1.6 that we mentioned in the previous sub-

section.

Proposition 3.1.6 Any element α ∈ O(Z) of norm N(α) = pt and with α ≡
1(mod2C), can be uniquely written as:

α = ±ps((. . . (π1π2) · · · πt−2s−1)πt−2s,

where ((. . . (π1π2) · · · πt−2s−1)πt−2s is an irreducible product with elements πi ∈
P(p).

Proof. Given α ∈ O(Z) and N(α) = pt. If there is a prime number q dividing α,

then q should divide N(α), thus, q = p. Therefore, we can write α as:

α = psα′,

where s is the largest nonnegative integer such that ps|α and p - α′. Now, we

have α′ = p−sα ∈ O(Z) ⊂ C which is primitive. We can apply Theorem 3.1.4 to

obtain:

α′ =
(
. . . ((︸ ︷︷ ︸

open brackets

επ1)π2)π3) . . .
)
πr,

where ε ∈ C× is unique and πi ∈ P(p) for i = 1, . . . , r. Taking to the account

the norm of α, we must have r = t − 2s. We are done with the proof if we are

able to show that ε = ±1.
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• First, we will show that the invertible element ε is in O(Z). We will prove by

contradiction. Assume that ε is not in O(Z). In other words, ε ∈ C×−O(Z)

Claim: If a ∈ C× −O(Z) and b ∈ 1 + 2C, then ab ∈ C× −O(Z).

Proof: Since a is not in O(Z), then a must have at least one coordinate in the

basis 1, i, j, k, t, it, jt, kt which is in the form m
2

, where m is and odd

integer. Since b ∈ 1 + 2C, then we can write b = 1 + 2c, where c ∈ C.

Now, write

ab = a(1 + 2c) = a+ 2ac.

However, 2ac is in O(Z), so ab has some coordinate of the form m
2

+n,

where n is some integer. This shows that ab is not in O(Z).

If ε ∈ C× −O(Z) and we apply the claim recursively, we obtain that

επ1, (επ1)π2, . . . , ((. . . (επ1)π2)π3) . . . πt−2s−1
)
πt−2s

are all in C× −O(Z), so are α′ and α, which is a contradiction because we

know that α′, α ∈ 1 + 2C ⊂ O(Z).

Therefore, ε must be in O(Z), which means ε is among the 16 units of

O(Z)×.

• We have,

α′ = ((. . . (επ1)π2)π3) . . . πt−2s−1
)
πt−2s,

so, applying Corollary A.0.12.

α′ = ((. . . (επ1)π2)π3) . . . πt−2s−1
)
πt−2s

α′πt−2s = p((. . . (επ1)π2)π3) . . . πt−2s−2
)
πt−2s−1

...

((. . . (α′πt−2s)πt−2s−1) . . .)π1 = pt−2sε

So, we have,

ε = p2s−t((. . . (α′πt−2s)πt−2s−1) . . . π2)π1.

The set 1+2C is stable by multiplication, therefore ((. . . (α′πt−2s)πt−2s−1) . . . π2)π1

32



3. Construction of Graph with Large Girth Based on Octonions

belongs to 1 + 2C and so does ε.

ε is an invertible element that is contained in both O(Z) and also 1 + 2C. This

can only be satisfied by ±1. Hence, ε = ±1.

3.2 Finite Graph T

We have constructed the infinite (p3+1)-regular tree. Now, consider the reduction

modulo q (as mentioned earlier in this chapter):

τq : O(Z)→ O(Fq)×.

Let Z be the center of O(Fq)×, i.e.

Z = {α ∈ O(Fq)× : α = ᾱ}.

By definition of the product ∗, the following holds:

τq(α ∗ β) = τq(±p−sαβ) = τq(±p−s)τq(α)τq(β).

This shows that τq(α ∗ β) and τq(α)τq(β) differ only by element in the center.

Hence, taking quotient of the codomain by the center, we obtain the following

well-defined map:

Πq : Λ→ O(Fq)×/Z.

Since O(Fq)× is a Moufang Loop, O(Fq)×/Z is also a Moufang Loop. Therefore,

Lemma 3.2.1. The map Πq is a homomorphism of Moufang Loops.

We denote the kernel of Πq by Λ(q), the set

Sp,q = Πq(P(p)).

and the finite graph T :

T := G(Im(Πq), Sp,q).

where Im(Πq) is the image of Πq.
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Now, we will study further the map Πq, by determining its image and kernel.

• Image of Πq.

Define the following:

– M1 : subloops of O(Fq)× consisting of invertible elements of norm 1;

– Mp : subloops of O(Fq)× consisting of invertible elements of norm a

power of p;

– Z1 := {−1, 1};

– Zp := {±ps, s = 0, 1, . . . , q − 2}.

Since Z1 ⊂ Zp ⊂ F×q , we can embed the corresponding quotient loops in

O(Fq)×/Z as follows:

M1/Z1 ↪→ Mp/Zp ↪→ O(Fq)×/Z
aZ1 7→ aZp

bZp 7→ bZ

Through these embeddings, they can be identified as suloops of O(Fq)×/Z.

By result of Paige[9], M1/Z1 is a simple Moufang loop and an index 2

normal subloop of O(Fq)×/Z. It follows that

Mp/Zp = M1/Z1 or O(Fq)×/Z.

Furthermore,

Lemma 3.2.2. Im Πq = Mp

/
Zp.

Proof. (⊂) Every element of Λ has norm a power of p, so we have Im

Πq ⊂Mp/Zp.

(⊃) To proceed, we have to prove the following claim:

Claim: For any element α = a0 + a1i + . . . + a7kt ∈ O(Z) such that

N(α) ≡ pr(modq) for some integer r, there exists an element β =

b0 + b1i+ . . .+ b7kt ∈ 1 + 2C such that
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3. Construction of Graph with Large Girth Based on Octonions

(i) ai ≡ bi(modq)

(ii) N(β) = pl for some integer l.

Proof of Claim:

To prove the Claim, we use a result of Malyshev [? ] on the

number of solutions of integral definite-positive quadratic forms,

as used in [5].

Note: A result of Malyshev on the number of solutions of inte-

gral definite-positive quadratic forms can be described as follows:

Let f(x1, . . . , xn) be a quadratic form in n ≥ 4 variables with inte-

gral coefficients and discriminant d. Let m be an integer prime to

2d. Then there exists some constant depending on f,K(f) such

that for any N ≥ K(f), N generic for f (i.e f ≡ N(modr) has

at least one solution for every r), gcd (m, 2d) = 1 and for which

there exist integers ai such that

gcd(a1, . . . , an,m) = 1, f(a1, . . . , an) ≡ N(modm),

then there are integers b1, . . . , bn such that

(i) bi ≡ ai(modm)

(ii) f(b1, . . . , bn) = N .

We will divide the proof in two cases.

· For case p ≡ 1(mod4).

Define

f(x0, . . . , x7) := x20 + 4(x21 + . . .+ x27).

This is an integral positive definite quadratic form with dis-

criminant d = 27. Applying the result of Malyshev with inte-

ger m = q, where q is a prime number greater than p. Clearly,

gcd(2dpl, q) = 1 for any l. Since α is taken with N(α) ≡
pr(modq), then by taking a′0 = a0 and a′i ≡ 2−1ai(modq) for
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i = 1, . . . , 7, we see that (a′0, . . . , a
′
7) satisfies

f(a′0, . . . , a
′
7) ≡ pr(modq).

We can also find (a′0, . . . , a
′
7) such that gcd(a′0, . . . , a

′
7, q) = 1.

By Malyshev result, there exist a constant K(f) depending

on f . Now, choose l such that pl ≥ K(f) and pl ≡ pr(mod

q). This pl is generic for f . Therefore, there exist integers

(b′0, . . . , b
′
7) satisfying

b′20 + 4b′21 + · · ·+ 4b′27 = pl.

This implies the existence of octonion β of norm equal to pl,

which is congruent to pr modulo q by setting b0 = b′0, bi = 2b′i

for i = 1, . . . , 7. Since b0 ≡ 1(mod2) then it implies that β

belongs to 1 + 2C.

· For case p ≡ 3(mod4).

If l is even, then we can use the same proof as in p ≡ 1( mod 4)

since in this case pl ≡ 1(mod4).

If l is odd, pl is not generic for f , indeed f(x0, . . . , x7) ≡
pl(mod4) has no solution, since it can be reduced to x20 ≡
3(mod4) which has no solution. Therefore, we need to con-

sider another quadratic form. Define

f(x0, . . . , x7) := 4(x20 = x21 + x22 + x23 + x24) + x25 + x26 + x27.

pl is generic for this f . Moreover, a solution in Z8 of the

equation f(x0, . . . , x7) = pl gives an element

β = 2x0 + 2x1i+ 2x2j + 2x3k + 2x4t+ x5it+ x6jt+ x7kt

of norm pl. We are done with the proof of the claim if we can
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show that this β belongs to 1 + 2C.

f(x0, . . . , x7) = pl

4(x20 + x21 + x22 + x23 + x24) + x25 + x26 + x27 = pl

Reducing modulo 4, we obtain:

x25 + x26 + x27 ≡ 3(mod4),

which implies

x5 ≡ x6 ≡ x7 ≡ 1(mod2).

The element

β − 1

2
=

2x0 − 1

2
+ x1i+ x2j + x3k+ x4t+

x5
2
it+

x6
2
jt+

x7
2
kt

satisfies the characterization of element of C which mentioned

in Lemma A.0.13. Hence, β is indeed an element in 1 + 2C.

This complete the proof for the claim.

From the claim, in both cases, we obtain an element β in 1 + 2C of

norm pl. By Proposition 3.1.6, we can write β as follow:

β = εpsγ,

for some nonnegative integer s, ε ∈ {−1, 1} and γ is an irreducible

product of elements of P(p) (i.e. γ ∈ Λ).

From the construction of β, we have τq(α) = τq(β). This implies

that τq(β) ∈ τq(α)Zp. From the fact that β = εpsγ, we know that

τq(β) = τq(γ). We conclude that

τq(γ) ∈ τq(α)Zp.

Since γ ∈ Λ, then this implies τq(α)Zp ∈ Im Πq.
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Since M1/Z1 is of index 2 in O(Fq)×/Z, the image loop Πq(Λ) = Mp/Zp is

either equal to M1/Z1 or O(Fq)×/Z. As a direct consequence:

Corollary 3.2.3. – If
(
p
q

)
= 1, then Im Πq = M1/Z1.

– If
(
p
q

)
= −1, then Im Πq = O(Fq)×/Z.

Proof. Consider the following loop homomorphism,

O(Fq)× → Z/2Z

α 7→
(
N(α)

q

)
By regarding the definition of Z, it factorizes into this homomorphism:

ε : O(Fq)×/Z → Z/2Z.

For αZ ∈ O(Fq)×/Z where N(α) = 1, αZ will be mapped to 1 by ε. So,

the Kernel of ε contains M1/Z1. Now, consider an element π ∈P(p). Since

N(π) = p, then the image of Πq(π) under the map ε is either 1 or -1 in

Z/2Z, according to the sign of
(
p
q

)
.

– If
(
p
q

)
= −1, then all π ∈ P(p) is mapped to −1, thus, the set

Πq(P(p)) is not contained in the Ker(ε). In other words,

Πq(P(p)) ⊂ O(Fq)×/Z −M1/Z1.

From Lemma 3.2.2, we know that ImΠq = Mp/Zp. Since Πq(P(p)) ⊂
Im (Πq), and M1/Z1 is a proper subset of Mp/Zp, then the Im(Πq)

should strictly contain M1/Z1. By Paige’s Theorem, this implies that

Im(Πq) = O(Fq)×/Z.

– If
(
p
q

)
= 1, then

Πq(P(p)) ⊂ Ker(ε).
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The multiplicativity of the Legendre symbol shows that Im(Πq) ⊂
Ker(ε). Since ε is not a trivial map, then Ker(ε) 6= O(Fq)×/Z. Hence

Im(Πq) ( O(Fq)×/Z. Lemma 3.2.2 gives the following:

M1/Z1 ⊂Mp/Zp = Im(Πq) ( O(Fq)×/Z.

By Paige’s Theorem, we conclude that Im(Πq) = M1/Z1.

• Kernel of Πq

By definition,

Ker Πq = {α ∈ Λ : τq(α) ∈ Z}.

Let α = a0 +a1i+ · · ·+a7kt, then α is in the kernel if q | ai for i = 1, . . . , 7,

and N(α) ∈ F×q . The condition for the norm is clearly satisfied by elements

in Λ since element in Λ has norm a power of p which is invertible in Fq. If

we denote the kernel by Λ(q), this gives:

Ker(Πq) = Λ(q) = {α ∈ Λ : q | a1, . . . , q | a7}.

This implies the following isomorphism holds

Λ/Λ(q) 'Mp/Zp

Having the more precise form of the Image of Πq, we will divide our general

finite graph T in 2 cases, depending the Legendre symbol
(
p
q

)
.

Definition 3.2.4. • If
(
p
q

)
= −1, letXp,q be the Cayley Graph G(O(Fq)×/Z, Sp,q).

• If
(
p
q

)
= 1, let Y p,q be the Cayley Graph G(M1/Z1, Sp,q).

We have |O(Fq)×/Z| = q7 − q3 by Lemma 3.1.1. It follows that

|Xp,q| = q7 − q3 and |Y p,q| = 1

2
(q7 − q3).

Now, we study further about the graph Xp,q and Y p,q.
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Proposition 3.2.5. The graph Xp,q and Y p,q have the following properties:

(i) The graphs Xp,q and Y p,q are connected.

(ii) The graphs Xp,q and Y p,q are (p3 + 1)-regular.

(iii) The graphs Xp,q are bipartite and the graphs Y p,q are not.

Proof. (i) The set P(p) generates Λ as a loop. The proof of Corollary 3.2.3

has shown that Sp,q generates M1/Z1, the set of vertices of Y if

(
p
q

)
= 1,

and it generates O(Fq)×/Z (the set of vertices of Xp,q when

(
p
q

)
= −1.

Therefore, both Xp,q and Y p,q are connected.

(ii) We will prove it in several steps.

– |Sp,q| = p3 + 1.

Recall that in the previous section, we have proved that |P(p)| =

p3 + 1. Since Sp,q = Πq(P(p)), then it is sufficient to show that two

distinct elements of P(p) are brought by Πq to distinct elements of

O(Fq)×/Z. Let π, π′ ∈ P(p) be two distinct elements. To prove by

contradiction, suppose that

Πq(π) = Πq(π
′).

It means that τq(π)Z = τq(π
′)Z in O(Fq)×/Z. This is equivalent to

Πq(π ∗ π̄′) ∈ Ker (Πq) = Λ(q). By definition of kernel, if α = a− 0 +

a1i+ a2j + . . .+ a7kt ∈ Ker (Πq) then q will divides all ai except a0.

So, by taking norm, we obtain

p2 = a20 + q2x2

for some x ∈ Z. If x 6= 0, then we get p2 ≥ q2. But this is impossible

since we take q to be greater than p.

If x = 0, then π ∗ π̄′ ∈ Z, that is π = π′, which contradicts to the fact

that they are distinct.
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From both cases we obtain a contradiction. We conclude that if π 6= π′

then Πq(π) 6= Πq(π
′). Therefore

|P(p)| = p3 + 1⇒ |Sp,q| = p3 + 1.

– Sp,q = S−1p,q .

We already know that if π ∈P(p) then its inverse for ∗ is π̄ and is in

P(p), thus, P(p)−1 = P(p) for ∗. Since Πq is an homomorphism on

loops and Sp,q = Πq(P(p)), it implies that S−1p,q = Sp,q.

– 1Z /∈ Sp,q.
This is true, otherwise, there would be a π ∈P(p) that would also be

in Λ(q). By the definition of Λ(q), we see that this is impossible.

(iii) – The graphs Xp,q are bipartite.

We define Xp,q for the case
(
p
q

)
= −1, with the set of vertices is

O(Fq)×/Z. Consider the partition of the set of vertices A ∪ B =

O(Fq)×/Z as follows:

A := M1/Z1 and B := O(Fq)×/Z −M1/Z1.

Let v ∈ A be a vertex with v = Πq(α) and let w = Πq(β) be a

neighbour of v. By construction of Cayley graphs, there exists π ∈
P(p), such that

Πq(α ∗ π) = Πq(α)Πq(π) = Πq(β).

This leads to(
N(β)

q

)
=

(
N(α)p

q

)
=

(
N(α)

q

)(
p

q

)
=

(
p

q

)
= −1,

since v ∈ A implies

(
N(α)
q

)
= 1. This means that w ∈ B. Similarly,

any neighbor x of w ∈ B is in A, so the graph Xp,q is bipartite.

– The graphs Y p,q are not bipartite.

41



3. Construction of Graph with Large Girth Based on Octonions

We define Y p,q for the case
(
p
q

)
= 1, with the set of vertices is M1/Z1.

AS seen above, a bipartition A∪B of the set of vertices M1/Z1 would

imply a non trivial loop homomorphism:

M1/Z1 → Z/2Z.

The kernel of this homomorphism would consist of a non trivial normal

subloop of M1/Z1, but this is impossible since by Paige’s Theorem,

M1/Z1 is simple.

From the fact that bipartite graphs have only even cycles, there is a good

lower bound on the size of cycles of even length. Hence, when considering the

girth, since Y p,q is not bipartite, we will take the bipartite double cover of Y p,q

when
(
p
q

)
= 1.

Definition 3.2.6. Double cover of a graph G with vertex set V and edge set E

is the graph with vertex V ′ = V × {0, 1} and there exists an edge between (x, b)

and (x, b′) if and only if {x, x′} ∈ E and b′ 6= b.

Remark 3.2.7. The double cover is a bipartite graph and is connected if and only

if G is not bipartite.

3.3 Bound on the Girth

In the quaternion case, the Cayley graph is constructed from a group, so the

resulting graph is vertex-transitive. Therefore, for bounding the girth, it is suf-

ficient to consider the lower bound of a cycle starting from vertex with label 1

(identity). This is not the case for construction based on octonions. We do not

know whether our construction is vertex transitive or not. However, it is also

sufficient to study the cycles starting at the vertex label 1 due to the following

two lemmas:

Lemma 3.3.1. Given α ∈ Λ, there is a one-one correspondence between:
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(a) the closed paths without bactracking of length t′ starting at the vertex Πq(α),

and

(b) the irreducible products in Λ of length t′ belonging to the kernel Λ(q) of Πq.

Proof. (a)⇒ (b) A closed path of length t′ without backtracking starting at Πq(α)

corresponds to an irreducible product in Λ, of length t′, with letters denoted by

β1, . . . , βt′ ∈P(p), such that:

• There is no backtracking, i.e.

∀2 ≤ i ≤ t′− 1,Πq((. . . (α ∗ β1) ∗ . . .) ∗ βi+1) 6= Πq((. . . (α ∗ β1) ∗ . . .) ∗ βi−1).

• It is a closed path, i.e

if γ := (. . . (α ∗ β1) ∗ . . .) ∗ βt′ , then Πq(α) = Πq(β).

Now, we need to show that the irreducible product β := (. . . (β1β2) . . .)βt′ is in

Λ(q). Consider

γβ̄t′ = ((. . . (αβ1) . . . βt′−1)βt′)β̄t′

= (. . . (αβ1) . . . βt′−1)(βt′ β̄t′) by Corollary A.0.12

= p(. . . (αβ1) . . . βt′−1)

γβ̄t′ β̄t′−1 = p((. . . (αβ1) . . . βt′−2)βt′−1)β̄t′−1

= p(. . . (αβ1) . . . βt′−2)(βt′−1β̄t′−1) by Corollary A.0.12

= p2(. . . (αβ1) . . . βt′−2)
...

γβ̄ = pt
′
α

We have

γβ̄ = pt
′
α⇔ γ ∗ β̄ = α⇔ Πq(γ) ∗ Πq(β̄) = Πq(α).

By assumption of being a closed path, Πq(γ) = Πq(α), we obtain Πq(β̄) = 1Z,

since O(Fq)×/Z is a loop. This is equivalent to say that β̄ ∈ ker Πq = Λ(q), and
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3. Construction of Graph with Large Girth Based on Octonions

hence β as well.

(b) ⇒ (a) Consider an irreducible product γ in Λ(q) of t′ elements γ1, . . . , γt′ ∈
P(p). Define

δ := ((. . . (αγ1) . . . γt′−1)γt′ .

As seen above, δ ∗ γ̄ = α. It follows that Πq(δ ∗ γ̄) = Πq(δ)Πq(γ̄). Since γ is an

irreducible product in Λ(q), then we have Πq(γ) = 1.Z. Therefore, we also have

Πq(γ̄) = 1.Z. So, Πq(α) = Πq(α ∗ γ̄). This corresponds to a path of length t′

starting at Πq(α) without backtracking.

Lemma 3.3.2. Given t > 0, there exists an irreducible product in Λ(q) of length

2t if and only if 2pt > q2.

Proof. Let β be an irreducible product in Λ(q) of length 2t, so norm of β, N(β) =

p2t. Moreover, as an element in Λ(q), it can be written as:

β = b0 + q(b1i+ b2j + . . .+ b7kt).

Combining those two informations, we obtain the following equation:

b20 + q2(b21 + . . .+ b27) = p2t.

Since we assume that t > 0, at least one of the bi(i > 0) should be nonzero,

otherwise, β = b0 which means an irreducible product of length 0. Here, we

obtain two informations, i.e. p2t ≡ b20(modq2) and also b20 < p2t. By Lemma

2.3.3 in Chapter 2,

p2t ≡ b20(modq2)⇒ pt ≡ ±b0(modq2),

that together with b20 < p2t gives

|b0| < pt and pt = ±b0 +mq2,
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3. Construction of Graph with Large Girth Based on Octonions

for a positive integer m. This implies

p2t = (pt −mq2)2 + q2(b21 + . . .+ b27)

= p2t− 2mq2pt +m2q4 + q2(b21 + . . .+ b27)

⇔ 2mpt −m2q2 = b21 + . . .+ b27.

Since at least one bi(i > 0) is nonzero, then the equality implies 2pt −mq2 > 0

which gives 2pt > q2 since m is a positive integer.

Conversely, if 2pt > q2, then there exists a positive integer m such that

2pt > mq2 ⇒ 2mpt −m2q2 > 0.

Since any positive integer is a sum of 5 squares, then we can write 2mpt −m2q2

as a sum of 7 squares where 2 of them are choosen arbitrarily. Hence, we write

2mpt −m2q2 = a21 + . . .+ a27.

Take a0 = pt −mq2 and let a1, a2 be the arbitrary elements. They are chosen in

such a way that their parity is different from the parity of a0. Notice that

a0 ≡ a20(mod2)

≡ p2t − q2(a21 + . . .+ a27)(mod2)

≡ 1 + a1 + . . .+ a7(mod2)

Since the parity of a1, a2 differ from the parity of a0, then

• if a0 is even, there are 3, 5 or 7 of the ai’s (i > 0) are odd;

• if a0 is odd, there are 0, 2, or 4 of the ai’s (i > 0) are odd.

From this, we deduce that there is a suitable permutation of (a1, . . . , a7), such

that:

(a4, a5, a6, a7) ≡ (1− a0, a1, a2, a3)(mod2) and a0 + a1 + a2 + a3 ≡ 1(mod2).

This implies by using Lemma A.0.13 for the integral octonions C, that a0+q(a1i+
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3. Construction of Graph with Large Girth Based on Octonions

. . .+ a7kt) lies in 1 + 2C and therefore also in Λ(q).

Using both lemmas together, we obtain:

Proposition 3.3.3. The length of the smallest cycles of even length in Xp,q or

in Y p,q is equal to

2d2 logp q − logp 2e.

Proof. The smallest cycles of even length, call it of length 2t, exists if and only if

there exists an irreducible product of length 2t which belongs to Λ(q) by Lemma

3.3.1. Applying Lemma 3.3.2, we know that such a product exists if and only

if 2pt > q2. The smallest t which satisfies this inequality is clearly equal to

d2 logp q − logp 2e.

Now, we have had sufficient knowledge to prove the main theorem:

Theorem 3.3.4. For all pairs (p, q) of odd primes such that p < q, denoting

k = p3 + 1, we have:

(i) the girth of Xp,q, denoted as g(Xp,q), satisfies:

g(Xp,q) ≥ 12

7
logk−1 |Xp,q| − 2 logp 2.

The constant 12
7

is the largest possible.

(ii) For the non-bipartite graphs Y p,q (defined when
(
p
q

)
= 1), the following

inequality holds:

g(Y p,q) ≥ 6

7
log k − 1|Xp,q| − logp 2 =

6

7
logk−1 |Y p,q| − 5

7
logp 2.

Proof. The first part of (i) is a consequence of the fact that Xp,q is bipartite,

therefore any cycle it contains is of even length. We can apply Proposition 3.3.3

to get the lower bound of the length of such cycle is equal to 2d2 logp q − logp 2e.
Hence

g(Xp,q) = 2d2 logp q−logp 2e = 2d6
7

logp3 q
7−logp 2e ≥ 12

7
logk−1(q

7−q3)−2 logp 2,
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3. Construction of Graph with Large Girth Based on Octonions

and the first part of (i) follows. The optimality of the constant 12
7

follows from

the fact that

g(Xp,q) = 2d2 logp q−logp 2e = (1+o(1))
12

7
logp3(q

7−q3) = (1+o(1))
12

7
logk−1 |Xp,q|

as q tends to infinity.

To prove (ii), notice that the double cover graph of Y p,q is equal to Xp,q by

definition and that the length of the smallest cycle of the double cover is at most

twice the length of a cycle in Y p,q, therefore

g(Xp,q) ≤ 2g(Y p,q),

and hence (ii) follows.

47



Chapter 4

Conclusions

In this thesis, we have given two explicit constructions of graph with large girth

based on quaternions and octonions algebra, which achieve the constant c = 4
3

and

c = 12
7

respectively. We also created a computer program using Magma computer

algebra to construct the graph based on quaternions and determine its girth.

In one of the handbook of Magma computer algebra, there is a way to define

the octonions algebra using Magma. There might be a possibility to develop a

computer program using Magma to construct the graph based on octonions.

In addition, for the quaternion case, Morgenstern [8], finally obtained infinite

family of graphs achieving the constant c = 4
3

for all degrees of the form k = q+1

where q is any prime power. The construction is based on quaternions over

function fields. It may be interesting to carry over this construction to octonions.

There would be indeed a hope to build the graphs of girths 12
7

logk−1 n for various

degrees k, not only of the form k = p3 + 1, with p is a prime number.

Furthermore, the construction of the graph based on octonions by X. Dahan

and J.-P. Tillich [] is a Cayley graph on loops. However, they stress that the

graphs presented here may be Cayley graphs on groups. The question is: ”Which

group?”. A simpler open problem given by them is the vertex-transitivity of these

graphs.

Finally, the main open problem is, of course, whether there is a construction of

graphs with large girth that can increase the lower bound. Or, in other words, ”is

there any possibility to construct graphs with large girth that achieve a constant

c greater than 12
7

?”
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Appendix A

Quaternions and Octonions

Algebra

In this chapter, we will recall about the quaternions algebra and some useful prop-

erties of it. We will also give an introduction to octonions algebra, its properties

and define the integral octonions.

Quaternions

Definition A.0.5. The Hamiltonian quaternion algebra over R, denoted by

H(R), is the associative unital algebra given by the following presentation:

(i) H(R) is the free R-module over the symbols 1, i, j, k; that is, H(R) = {a0 +

a1i+ a2j + a3k : a0, a1, a2, a3 ∈ R};

(ii) 1 is the multiplicative unit;

(iii) i2 = j2 = k2 = −1;

(iv) ij = −ji = k; jk = −kj = i; ki = −ik = j.
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A. Quaternions and Octonions Algebra

This definition is natural, in the sense that any unital ring homomorphism

R1 → R2 extends to a unital ring homomorphism H(R1)→ H(R2) by mapping 1

to 1, i to i, j to j and k to k.

If q = a0 + a1i + a2j + a3k is a quaternion, its conjugate quaternion is q̄ =

a0 − a1i − a2j − a3k. The norm of q is N(q) = qq̄ = q̄q = a20 + a21 + a22 + a23.

Note that the quaternionic norm, like the Gaussian norm, is multiplicative; that

is, given q1, q2 ∈ H(R),

N(q1q2) = N(q1)N(q2).

Lemma A.0.6. Let q ∈ H(Z), then the following properties are equivalent

i. q is invertible in H(Z);

ii. N(q) = 1

iii. q ∈ {±1,±i,±j,±k}

Quaternion that satisfies one of those properties is called unit.

Definition A.0.7. A quaternion α ∈ H(Z) is prime if α is not a unit in H(Z)

and if, whenever α = βγ in H(Z), then either β or γ is a unit.

Besides by definition, we can also determine a prime quaternion by the fol-

lowing lemma given in [5]

Lemma A.0.8. α ∈ H(Z) is prime in H(Z) if and only if N(α) is prime in Z.

Now, we have the following factorization

Proposition A.0.9. Every quaternion α ∈ H(Z) is a product of prime quater-

nions.

Proof. We proceed by induction over N(α), the case N(α) = 1 (i.e. α is invert-

ible) being trivial. Therefore, we may assume thatN(α) > 1. If α is a prime, there
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A. Quaternions and Octonions Algebra

is nothing to prove. Otherwise, α can be written as a product of 2 quaternions,

that is : α = βγ, where none of them is a unit, which means N(β), N(γ) > 1.

And since the norm is multiplicative, we must have N(β) < N(α), N(γ) < N(α).

Therefore, by induction hypothesis, β, γ are products of prime quaternions, and

so is α.

Octonions

Definition A.0.10. The octonion algebra over a ring R, denoted by O(R) is

the 8-dimensional R-module with canonical basis denoted by 1, i, j, k, t, it, jt, kt

(referred as the unit bases), where 1, i, j, k is the usual quaternion basis that

satisfies

i2 = j2 = k2 = −1, ij = k, (A.1)

and unit basis x 6= 1 satisfies x2 = −1.

We will write O(R) as O only when the meaning of R is clear from the context.

Here we will choose R = Z,Q,Fp.
The conjugate of an octonion α = a0 + a1i+ . . .+ a7kt is defined as:

ᾱ = 2a0 − α,

i.e.

ᾱ = a0 − a1i− . . .− a7kt.

It is a (ring) antiautomorphism of O, that is a bijection O that satisfies for any
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A. Quaternions and Octonions Algebra

α, β ∈ O:

1̄ = 1

α + β = ᾱ + β̄

αβ = β̄ᾱ

If we let the quaternion algebra H be the R-module with basis 1, i, j, k, then

the octonions can be viewed as O = H + Ht. The multiplication of octonions is

completely determined by the multiplication of quaternions and the rule

(α1 + α2t)(β1 + β2t) = α1β1 − β̄2α2 + (β2α1 + α2β̄1)t

for α1, α2, β1, β2 ∈ H.

We can check by calculation that octonion algebras are not associative, but are

alternative algebras:

(alternative algebra identities) (αα)β = α(αβ) and β(αα) = (βα)α.

These two conditions are equivalent to the fact that the trilinear map called

associator

[a, b, c] = a(bc)− (ab)c

is alternating. It follows that octonion algebras satisfy the Artin theorem:

Theorem A.0.11. (Artin) In an alternative algebra, any two elements generate

an associative subalgebra.

Proof. (See Schafer [11])

This theorem gives a corollary that will be used frequently, as follow:
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A. Quaternions and Octonions Algebra

Corollary A.0.12. Let α, β be elements of O(Q). Then

(αβ)β̄ = α(ββ̄), α(ᾱβ) = (αᾱ)β.

In addition, in an alternative algebra, the following rules hold for all α, β, γ :

(αβα)γ = α((βα)γ)

(αβ)(γα) = α(βγ)α

((βα)γ)α = β(αγα)

These rules are known as Moufang Rules/Moufang Identities.

As for quaternions, octonions are also endowed with a norm N . If α = a0 +

a1i+ . . .+ a7kt is an octonion, the norm of α is defined by

N(α) = αᾱ = a20 + a21 + . . .+ a27.

This norm also has the multiplicativity property, i.e: N(αβ) = N(α)N(β) for

any octonions α and β. This follows directly from Theorem A.0.11 and the anti-

automorphism property, that

N(αβ) = (αβ)αβ = (αβ)(β̄ᾱ) = α(ββ̄)ᾱ = N(β)αᾱ = N(α)N(β).

α ∈ O(R) is invertible if there exists β ∈ O such that

αβ = 1

⇔ ᾱαβ = ᾱ

⇔ N(α)β = ᾱ

⇔ β = N(α)−1ᾱ

Thus, the inverse of α is α−1 = N(α)−1ᾱ. If we denote the set of invertible
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A. Quaternions and Octonions Algebra

octonions as O(R)×, then

O(R)× = {α ∈ O(R) : N(α) ∈ R×}.

An octonion α is called integral if tr(α) ∈ Z and N(α) ∈ Z.

The Set of Integral Elements C

From Definition A.0.10, there are 7 unit bases of octonions. A triad is defined as

a set of 3 elements among the seven unit bases {1, i, j, k, t, it, jt, kt}. There are

35 possible triads and among those triads, only 7 are associative, namely:

i, j, k, i, t, it, j, t, jt, k, t, kt, k, jt, it, j, it, kt, i, kt, jt.

Each of these associative triads, together with the additional basis unit 1, gener-

ate a quaternion subalgebra. Moreover, each of the triads related to one Z-module

which among them, they are isomorphic.

Let us consider the Z-module that associates to the triad i, j, k. Define

h =
1

2
(i+ j + k + t).

Now the three octonions i, j, h generate (by multiplication) k = ij and ih, jh, kh.

Define C as a Z-module generated by the eight octonions

i, j, k, h, ih, jh, kh.

CLAIM 1: C is closed under multiplication.
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Proof. We will list all possible multiplications of the elements of the basis below.

i2 = j2 = k2 = h2 = −1,

jk = −kj = −ih.h = i, ki = −ik = −jh.h = j, ij = −ji = −kh.h = k,

i.ih = j.jh = k.kh = −h,

ih.i = −h.ih = h− i jh.j = −h.jh = h− j, kh.k = −h.kh = h− k,

(ih)2 = hi = −1− ih, (jh)2 = hj = −1− jh, (kh)2 = hk = −1− kh,

jh.k = −j − ih, kh.i = −k − jh, ih.j = −i− kh,

kh.j = −k + ih, ih.k = −i+ jh, jh.i = −j + kh

jh.ih = k − h− ih, kh.jh = i− h− jh, ih.kh = j − h− kh,

kh.ih = −j + h− ih, ih.jh = −k + h− jh, jh.kh = −i+ h− kh

k.jh = −j.kh = 1 + j − k + ih,

i.kh = −k.ih = 1 + k − i+ jh,

j.ih = −i.jh = 1 + i− j + kh.

This proves that C is closed under multiplication. Moreover, C is an integral

domain. (Note that: a module is called an integral domain if it is closed under

multiplication).

CLAIM 2: C contains 240 units.
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Proof. Notice that C contains the elements:

t = 2h− i− j − k, it = 2ih+ 1 + j − k,

jt = 2jh+ 1 + k − i, kt = 2kh+ 1 + i− j,
1

2
(−1− j + k + it) = ih,

1

2
(i+ t+ jt− kt) = h+ jh− kh− i,

1

2
(−1− k + i = jt) = jh,

1

2
(j + t+ kt− it) = h+ kh− ih− j,

1

2
(−1− i+ j + kt) = kh,

1

2
(k + t+ it− jt) = h+ ih− jh− k,

1

2
(−1 + it+ jt+ kt) = 1 + ih+ jh+ kh,

1

2
(i+ j + k + t) = h,

1

2
(−1 + i+ t+ it=h+ ih− k, 1

2
(−j − k + jt− kt) = jh− kh− i,

1

2
(−1 + j + t+ jt) = h+ jh− i, 1

2
(−k − i+ kt− it) = kh− ih− j,

1

2
(−1 + k + t+ kt) = h+ kh− j, 1

2
(−i− j + it− jt) = ih− jh− k,

all of which are of unit norm. By adding or substracting 1, i, j, k, t, it, jt or kt,

we find altogether 240 units:

±1,±i,±j, ±k,±t, ±it,±jt,±kt
1

2
(±1± j ± k ± it) 1

2
(±i± t± jt± kt)

1

2
(±1± k ± i± jt) 1

2
(±j ± t± kt± it)

1

2
(±1± i± j ± kt) 1

2
(±k ± t± it± jt)

1

2
(±1± it± jt± kt) 1

2
(±i± j ± k ± t)

1

2
(±1± i± t± it) 1

2
(±j ± k ± jt± kt)

1

2
(±1± j ± t± jt) 1

2
(±± k ± i± kt± it)

1

2
(±1± k ± t± kt) 1

2
(±i± j ± it± jt).
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(See [3])

The last seven rows of the table have the following properties: two elements in

the same row have no common terms, but any two elements not in the same row

have just two common terms, and the four remaining terms of two such elements

form another element of the set.

In general, we have the following characterization for C.

Lemma A.0.13. C is the set of octonions of the form

1

2
(a0 + a1i+ a2j + a3k + a4t+ a5it+ a6jt+ a7kt),

where the ai’s are integers which satisfy

(a0, a1, a2, a3) ≡ (a4, a5, a6, a7)(mod2) if a0 + a1 + a2 + a3 ≡ 0(mod2),

(a0, a1, a2, a3) ≡ (1− a4, 1− a5, 1− a6, 1− a7)(mod2) if a0 + a1 + a2 + a3 ≡ 1(mod2).

Coxeter([3] 573) showed that the set C satisfy the Dickson Criterion to be the

set of integral elements.

Besides as a set of integral elements, C itself is a Z-submodule of O generated

by 8 octonions, so it can also be considered as Z-lattice of rank 8. By exhibiting

a fundamental domain of small diameter for the lattice C, Coxeter[3] proves the

following theorem:

Theorem A.0.14. For every λ ∈ O, there is a γ ∈ C such that

N(λ− γ) ≤ 1

2

Applying this theorem to λ = αβ−1 (Rehm), this theorem gives the following

corollary:
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Corollary A.0.15. If α, β ∈ C and β 6= 0 then there exist γ, ρ ∈ C such that

α = γβ + ρ and N(ρ) ≤ 1
2
N(β).

Definition A.0.16. Let α be an element of C.

(a) The content of α, denoted by c(α) is the largest rational integer dividing

α, i.e. c(α) is the greatest common divisor of the coefficients of α in some

Z-base of C.

(b) α is called primitive if c(α) = 1.

(c) α is called a prime if N(α) = p is a prime number.

(d) α is positive, written as α > 0 if and only if the smallest i such that ai 6= 0

is > 0.

58



Appendix B

Cayley Graph

In this chapter, we will recall the definition and basic properties of Cayley graph

on groups. Moreover, we will introduce the Cayley graph define on loops, that is

used in the construction of our graph based on octonions.

Cayley Graph on Groups

Let G be a group (finite or infinite), and let S be a nonempty, finite subset of G.

We assume that S is symmetric; that is, S = S−1.

Definition B.0.17. The Cayley graph G(G,S) is the graph with vertex set V = G

and edge set

E = {{x, y} : x, y ∈;∃s ∈ S : y = xs}.

Two vertices are adjacent if one is obtained from the other by right multipli-

cation by some element of S. The symmetry of S implies the symmetry of the

adjacency relation, so the resulting graph is undirected.

Proposition B.0.18. Let G(G,S) be a Cayley graph; set k = |S|.

(a) G(G,S) is a simple, k-regular, vertex-transitive graph.
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(b) G(G,S) has no loop if and only if 1 6∈ S.

(c) G(G,S) is connected if and only if S generates G.

(d) If there exists a homomorphism χ from G to the multiplicative group {1,−1},

such that χ(S) = {−1}, then G(G,S) is bipartite. The converse holds pro-

vided G(G,S) is connected.

Proof. (a) The adjacency matrix of G(G, s) is

Axy =

 1 if there exists s ∈ S such that y = xs,

0 otherwise.

From this it is clear that G(G,S) is simple and k-regular. On the other

hand, G acts on the left on G(G,S) by left multiplication: this action is

transitive on V = G.

(b) This result is clear.

(c) G(G,S) is connected if and only if every x ∈ G is connected to 1 ∈ G by a

path of edges. But this holds if and only if every x ∈ G can be expressed

as a word on the alphabet S, that is, if and only if S generates G.

(d) If the homomorphism χ : G→ {±1} is given, then

V± = {x ∈ G : χ(x) = ±1}

defines a bipartition of G(G,S). For the converse, assume that G(G,S) is

connected and bipartite. Denote by V+ the class of the bipartition through
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1 ∈ G and by V− the other class. (Note that S ⊂ V−.) We then define a

map χ : G→ {±1} by

χ(x) =

 1 if x ∈ V+,

−1 if x ∈ V−.

To check that χ is a group homomorphism, we first observe that, since S

generates G,

χ(x) = (−1)lS(x),

where lS(x) is the word length of x with respect to S, hence, the distance

from x to 1 in G(G,S). The fact that G = V+∪V− then makes it clear that

χ is a group homomorphism.

Cayley Graph on Loops

Definition B.0.19. A loop is a set L with a binary operation ∗, such that

(i) for each a and b in L, there exist unique elements x and y in L such that:

a ∗ x = b and y ∗ a = b;

(ii) there exists a unique element e such that x ∗ e = x = e ∗ x for all x in L.

It follows that every element of a loop has a unique left and right inverse. A

loop where the left and right inverses coincide is called inverse loop. We denote

in this case by x−1 the unique element such that x ∗ x−1 = x−1 ∗ x = e.

Definition B.0.20. A Moufang loop is a loop satisfying one of the three equiv-

61



B. Cayley Graph

alent following identities:

(αβα)γ = α((βα)γ)

Moufang identities: (αβ)(γα) = α(βγ)α

((βα)γ)α = β(αγα)

Definition B.0.21. (directed/undirected Cayley graph on a loop) Let L

be a loop and S be a generating set for it. The directed Cayley graph
−→
G (L, S) is

a graph with elements of L as vertices and the set {(l, ls), l ∈ L, s ∈ S} as edges.

The undirected Cayley graph G(L, S) is obtained from
−→
G (L, S) by replacing each

directed edge (l, ls) by an undirected edge {l, ls}. Equivalently, there is an edge

between l and l′ if and only if there exists s ∈ S such that either l′ = ls or l = l′s.

In the previous chapter, we know that for the Cayley graph on a group, the

undirected Cayley graph is a |S|-regular graph without self-loops if and only if

S = S−1 and 1 6∈ S. There is a generalization of this property for Cayley graphs

on loops.

Proposition B.0.22. G(L, S) is a |S|-regular graph without loops iff

(i) For all l ∈ L, l 6∈ lS,

(ii) l ∈ (ls)S for any s ∈ S.

Note that if L is a Moufang loop, then this is equivalent to 1 6∈ S and S−1 = S,

as in group. A problem occur in Cayley graph on loop that it is not necessarily

vertex transitive as for Cayley graph on group. This is because the left mul-

tiplication by a loop element does not necessarily yield a graph automorphism

because of the lack of associativity. However, any regular graph can be realized

as Cayley graph on a certain loop [9].
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Appendix C

Program with Magma Computer

Algebra

1 //Asking f o r input from user

2 repeat

3 pr in t ”Input a prime p = ” ;

4 r e ad i p ;

5 pr in t ”Input a prime q > p” ;

6 r e ad i q ;

7 un t i l IsPrime (p) and IsPrime (q ) and q gt p ;

8

9 // d e f i n i n g Sp

10 rp :=Floor ( SquareRoot (p ) ) ;

11 A:=[∗ ∗ ] ;

12 Sol :={@ @} ;

13 i := 1 ;

14 j :=0;
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C. Program with Magma Computer Algebra

15 for a := 0 to rp do

16 for b:= −Floor ( SquareRoot (p−a ˆ2)) to Floor ( SquareRoot (p−a ˆ2)) do

17 for c := −Floor ( SquareRoot (p−aˆ2−bˆ2)) to Floor ( SquareRoot (p−aˆ2−bˆ2)) do

18 for d:= −Floor ( SquareRoot (p−aˆ2−bˆ2−c ˆ2) ) to Floor ( SquareRoot (p−aˆ2−c ˆ2) ) do

19 i f aˆ2 +bˆ2 + cˆ2 + dˆ2 eq p then

20 Append(˜A, [ a , b , c , d ] ) ;

21 i := i +1;

22 end i f ;

23 end for ;

24 end for ;

25 end for ;

26 end for ;

27 i f I sD i v i s i b l eBy ( ( p−1) , 4) then

28 for j :=1 to i−1 do

29 i f IsOdd (A[ j ] [ 1 ] ) then

30 Inc lude (˜ Sol , A[ j ] ) ;

31 end i f ;

32 end for ;

33 e l i f I sD i v i s i b l eBy ( ( p−3) , 4) then

34 for j :=1 to i−1 do

35 i f IsEven (A[ j ] [ 1 ] ) then

36 i f A[ j ] [ 1 ] gt 0 then

37 Inc lude (˜ Sol , A[ j ] ) ;

38 e l i f A[ j ] [ 2 ] gt 0 then

39 Inc lude (˜ Sol , A[ j ] ) ;

40 end i f ;
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41 end i f ;

42 end for ;

43 end i f ;

44

45 //Finding x , y

46 I := {} ;

47 for m in [ 0 . . q−1] do

48 for n in [ 0 . . q−m−1] do

49 i f I sD i v i s i b l eBy (mˆ2+nˆ2+1, q ) then

50 x:=m;

51 y:=n ;

52 break ;

53 end i f ;

54 end for ;

55 end for ;

56 G:= GeneralLinearGroup (2 , q ) ;

57

58 //Finding i nv e r s e o f element in GF(q )

59 Inv := func t i on ( n i )

60 i f ni eq 1 or n i eq q−1 then

61 di := ni ;

62 else

63 di := ni ˆ(q−2);

64 end i f ;

65 return di ;

66 end func t i on ;
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C. Program with Magma Computer Algebra

67

68 //Function f o r reduc ing matr i ce s

69 ma:=[∗ ∗ ] ;

70 r educt ion := func t i on (ma)

71 i f ma[ 1 ] ne 0 then

72 bu:=Inv (ma [ 1 ] ) ;

73 else

74 bu:=Inv (ma [ 2 ] ) ;

75 end i f ;

76 m1:=ma[ 1 ] ∗ bu ;

77 m2:=ma[ 2 ] ∗ bu ;

78 m3:=ma[ 3 ] ∗ bu ;

79 m4:=ma[ 4 ] ∗ bu ;

80 return Matrix ( F i n i t eF i e l d (q ) , 2 , 2 , [m1,m2,m3,m4 ] ) ;

81 end func t i on ;

82

83 //Matrix a s s o c i a t e

84 L:=[∗ ∗ ] ;

85 as soc := func t i on (L)

86 b1:= (L[1 ]+x∗L[2 ]+y∗L [ 4 ] )mod q ;

87 b2:= (−y∗L[2 ]+L[3 ]+x∗L [ 4 ] )mod q ;

88 b3:= (−y∗L[2]−L[3]+x∗L [ 4 ] )mod q ;

89 b4:= (L[1]−x∗L[2]−y∗L [ 4 ] )mod q ;

90 An:= reduct i on ( [ b1 , b2 , b3 , b4 ] ) ;

91 return An;

92 end func t i on ;
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C. Program with Magma Computer Algebra

93

94 // Set o f g ene ra to r s

95 Gen:={@ @} ;

96 for k:=1 to #Sol do

97 Inc lude (˜Gen , a s soc ( So l [ k ] ) ) ;

98 end for ;

99 pr in t ”Psi (Sp)=” , Gen ;

100 pr in t ”The constructed Cayley graph i s ” , #Gen , ”−regular” ;

101

102 //Function to cons t ruc t the graph

103 u:=#Gen ;

104 Li :=[∗ ∗ ] ;

105 tim:= func t i on ( Li , r )

106 D:= Matrix ( F i n i t eF i e l d (q ) , 2 , 2 , Li )∗Gen [ r ] ;

107 D1:= reduct i on ( ElementToSequence (D) ) ;

108 return D1 ;

109 end func t i on ;

110

111 //Function f o r Checking the Set o f Ve r t i c e s

112 bon : = [ ] ;

113 check := func t i on (bon , z )

114 i f not IsEmpty ( bon [ z ] meet bon [ z−1]) then

115 na:=z ; ta :=z−1;

116 else na :=1; ta :=1;

117 end i f ;

118 return [ na , ta ] ;
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119 end func t i on ;

120

121 // Construct ing the Cayley graph

122 s e t : = [ ] ;

123 I n s e r t (˜ set , 1 , { Id (G) } ) ;

124 for h:=1 to q do

125 l a l a :={@ @} ;

126 Y:= l a l a ;

127 for x in s e t [ h ] do

128 for k:=1 to u do

129 CK:=tim ( ElementToSequence (x ) , k ) ;

130 i f h eq 1 then

131 Y:= Y j o i n Inc lude ( l a l a , CK) ;

132 e l i f h ne 1 and CK not in s e t [ h−1] then

133 Y:= Y j o i n Inc lude ( l a l a , CK) ;

134 end i f ;

135 I n s e r t (˜ set , ( h+1) , Y) ;

136 end for ;

137 end for ;

138

139 //Checking Cycle and Determining the Girth

140 U:=check ( set , h+1);

141 i f U ne [ 1 , 1 ] then

142 U;

143 pr in t ”The girth i s equal to” , U[1 ]+U[2 ] −2 ;

144 break ;
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145 end i f ;

146 i f #se t [ h+1] l t (p+1)∗pˆ(h−1) then

147 pr in t ”The girth i s equal to” , 2∗h ;

148 break ;

149 end i f ;

150 i f h gt 3 then // e r a s i ng prev ious unused s e t

151 s e t [ h−2]:={@ @} ;

152 end i f ;

153 end for ;

154

155 // Theo r i t i c a l Bound

156 i f LegendreSymbol (p , q ) eq −1 then

157 pr in t ”The graph i s bipartite .” ;

158 pr in t ”The lower bound of the girth i s” , 4∗(Log (q )/Log (p ) ) − (Log (4)/ Log (p ) ) ;

159 car := qˆ3−q ;

160 else

161 pr in t ”The graph i s nonbipartite .” ;

162 pr in t ”The lower bound of the girth i s” , 2∗(Log (q )/Log (p ) ) ;

163 car := (qˆ3−q ) / 2 ;

164 end i f ;

165 pr in t ”Moore upper Bound” , 2∗(Log ( car )/Log (p ) ) ;
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