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Introduction

0.1. For a smooth complex projective variety X or, more generally, a compact Kähler

manifold X, a fundamental result is the so-called “Hodge decomposition” of its singular coho-

mology with complex coefficients. More precisely, we have a decomposition of the cohomology

groups

(1) Hn(X,C) =
⊕
p+q=n

Hp(X,Ωq
X)

where Ωq
X is the sheaf of holomorphic q-differential forms on X. This decomposition behaves

well with respect to the action of the Galois group of C over R: if we denote by σ the complex

conjugation, i.e. the unique non trivial element of Gal(C/R), then σ acts on Hn(X,C) and trans-

forms a holomorphic q-form in an anti-holomorphic q-form, inducing a map on the cohomology

groups that satisfies Hp(X,Ωq
X) = Hq(X,Ωp

X).

If X is an abelian variety over C, the Hodge decomposition (1) reduces to give the following

canonical isomorphism

(2) H1(X,C) = H0(X,OX)⊕H0(X,Ω1
X),

since the cup-product pairings identify Hr(X,C) with the r-th exterior power of H1(X,C) and

(see [Ser59, VII, Th. 10])

Hq(X,Ωp
X) =

q∧
H1(X,OX)⊗

p∧
H0(X,Ω1

X).

0.2. In the late sixties, Tate asked if a similar result could hold for the p-adic étale cohomol-

ogy of a proper and smooth variety over a complete discrete valuation field K of characteristic

0 and perfect residue field of characteristic p > 0. In [Tat67], he established a “Hodge-like”

decomposition for an abelian variety with good reduction over K, after extending the scalars to

the p-adic completion of an algebraic closure of K.

More precisely, let OK be the valuation ring of K, S = Spec(OK), η the generic point of S

and η the geometric point corresponding to an algebraic closure K of K. Let OC be the p-adic

completion of OK , C its fraction field. Let GK = Gal(K/K) be the absolute Galois group of K.

For every r ∈ N, we denote by C(r) the Galois module C twisted by the action of the r-power

of the p-adic cyclotomic character χp and by C(−r) its dual. Let X be an abelian variety over

η with good reduction. Tate proved the existence of a canonical GK-equivariant isomorphism

(3) C⊗Qp H1
ét(Xη,Qp)

∼−→ H0(X,Ω1
X/η)⊗K C(−1)⊕H1(X,OX)⊗K C,

now called the Hodge-Tate decomposition.

We know that there is a canonical isomorphism

H1
ét(Xη,Zp)

∼−→ HomZp(Tp(Xη),Zp),
ii



INTRODUCTION iii

where Tp(Xη) is the p-adic Tate module of the abelian variety Xη. In this case, (3) is equivalent

to the existence of canonical isomorphisms

(4)
H1(X,OX)

∼−→ HomZp[GK ](Tp(Xη),C)

H0(X,Ω1
X/η)

∼−→ HomZp[GK ](Tp(Xη),C(1)).

The theorem was proved more generally in [Tat67] for p-divisible groups. Using the semi-

stable reduction theorem, Raynaud proved in [SGA 7] (Exposé 9 Th. 3.6 and Prop. 5.6) the

conjecture for all abelian varieties over K, while the proof for the most general statement was

established in 1988 by Faltings in [Fal88].

In this mémoire we present a different proof, due to Fontaine [Fon82], of the theorem of

Tate and Raynaud as a consequence of a sophisticated, although relatively elementary, analysis

of the module of Kähler differentials Ω1
OK/OK

. The main advantage of this argument is that it

avoids completely the notion of p-divisible group as well as the notion of Néron model and it

does not involve the semi-stable reduction theorem.

We give an overview of the content of the different chapters.

0.3. Let K be a complete discrete valuation field of characteristic 0, with perfect residue

field of characteristic p > 0. In the first chapter, following [Fon04], we present some classical

results of Tate and Sen: they rely on a fine analysis of the ramification in the cyclotomic Zp-
extension of K, i.e. the unique Zp-extension K∞ of K contained in the field generated over K

by all the pn-th roots of 1.

Let mK∞ be the maximal ideal of OK∞ , HK = Gal(K/K∞), ΓK the quotient GK/HK .

Let L be the fraction field of the p-adic completion of OK∞ . The crucial point is the funda-

mental theorem of Tate 1.2.6, that states that for every finite extension M of K∞, we have

TrM/K∞(OM ) ⊇ mK∞ . Using this result, we will show that LΓK = CGK = K and that we have

an isomorphism, for every h ∈ N

H1
cont(ΓK ,GLh(K∞)) ∼= H1

cont(GK ,GLh(C)).

Furthermore, we prove that H0
cont(GK ,C(1)) = H1

cont(GK ,C(1)) = 0.

In the next section we study the category of C-representations of GK , that is the category

of finite dimensional C-vector spaces equipped with a continuous and semi-linear action of GK .

They form an abelian category, that we denote by RepC(GK). In a similar way we define the

notion of L-representation and K∞-representation of ΓK . According to Sen, we have canonical

⊗-equivalences of categories of representations

RepC(GK)
∼−→ RepL(ΓK) −→ RepK∞(ΓK),

that can be described as follows.

By a first theorem of Sen, every C-representation of GK , the C-linear morphism C ⊗L
WHK → W is an isomorphism. Hence the functor W 7→ WHK is a ⊗-equivalence between

RepC(GK) and RepL(ΓK).

Let X ∈ RepL(GK/HK) and let Xf be the K∞-vector space obtained by taking the

union of all finite dimensional K-subspaces of X that are stable by GK . A second theorem

of Sen proves that the functor X 7→ Xf defines a ⊗-equivalence between RepK∞(GK/HK) and

RepL(GK/HK), quasi-inverse of the functor Y 7→ Y ⊗K∞ L.
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Let Y ∈ RepK∞(ΓK). We will prove that there exists a unique endomorphism s of the

K∞-vector space Y such that, for every y ∈ Y , there exists an open subgroup Γy of ΓK such

that

γ(y) = exp(logχp(γ)s)(y)

for every γ ∈ Γy. The endomowphism s is now called the Sen endomorphism of Y . We will

see that s provides enough information to classify the representations up to isomorphisms. We

conclude the chapter by giving the abstract definition of Hodge-Tate representations.

0.4. In the second chapter we give the proof of Fontaine of the Theorem of Tate and

Raynaud. Let K be as in 0.3. Let Ω1
OK/OK

be the module of OK-differentials of OK . The

first part of the chapter is dedicated to the study of this Galois module: we will construct a

surjective, GK-equivariant and OK-linear morphism

ξ : K ⊗ Tp(Gm)→ Ω1
OK/OK

where Tp(Gm) denotes the p-adic Tate module of the multiplicative group over K. The kernel

of ξ is given by a⊗ Tp(Gm), where

a =
{
a ∈ K | v(a) ≥ −v(D)− 1

q − 1

}
and D is the absolute different of K. By passing to the limit, we will get a GK-isomorphism

(5) HomZp(Qp,Ω
1
OK/OK

)
∼−→ C(1).

This will be obtained as a particular case of more general results on Lubin-Tate formal groups,

that hold also when K is a complete discrete valuation field of characteristic p > 0 and perfect

residue field.

Let X be an abelian variety over η. In section 2.4, we will use the results presented so far

to give Fontaine’s proof of the decomposition (4). The idea goes as follows: the theorem can be

reduced to showing the existence of a K-linear injective morphism

(6) H0(X,Ω1
X/η)→ HomZp[GK ](Tp(X),C(1)).

The first step is to consider a proper model X/S of finite type for the abelian variety X/η. The

group scheme structure on X induces a group structure on the set X(OK), identified with X(K),

and the translation action of X(K) induces a morphism

%̂ = %̂X,X,r : prH0(X,Ω1
X/S)→ HomZ[GK ](X(K),Ω1

OK/OK
)

for a suitable non negative integer r. More precisely, given ω ∈ prH0(X,Ω1
X/S), we set %̂(ω) to

be the Z[GK ]-linear morphism

%̂(ω) : u 7→ u∗(ω).

Let Vp(X) = HomZ(Z[p−1], X(K)). By composing with

HomZ[GK ](X(K),Ω1
OK/OK

) −→ HomZ[GK ](Vp(X),HomZp(Qp,Ω
1
OK/OK

))

and extending the scalars to K, we get a K-linear map that eventually restricts to

% = %X,X,r : H0(X,Ω1
X/η)→ HomZp[GK ](Tp(X),HomZp(Qp,Ω

1
OK/OK

)).
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This is the required injective morphism (6), if we take into account the isomorphism (5). It does

not depend on the choice of r and of X.

Acknowledgements

This text would not exist without my supervisor, Ahmed Abbes. I’m deeply grateful to him for

the strong support that he provided during the past months, for the valuable remarks and for

the countless mathematical explanations. I consider myself honoured to have got a chance of

working under him. I would also like to thank Fabrizio Andreatta, who encouraged me to follow

this path and has always been a great source of help and precious insights. I could always count

on him during the difficulties encountered during the past year.
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CHAPTER 1

C-representations: the theory of Tate and Sen

1.1. Review of group cohomology

1.1.1. Let G be a topological group. Let M be a topological G-module, i.e. a topological

abelian group endowed with a liner and continuous action of G. Let Cncont(G,M) be the group

of continuous n-cochains of G with values in M . Let

dn : Cncont(G,M)→ Cn+1
cont (G,M)

be the boundary map

dnf(g1, . . . , gn+1) = g1f(g2, . . . , gn+1)+
n∑
j=1

(−1)jf(g1, . . . , gjgj+1, . . . , gn+1)+(−1)n+1f(g1, . . . gn).

The sequence C∗cont(G,M) is a cochain complex. We denote by Hn
cont(G,M) the n-th cohomology

group of this complex: it is called the n-th continuous cohomology group of G with coefficients

in M .

1.1.2. Given a short exact sequence of topological G-modules

0→M →M ′ →M ′′ → 0

we have a six-terms-long exact sequence

0→MG →M ′
G →M ′′

G → H1
cont(G,M)→ H1

cont(G,M
′)→ H1

cont(G,M
′′).

1.1.3. We can still define the groups H0 and H1 even when we drop the abelian hypothesis

on M , as in [Ser62], Appendix to chap. VII. Let M be a topological group, written multi-

plicatively, endowed with a continuous action of G. H0
cont(G,M) is defined as the group MG

of elements of M fixed by G. We denote by Z1
cont(G,M) the subset of the set of continuous

functions of G into M such that

f(g1g2) = f(g1)g1(f(g2))

for g1, g2 ∈ G: we call f ∈ Z1
cont(G,M) a continuous cocycle. We say that two cocycles f and

f ′ are cohomologous and write f ∼ f ′ if there exists a ∈M such that

f ′(g) = a−1f(g)g(a)

for every g ∈ G. This defines an equivalence relation on the set of cocycles. The quotient set

has a structure of pointed set: it contains a distinguished element equal to the class of the unit

cocycle f(g) = 1 for every g ∈ G. We denote its class by 1. We denote Z1
cont(G,M)/∼ by

H1
cont(G,M) and we call it the cohomology set of G with values in M . This definition coincides

(if we retain just the structure of pointed sets) with the usual one in the abelian case.

1



1.2. STATEMENT OF THE THEOREMS OF TATE AND SEN 2

1.1.4. Let G be a topological group and let H be a closed normal subgroup of G. Any

topological G-module M (abelian or not) can be regarded as H-module, as well as MH can be

regarded as G/H-module. Then we can naturally define the restriction map

res : H1
cont(G,M)→ H1

cont(H,M)

and the inflation map

Inf : H1
cont(G/H,M

H)→ H1
cont(G,M).

One has the following inflation-restriction exact sequence of pointed sets (resp. of abelian groups

if M is abelian):

(1.1.4.1) 1→ H1
cont(G/H,M

H)
Inf−−→ H1

cont(G,M)
res−−→ H1

cont(H,M).

There is a direct proof, valid for the abelian as well as for the non abelian case, in [Ser62], chap.

VII, §6.

1.2. Statement of the theorems of Tate and Sen

1.2.1. Let K be a complete discrete valuation field of characteristic 0, with perfect residue

field of characteristic p > 0. We fix an algebraic closure K of K and we denote by GK the

Galois group of K over K. We denote by OK the ring of integers of K and by OK the ring of

integers of K. Let OC be the p-adic completion of OK , C its field of fractions. We denote by vp
the valuation of C extending the valuation of K normalized by vp(p) = 1, and by |.| the p-adic

absolute value.

For any subfield M of C, we denote by OM its valuation ring and by mM the maximal ideal

of OM . If M is a finite extension of K we denote by vM the unique valuation of C normalized

by vM (M×) = Z and by eM = vM (p) the absolute ramification index of M .

1.2.2. Let χp be the cyclotomic character of K, i.e. the continuous homomorphism

χp : GK → Z×p
that gives the action of GK on the group of units of order a power of p. Let log be the p-adic

logarithm, log : Z×p → Zp. We denote by HK its kernel and by ΓK the quotient GK/HK . Notice

that ΓK ∼= Zp as abelian groups.

Let K∞ be the cyclotomic Zp-extension of K: it is the unique Zp extension of K contained

in the subfield of K generated by the roots of unity of order a power of p. By construction we

have that HK = Gal(K/K∞) and ΓK = Gal(K∞/K). Let L be the closure of K∞ in C.

The goal of the first part of this chapter is to present the proof of the following theorems

(originally due to Tate and Sen).

1.2.3. Theorem. We have:

i) H0
cont(HK ,C) = CHK = L;

ii) For every n ≥ 1, H1
cont(HK ,GLh(C)) = 1.

As a corollary, we have CGK = LΓK and H1
cont(GK ,GLh(C)) = H1

cont(ΓK ,GLh(L)). Indeed,

CGK = (CHK )ΓK = LΓK while the second statement follows from the inflation-restriction exact

sequence (1.1.4.1).

1.2.4. Theorem. We have:
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i) H0
cont(GK ,C) = H0

cont(ΓK , L) = K;

ii) For every h ≥ 1, the map

H1
cont(ΓK ,GLh(K∞))→ H1

cont(ΓK ,GLh(L)) = H1
cont(GK ,GLh(C))

induced by GLh(K∞) ⊂ GLh(C) is bijective.

1.2.5. The proof of theorems 1.2.3 and 1.2.4 relies on the following important result of

Tate, whose proof is a consequence of a detailed analysis of a ramified Zp-extension of K (not

necessarily the cyclotomic Zp-extension of 1.2.2).

1.2.6. Theorem (Tate, cf. [Fon04], Théorème 1.8). We keep the notations of 1.2.1. Let K∞
be a ramified Zp extension of K and let M be a finite extension of K∞. Let TrM/K∞ : M → K∞
be the trace map. Then TrM/K∞(OM ) ⊇ mK∞ .

1.3. The proof of Tate’s Theorem 1.2.6

1.3.1. Let K be as in 1.2.1. Let E be a finite extension of K, J the Galois group Gal(E/K),

α ∈ OE such that OE = OK [α] [Ser62, chap. III, Prop. 12]. We denote by Ji the i-th higher

ramification group of K of J [Ser62, chap. IV, §1]. We have

Ji = {g ∈ J | iJ(g) ≥ i+ 1}

where iJ(g) = vE((g − 1)α) for every g ∈ J . We call the integers i such that Ji 6= Ji+1 the

ramification numbers of the extension E/K.

1.3.2. Proposition. Let E be a cyclic ramified extension of K of degree p. Let i be the

unique ramification number of the extension E/K. Then we have i ≤ eE
p−1 and, for every x ∈ E,

vE(TrE/K(x)) ≥ vE(x) + (p− 1)i.

Proof. Let τ be a generator of J = Gal(E/K). We have, for every x ∈ E, vE((τ − 1)x) ≥
vE(x) + i, and the equality holds if an only if vE(x) is prime to p. Let P (T ) ∈ Z[T ] be a

polynomial such that

(1.3.2.1) pP (T ) =

p−1∑
j=0

T j − (T − 1)p−1.

Hence, for every x ∈ E, we have

(1.3.2.2) TrE/K(x) = (τ − 1)p−1(x) + pP (τ)(x)

and

(1.3.2.3) vE(pP (τ)(x)) = eE + vE(x),

since

pP (τ)(x) = px+

p−1∑
j=1

(1 + τ + . . .+ τ j−1)(1− τ)(x)− (1− τ)p−1(x).

Suppose that p divides i and let π ∈ E such that vE(π) = 1. We have vE((τ − 1)p−1(π)) =

(p−1)i+1 and vE(pP (τ)(π)) = eE +1 (by (1.3.2.3)), that are both prime to p (as eE is divisible

by p). On the other hand, vE(TrE/K(π)) = pvK(TrE/K(π)) is divisible by p. Therefore we have

the equality eE + 1 = (p− 1)i+ 1 (using (1.3.2.2)).
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Suppose that p does not divide i and let y ∈ E such that vE(y) = i. We have

vE((τ − 1)p−1(y)) = (p− 1)i+ i = pi,

while vE(pP (τ)(y)) = eE + i is prime to p. As we have again that vE(TrE/K(y)) is divisible by

p, we must have pi < eE + i.

By (1.3.2.2) we have, in both cases,

vE(TrE/K(x)) ≥ vE(x) + min{(p− 1)i, eE} ≥ vE(x) + (p− 1)i

for every x ∈ E. �

1.3.3. Lemma. Let m,n be integers verifying n ≥ m− 1 ≥ 0. Let i0, i1, . . . , im−1 be integers

verifying ir ≡ ir−1 mod pr for 1 ≤ r ≤ m − 1. Then the integers j + ivp(j) for j ∈ Z verifying

0 < j < pn and vp(j) < m are all distinct mod pn.

Proof. Suppose, by contradiction, that there exist j, j′ ∈ Z as above and verifying j′ +

ivp(j′ = j+ ivp(j) +pna. Let s = vp(j), s
′ = vp(j

′). We can suppose s < s′, so that 0 ≤ s ≤ m−2.

But then vp(j
′ − j) = s, while

vp((is − is′) + pna) ≥ min{s+ 1, n} = s+ 1,

which is a contradiction, as j′ − j = (is − is′) + pna. �

1.3.4. Proposition. Let n be an integer ≥ 1, E a cyclic totally ramified extension of K of

degree pn. Let γ be a generator of the Galois group Gal(E/K). Then

i) The extension E/K has exactly n distinct ramification numbers

0 < i0 < i1 < . . . < in−1.

ii) For 1 ≤ r ≤ n− 1, we have ir ≡ rr−1 mod pr.

iii) For every y ∈ E× there exists λ ∈ K such that

(1.3.4.1) vp(y − λ) ≥ vp((γ − 1)y)− 1

p− 1

Proof. Let K ′ (resp. E′) be the unique extension of degree p (resp. of degree pn−1) of K con-

tained in E. We argue by induction on n. The ramification numbers of E/K ′ are i1, i2, . . . , in−1,

since the lower numbering is compatible with the passage to subgroups. Using [Ser62, chap. IV,

Prop. 3], we get that for n ≥ 2, the ramification numbers of E′/K are i0, i1, . . . in−2, and i) fol-

lows.

Let π be a uniformizer of E, so that vE(π) = 1. Let J = Gal(E/K). For every r ∈ N
verifying 1 ≤ r < pn, we have iJ(γr) = ivp(r) and vE(γr − 1)(π) = ivp(r) + 1. For every s ∈ Z
verifying vp(s) < n, there exists πs ∈ E such that vE(πs) = s and vE((γ − 1)(πs)) = s + ivp(s).

Indeed, set π0 = 1 and define, for every 1 ≤ r < pn, πr = πγ(π) . . . γr−1(π). Then vE(πr) = r

and (γ−1)(πr) = πγ(π) . . . γr−1(π)(γr(π)−π)/π, so that vE((γ−1)(πr)) = r+ivp(r). For s ≥ pn,

let r be the remainder of the division of s by pn. Then there exists λs ∈ K such that vE = s− r,
and we can take πs = λsπr. By substituting K with K ′, we see that for every s ∈ Z verifying

vp(s) < n− 1, there exists zs ∈ E such that vE(zs) = s and vE((γp − 1)(zs)) = s+ ivp(s)+1.

We show ii) by induction on n. For n = 1 there is nothing to prove, so we can assume n ≥ 2.

The induction hypothesis applied to the extension E′/K shows that

(1.3.4.2) ir ≡ ir−1 mod pr for 1 ≤ r ≤ n− 2.
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On the other hand, the induction hypothesis applied to E/K ′ shows that in−1 ≡ in−2 mod pn−2.

Let s = in−2 − in−1. To conclude we need to show that vp(s) 6= n− 2.

We argue by contradiction. Let zs be as above, so that vE((γp − 1)(zs)) = s+ in−1 = in−2.

Let xs = (1 + γ + γ2 + . . . + γp−1)(zs). By (1.3.2.1) and (1.3.2.3) we have vE(xs) > s and

vE((γ−1)(xs)) = vE((γp−1)(zs)) = in−2. Since the extension E/K is totally ramified of degree

pn, {πr}1≤r<pn is a basis of E over K. Write xs =
∑pn−1

r=0 brπr for br ∈ K. Hence

vE(xs) = min
0≤r<pn

{pnvK(br) + r}

so that pnvK(br) + r > s for every r. As (γ − 1)(xs) =
∑pn

r=1 br(γ − 1)(πr), if vp(r) = n− 1 we

have vE(br(γ − 1)(πr)) > s+ in−1 = in−2. By 1.3.3 (for m = n− 1) we have

in−2 = vE((γ − 1)(xs)) = min
0≤r<pn; vp(r)<in−1

{pnvK(br) + r + ivp(r)}.

Therefore there exists r such that in−2 ≡ r + ivp(r) mod pr, which is impossible as

vp(in−2 − ivp(r)) ≥ vp(r) + 1

by (1.3.4.2).

We finally prove iii). For y ∈ E× we have y =
∑pn−1

r=0 brπr, br ∈ K and we can take λ = b0.

Indeed, there exists a unique r0, 0 < r0 < pn, such that vE(y − λ) = vE(br0πr0). By 1.3.3 (for

m = n) we have

vE((γ − 1)(y)) = min
0<r<pn

{vE(brπr + ivp(r) ≤ vE(y − λ) + in−1

so vE(y − λ) ≥ vE((γ − 1)(y))− in−1. Hence

vp(y − λ) ≥ vp((γ − 1)(y))− in−1

eE
≥ vp((γ − 1)(y))− 1

p− 1

by 1.3.2 applied to the extension E/E′. �

1.3.5. Proposition. Let n be an integer ≥ 1, E a cyclic totally ramified extension of K of

degree pn. Then for every x ∈ E we have

vp(TrE/K(x)) ≥ vp(x) +
n(p− 1)

peK

Proof. Let i0 < i1 . . . < in−1 be the ramification numbers of the extension E/K. From

1.3.2 we deduce that

vp(TrE/K(x)) ≥ vp(x) +
(p− 1)

eK

( i0
p

+
i1
p2

+ . . .+
in−1

pn

)
.

and the result follows, since by 1.3.4 ii) we have ir ≥ pr for every r. �

1.3.6. Let K∞ be a ramified Zp extension of K. For every r ∈ N, we denote by Kr the

unique extension of degree pr of K contained in K∞. If ΓK = Gal(K∞/K), we denote by Γr
the Galois group Gal(K∞/Kr). We fix a topological generator γ0 of ΓK and we let γr = γp

r

0 be

a topological generator of Γr.

By 1.3.4, there exists a unique non negative integer r0 ≥ 0 and a strictly increasing sequence

of positive integers

i0 < i1 < . . . < ir−1 < ir < . . .
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such that Kr0 is the maximal unramified extension of K contained in K∞ and that, for every r >

r0, the ramification numbers of the extension Kr/Kr0 are precisely i0, i1, . . . , ir−r0−1. Moreover,

we have ir ≡ ir−1 mod pr. The sequence (ir)r∈N is called the sequence of ramification numbers

of the extension K∞/K.

1.3.7. Let F be a finite Galois extension of K such that F ∩K∞ = K. For every r ≥ 0, let

Fr = KrF and F∞ = K∞F . Let J = Gal(F∞/K∞), Jr = Gal(Fr/Kr). Let $r be the canonical

isomorphism J
$r−−→ Jr. For τ ∈ J , we set ir(τ) = iJr($r(τ)).

1.3.8. Proposition. Under the assumptions of 1.3.7, for every τ ∈ J the sequence {ir(τ)}
is stationary.

Proof. Up to replacing K with Km for a sufficiently large m, we can suppose that the

extension F∞/F is totally ramified. Let (jr) be the sequence of ramification numbers of this

extension. Using [Ser62, chap. IV, Prop. 3] we have

ir(τ) =

{
ir+1(τ) if ir+1(τ) ≤ jr
1
p(ir+1(τ) + (p− 1)jr) if ir+1(τ) > jr

or, equivalently,

(1.3.8.1) ir+1(τ) =

{
ir(τ) if ir(τ) ≤ jr
pir(τ)− (p− 1)jr if ir(τ) > jr.

Therefore we have to show that there exists r such that ir(τ) ≤ jr. Otherwise we would have

ir(τ) > jr, so that ir+1(τ) = pir(τ)− (p− 1)jr by (1.3.8.1). Hence, by induction,

ir(τ) = pri0(τ)− (p− 1)(jr−1 + pjr−2 + . . . pr−1j0)

so that

j0 +
j1 − j0
p

+
j2 − j1
p2

+ . . .+
jr − jr−1

pr
< i0(τ).

The right-hand term is independent from r, but the left-hand term is ≥ r + 1, since it is the

sum of r + 1 integers ≥ 1 by 1.3.4, which is a contradiction. �

1.3.9. Let E be a finite extension of K. Let r be the unique integer such that mr
K =

DE/K ∩OK . We have mr
KD
−1
E/K ⊂ OE . Let {a1, . . . , ad} be a basis of OE over OK , {a∗1, . . . , a∗d}

the dual basis with respect to the trace form Tr: E × E → K, b a generator of mr
K . Then

(bai)a
∗
i ∈ OE and TrE/K((bai)a

∗
i ) = b for every 1 ≤ i ≤ d. As TrE/K(OE) is an ideal of OK , we

deduce that

(1.3.9.1) mr
K ⊂ TrE/K(OE).

Proof of 1.2.6. Up to replacing M with a finite extension, we can suppose that M is a

Galois extension of K∞. Up to replacing K with a finite extension contained in K∞, we can

suppose that M = K∞F , for a finite Galois extension F of K such that K∞ ∩ F = K. Using

the notations of 1.3.8, we have by [Ser62, chap. IV, Prop. 4]

vFr(DFr/Kr
) =

∑
τ∈J, τ 6=1

ir(τ)

for every r ∈ N. By 1.3.8 there exist an integer r0 and a constant c ≥ 0 such that vFr(DFr/Kr
) = c

for r ≥ r0.



1.4. THE COHOMOLOGY OF Gal(K/K∞): THE PROOF OF THEOREM 1.2.3 7

Let e be the ramification number of Fr/Kr for every r ≥ r0. Let n ∈ N be the smallest

integer such that en ≥ c. We have

mn
Kr
⊂ TrFr/Kr

(OFr) ⊂ TrM/K∞(OM ).

The first inclusion follows from (1.3.9.1). For the second inclusion, notice that M = FK∞ and

that J = Gal (M/K∞) is isomorphic to Jr = Gal(Fr/Kr). Hence, for x ∈ OF ⊂ OM , we have

TrFr/Kr
(x) =

∑
g∈Jr g(x) =

∑
τ∈J τ(x) = TrM/K∞(x) using the isomorphism $r.

Since vp(m
n
Kr

) = n/eKr goes to 0 as r goes to∞, we have that ∪r≥r0 = mK∞ and we conclude

that TrM/K∞(OM ) ⊇ mK∞ . �

1.4. The cohomology of Gal(K/K∞): the proof of Theorem 1.2.3

1.4.1. We keep the notations of 1.2.1—1.2.2. Let M be a finite Galois extension of K∞
and let J = Gal(M/K∞) be the Galois group of M over K∞.

1.4.2. Lemma. Let c be a real number > 1. For every λ ∈M there exists a ∈ K∞ such that

|λ− a| < c sup
g∈J
|(g − 1)λ|

Proof. By 1.2.6 the elements in TrM/K∞(OM ) have arbitrary small valuation. Therefore,

we can find y ∈ OM such that x = TrM/K∞(y) satisfies |x| > 1
c . Let µ = λy

x and let a =

TrM/K∞(µ). We have:

a =
Tr(yλ)

x
=

1

x

∑
g∈J

g(y)g(λ) = λ+
1

x

∑
g∈J

g(y)(g − 1)λ

and

|λ− a| ≤ sup
g∈J
|1
x
g(y)[(g − 1)λ]| < c sup

g∈J
|(g − 1)λ|

as |g(y)| ≤ 1, being y ∈ OM . �

Proof of part i) of 1.2.3. Let λ ∈ H0
cont(HK ,C) = CHK and write λ as limit of a sequence

{λn}n∈N ⊂ K such that |λ− λn| < p−n. As λ is fixed by HK we have, for every h ∈ HK ,

(1.4.2.1) |(h− 1)λn| = |h(λ− λn) + (λ− λn)| ≤ |h(λ− λn)| = |(λ− λn)| < p−n.

For every n ∈ N, letMn be a finite Galois extension ofK∞ containing λn. Let Jn = Gal(Mn/K∞).

By (1.4.2.1) we have|(g − 1)λn| < p−n for every g ∈ Jn (as Jn ≤ HK). By 1.4.2 with c = p, we

have that there exists an ∈ K∞ such that |λn − an| < p1−n. Hence the sequences {λn}n∈N and

{an}n∈N have the same limit λ. Hence λ ∈ L. �

1.4.3. Let Mh(OC) be the ring of h×h square matrices with coefficients in OC. We equip

Mh(OC) with the p-adic topology. Let |.| be the p-adic absolute value on Mh(OC): we have

|A| ≤ p−r if and only if A ∈ prMh(OC).

1.4.4. Lemma. Let H be an open subgroup of HK and let m be an integer ≥ 2. Let fm ∈
Z1

cont(H,GLh(C)) be a continuous cocycle verifying |fm(s) − 1| ≤ p−m for every s ∈ H. Then

there exists bm ∈ GLh(C) with |bm − 1| ≤ p1−m such that the continuous cocycle fm+1 defined

by

fm+1(s) = (bm)−1fm(s)s(bm)

satisfies |fm+1(s)− 1| ≤ p−m−1 for every s ∈ H.
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Proof. We can reduce to the case H = HK . Indeed, if K ′∞ = K
H

, we can find a finite

Galois extension K ′ of K such that K ′∞ is a ramified Zp extension of K ′.

Being fm continuous, we can find an open normal subgroup N of HK such that |fm(g)−1| ≤
p−m−2 for g ∈ N (it’s enough to take for N the pre-image of the open ball of radius p−m−2

and center 1). Let J = HK/N and let M = K
N

be the corresponding finite Galois extension

of K∞. By Theorem 1.2.6, there exists y ∈ OM such that
∑

τ∈J τ(y) = p. If T is a system of

representatives for J in HK , we let

bm =
1

p

∑
g∈T

fm(g)g(y).

As fm(g) ∈ 1 + pmMh(OC), we can write fm(g) = 1 + pmam(g) for am(g) ∈ Mh(OC), so that

bm =
1

p

∑
g∈T

(1 + pmam(g))g(y) =
1

p

∑
g∈T

g(y) + pm−1
∑
g∈T

am(g)g(y).

Hence bm ∈ 1 + pm−1Mh(OC). In particular, bm ∈ GLh(OC). For every s ∈ HK we have

(1.4.4.1) s(bm) =
1

p

∑
g∈T

s(fm(g))((sg)(y)) =
1

pfm(s)

∑
g∈T

fm(sg)((sg)(y)).

By the cocycle condition we also have fm(sg) ≡ fm(g) (mod pm+2) when s ∈ N and g ∈ HK ,

and (1.4.4.1) implies

s(bm) ≡ fm(s)−1bm (mod pm+1)

i.e. fm+1 = (bm)−1fm(s)s(bm) ≡ 1 (mod pm+1). �

Proof of part ii) of 1.2.3. Let f ∈ Z1
cont(HK ,GLh(C)). Being f continuous, we can find

an open normal subgroup N of HK such that |f(s)− 1| ≤ p−2 for every s ∈ N (notice that if f

is a cocycle, then f(1) = 1, so that the inverse image of an open ball centred in 1 is not empty).

Let f2 be the restriction of f to N . By 1.4.4 we can find a sequence {fm}m≥2 of continuous

cocycles verifying |fm(s) − 1| ≤ p−m for every s ∈ N and a sequence {bm}m≥2 ⊆ GLh(C)

verifying |bm − 1| ≤ p1−m such that

fm+1(s) = b−1
m fm(s)s(bm)

for every s ∈ N . Let {βm =
∏m
k=2 bk} the sequence of products. Then, for every s ∈ N ,

fm+1(s) = β−1
m f(s)s(βm).

Let b be the limit of the sequence {βm}m≥2; since limm→∞ fm = 1, b is an element of GLh(C)

satisfying 1 = b−1f(s)s(b) for every s ∈ N . In other words, the restriction of f to N is

cohomologous to the trivial cocycle. The inflation-restriction exact sequence (1.1.4.1) implies

that f is in the image of H1
cont(HK/N, (GLh(C))N ). But HK/N is the galois group J of the

finite Galois extension CN/CHK and

H1
cont(J, (GLh(C))N ) = H1(J,GLh(CN ))

which is trivial by Hilbert’s Theorem 90 [Ser62, chap. X, Prop. 3]. �
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1.5. The cohomology of Gal(K∞/K): the proof of Theorem 1.2.4

1.5.1. Throughout this section, we denote by K∞ a ramified Zp extension of K. We keep

the notations of 1.3.6. We say that the Zp extension K∞/K is regular if it is totally ramified

and if the sequence (ir)r∈N of ramification numbers verifies

ir − ir−1 = preK for every r ≥ 1.

We say that the extension K∞/K is potentially regular if there exists r0 ≥ 0 such that K∞/Kr0

is regular. In this case, for every r ≥ r0, K∞/Kr is regular.

1.5.2. Lemma ([Fon04, Prop. 1.11]). The cyclotomic Zp extension of K considered in 1.2.2

is potentially regular.

1.5.3. Lemma ([Fon04, Prop. 1.12]). Let F be a finite extension of K. Then a Zp extension

K∞/K is potentially regular if and only if FK∞/F is potentially regular.

1.5.4. For every r ∈ N, let TrKr/K : Kr → K be the trace map. For x ∈ K∞, let r ∈ N
such that x ∈ Kr; let

tK(x) =
1

pr
TrKr/K(x).

The map tK : K∞ → K does not depend on the choice of r: it’s a projector from the K-vector

space K∞ to its subspace K. Indeed, let x ∈ Kr ⊆ Kr′ . We have

1

pr′
TrKr′/K

(x) =
1

pr

( 1

pr′−r
TrKr/K(TrKr′/Kr

(x))
)

=
1

pr

( 1

pr′−r

∑
i

TrKr/K(γ̄i(x))
)

where γ̄ is a generator of Gal(Kr′/Kr) ≤ Gal(Kr′/K), so that TrKr/K(γ̄i(x)) = TrKr/K(x),

repeated exactly pr
′−r times.

1.5.5. Proposition ([Fon04, Prop. 1.13]). Suppose that K∞/K is regular. Then there exists

c ∈ R>0 such that for every x ∈ K∞ we have

|tK(x)− x| ≤ c.|(γ0 − 1)x|.

1.5.6. Proposition. Let K∞/K be a potentially regular Zp extension. Then the map

tK : K∞ → K is continuous. If t̂K : L → K denotes the extension of tK by continuity and

L0 denotes the kernel of t̂K , we have a decomposition L = K ⊕ L0. The operator γ0 − 1 is

bijective on L0, with a continuous inverse.

Proof. Let r0 be an integer such that the extension K∞/Kr0 is regular. We have

tK = p−r0 TrKr0/K
◦tKr0

by transitivity of the norm maps: p−r0 TrKr0/K
is clearly continuous (being Kr0/K finite) and

tKr0
is continuous by 1.5.5.

For the second assertion, suppose firstly that K∞/K is regular. If x ∈ K, then t̂K(x) = x,

so that t̂2K = t̂K and we can write L as sum K ⊕ L0. For every x ∈ L we clearly have

(γ0 − 1)(x) ∈ L0 and, in particular, (γ0 − 1)(L0) ⊂ L0. Let K∞,0 = K∞ ∩ L0 and let, for every

r ∈ N, Kr,0 = Kr∩L0: with this notation K∞,0 is the union of Kr,0, r ∈ N (Kr,0 ⊂ Kr+1,0 ⊂ . . .)
and L0 is the closure of K∞,0 in L. As the operator γ0− 1 is injective (hence bijective) on every
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finite-dimensional K-vector space Kr,0, it is also bijective on their union K∞,0. Let % be its

inverse. For every y ∈ K∞,0, as tK(%(y)) = t̂K(%(y)) = 0, we have by 1.5.5

|%(y)| ≤ c.|y|

and % is continuous. We can extend it to a continuous map, denoted again by %, from L0 to

itself, which is a continuous inverse of γ0 − 1.

For the general case, let r0 be an integer such that the extension K∞/Kr0 is regular and let

t̂Kr0
be the continuous extension of tKr0

to L. Let Lr0 be its kernel, %r0 : Lr0 → Lr0 the inverse

of the restriction of γr0 − 1. We have

L = K ⊕ L0 = Kr0 ⊕ Lr0

and, since Lr0 ⊂ L0, we can write

L0 = L0 ∩Kr0 ⊕ Lr0 .

The map γ0 − 1 is injective on L0, as L0 ∩K = 0. Since Kr0 is a finite-dimensional K-vector

space, L0 ∩Kr0 is of finite dimension over K, so that γ0 − 1 is bijective with continuous inverse

on it. As

γr0 − 1 = γ
pr0
0 − 1 = (γ0 − 1)A(γ0)

for A ∈ Z[γ0], we see that γ0 − 1 is bijective on Lr0 , with continuous inverse A(γ0)%r0 . �

1.5.7. Proposition. Suppose that K∞/K is regular. Let λ be a principal unit of OK (i.e. |λ−
1| < 1) but not a root of unity, then γ0 − λ is bijective with continuous inverse on L.

Proof. Since γ0 − λ is obviously bijective on K if λ 6= 1, we can use the decomposition

L = K ⊕ L0 and prove the statement for L0. Let % be the inverse of γ0 − 1. We have:

(1.5.7.1) % ◦ (γ0 − λ) = % ◦ ((γ0 − 1)− λ+ 1) = 1− (λ− 1)%.

Let c be the constant in 1.5.5. If |λ− 1|c < 1, we have |(λ− 1)%(y)| < |y| for all y ∈ L0 (see the

proof of 1.5.6), and consequently 1− (λ− 1)% is an automorphism of L0, with inverse given by

the (convergent) geometric series ∑
r≥0

[(λ− 1)%]r.

Hence, by (1.5.7.1), γ0 − λ has a continuous inverse on L0. If |λ − 1|c ≥ 1, we replace γ0 by

γr = γp
r

0 and λ by λp
r
, where r is large so large that |λpr − 1|c < 1 (notice that such r exists,

since λ = 1 + x, where v(x) ≥ 1). We then replace K by Kr, so that γr − λp
r

has a continuous

inverse on L0. Hence the map

(γ0 − λ)p
r − γr − λp

r

has a continuous inverse, so the same is true for (γ0 − λ)p
r

and hence for (γ0 − λ) too. �

1.5.8. Remark. Using exactly the same argument as in the proof of 1.5.6, we can prove

1.5.7 assuming only that K∞/K is potentially regular.
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1.5.9. From now on, we suppose that the Zp extension K∞/K is potentially regular. We

denote by L the closure of K∞ in C, ΓK = Gal(K∞/K), HK = Gal(K/K∞). We will prove

Theorem 1.2.4 as a particular case of the same statement for any potentially regular Zp-extension.

Proof of part i) of 1.2.4. It’s an immediate consequence of 1.5.6. Indeed we have

H0
cont(ΓK , L) = LΓK = {x ∈ L | (γ0 − 1)x = 0} = Ker(γ0 − 1),

but L = K ⊕ L0 and γ0 − 1 is bijective on L0, so that Ker(γ0 − 1) = K. �

1.5.10. Theorem ([Sen80, Prop. 3]). Let V be a finite dimensional K-vector space, V ⊂ L.

If V is stable by γ0, then V ⊂ K∞.

Proof. Let u ∈ EndK(V ) be the restriction of γ0 to V and let fu(T ) be its characteristic

polynomial: we can reduce to the case fu(T ) has all its roots in K. Indeed, let K ′ be the

extension of K obtained by adding the roots of fu(T ) in K. Let K ′∞ = K ′K∞. Then the

extension K ′∞/K
′ is potentially regular (see Remark 1.5.3) and we can substitute K by K ′, V

by K ′ ⊗K V and so on. Moreover, we can suppose that u has only one eigenvalue, say a, by

taking the decomposition of V as direct sum of its generalized eigenspaces.

Let v be a non zero eigenvector of u. We have γ0(v) = av, so that γp
r

0 (v) = ap
r
v. We have

that |(γ0 − 1)x| ≤ |x|, being the action of ΓK on L is continuous, so that a must be a principal

unit (i.e. congruent to 1 mod p). By 1.5.7 a must be a root of unity (cfr [Tat67], Prop. 7).

Up to replacing K by a finite extension contained in K∞, we can suppose that a = 1. Up

to replacing V by V + K (if V does not contain K), we may assume that V = K ⊕ V ′, with

V ′ ⊂ L0 = Ker t̂K . But then γ0 − 1 is bijective on L0, so that V ′ = 0 and V = K ⊂ K∞. �

Proof of part ii) of 1.2.4. Let ι be the map

ι : H1
cont(ΓK ,GLh(K∞))→ H1

cont(ΓK ,GLh(L))

We first prove that ι is injective: let f, f ′ ∈ Z1
cont(ΓK ,GLh(K∞)) be two continuous cocycles

that become cohomologous in GLh(L). Then there exists b ∈ GLh(L) such that

(1.5.10.1) f ′(γ0) = b−1f(γ0)γ0(b)

and it’s enough to show that b ∈ GLh(K∞). We can rewrite (1.5.10.1) as

(1.5.10.2) γ0(b) = f(γ0)−1bf ′(γ0).

Let K ′ be the extension of K generated by the coefficients of f(γ0) and f ′(γ0): it is a finite

extension of K contained in K∞. Let V be the K ′-vector space generated by the coefficients of

b: it’s a finite dimensional K-vector space, contained in L, and (1.5.10.2) shows that it is stable

by γ0. Being V closed in L, we can apply Theorem 1.5.10 to get V ⊂ K∞, so that b ∈ GLh(K∞).

To prove the surjectivity we need an auxiliary technical result:

1.5.11. Lemma. For every matrix A ∈ Mh(L), let v(A) be the minimum of the p-adic valu-

ations of its coefficients. Let r be an integer such that the extension K∞/Kr is regular and let

m be an integer ≥ 5. Let Am ∈ GLh(L), Xm ∈ GLh(Kr) be matrices verifying

v(Am − 1) ≥ 3p

p− 1
, v(Am −Xm) ≥ mp

p− 1
.
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Then there exist Bm ∈ GLh(L) verifying v(Bm − 1) ≥ (m−2)p
p−1 and Xm ∈ GLh(Kr) such that the

matrix

Am+1 = B−1
m Amγr(Bm)

verifies v(Am+1 − 1) ≥ 3p
p−1 and v(Am+1 −Xm+1) ≥ p(m+1)

p−1 .

The proof of the lemma is a direct computation similar to 1.4.4, using 1.5.6, and we omit it.

See [Fon04, Lemme 1.17].

We can now prove that ι is surjective: let f ∈ Z1
cont(ΓK ,GLh(L)). Being f continuous, there

exists an integer r — that we can choose big enough so that the extension K∞/Kr is regular

— such that v(f(γr) − 1) ≥ 5p
p−1 . Let a5 = f(γr) and let x5 = 1. Using the previous lemma,

we can produce three sequences of matrices: {am}m≥5 and {bm}m≥5 in GLh(L) and {xm}m≥5

in GLh(Kr) such that, for every m ≥ 5:

v(am − 1) ≥ 3p

p− 1
;

v(am − xm) ≥ mp

p− 1
;

v(bm − 1) ≥ (m− 2)p

p− 1
;

am+1 = b−1
m amγr(bm).

The sequence {βm =
∏m
k=5 bk}m≥5 converges to a matrix b ∈ GLh(L) and the sequences {am}m≥5

and {xm}m≥5 both converge to the same limit x ∈ GLh(Kr) and we have

x = b−1f(γr)γr(b).

Let f ′ be the continuous cocycle, cohomologous to f , defined by f ′(γ) = b−1f(γ)γ(b) for every

γ ∈ ΓK : by construction we have f ′(γr) = x ∈ GLh(Kr). For every γ ∈ ΓK , γrγ = γγr, so that

f ′(γ)γ(f ′(γr)) = f ′(γr)γr(f
′(γ))

or, equivalently

γr(f
′(γ)) = f ′(γr)

−1f ′(γ)γ(f ′(γr)) = x−1f ′(γ)γ(x).

Hence, the Kr subspace V of L generated by the coefficients of f ′(γ) is stable by γr. Since V

is finite dimensional over K we can use again Theorem 1.5.10 to deduce f ′(γ) ∈ GLh(K∞) for

every γ ∈ ΓK , i.e. f is cohomologous to a cocycle with values in GLh(K∞) and it is therefore in

the image of ι. �

1.5.12. Corollary. We have H0
cont(ΓK , L0) = H1

cont(ΓK , L0) = 0.

Proof. Indeed, LΓK
0 = 0 as we have seen in the proof of part i) of 1.2.4. Let f ∈

Z1
cont(ΓK , L0) be a cocycle. Being f continuous, it is determined by f(γ0) and under this

identification the group B1
cont(ΓK , L0) of continuous coboundaries is a subgroup of the image of

γ0 − 1. Hence H1
cont(ΓK , L0) ⊂ Coker(γ0 − 1) = 0 by 1.5.6. �
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1.5.13. Let K∞/K be the cyclotomic Zp extension of K. Let χ be a continuous character

of ΓK into the group of units of OK . We can define the space L with a twisted action of ΓK

sx = χ(s)(sx)

for all s ∈ ΓK and all x ∈ L. Following Tate [Tat67], we denote this space by L(χ). Let

λ = χ(γ0) and suppose that λ satisfies the assumptions of Prop. 1.5.7: this is the case, for

example, when χ(L) is infinite.

1.5.14. Proposition. We have H0(ΓK , L(χ)) = H1
cont(ΓK , L(χ)) = 0

Proof. Indeed, H0(ΓK , L(χ)) ⊂ Ker(γ0−λ) = 0 by 1.5.7. We can identify H1
cont(ΓK , L(χ))

with a subgroup of Coker(γ0 − λ), which is trivial, again by 1.5.7. �

1.5.15. Let χp be the cyclotomic character χp : GK → Z×p and consider the field C with

the action of GK twisted by χp. We have

H0
cont(GK ,C(χp)) = H1

cont(GK ,C(χp)) = 0.

Indeed, we have C(χp)
GK = (C(χp)

HK )ΓK = L(χp)
ΓK = 0 by Prop 1.5.14, as the kernel of χp

is contained in HK by definition. The statement for H1 follows from 1.5.14 together with the

inflation-restriction exact sequence (1.1.4.1).

1.6. Galois Representations

1.6.1. Let G be a topological group and let F be a field endowed with a linear topology

and a continuous action of G, compatible with the field structure. A finite-dimensional F -vector

space V endowed with a semi-linear action of G is called an F -representation of G. We form a

category, denoted RepF (G), with morphisms given by the G-equivariant maps.

We call unit representation the field F with the given action of G. If V ∈ RepF (G) we call

the dual representation of V the F -vector space V ∗ (dual of V ) with the action g((ϕ)(v)) =

g(ϕ(g−1(v))) for every g ∈ G, v ∈ V , ϕ ∈ V ∗. Finally, given V1, V2 ∈ RepF (G), we can form the

tensor product representation V1⊗V2 where the action of G is given by g(v1⊗v2) = g(v1)⊗g(v2)

for every g ∈ G, vi ∈ Vi (i = 1, 2). If E = FG is the subfield of F fixed by G, the category

RepF (G) is a Tannakian category over E.

1.6.2. Proposition. For every V ∈ RepF (G), the F -linear morphism

%F (V ) : F ⊗E V G → V

induced by the inclusion V G ⊂ V is injective.

Proof. By contradiction, let m be the smallest positive integer such that there exist

v1, v2, . . . , vm ∈ V G linearly independent over E but not over F . By the minimality of m,

there exist a1 = 1, . . . , am ∈ F× such that
∑m

i=1 aivi = 0. For every g ∈ G we have

0 = g
( m∑
i=1

aivi

)
= v1 +

m∑
i=2

g(ai)vi

so that
∑m

i=2(g(ai) − ai)vi = 0. Hence, again by the minimality of m, g(ai) − ai = 0 for every

i = 2, . . .m, i.e. ai ∈ E, that contradicts the independence of the vi’s over E. �
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1.6.3. Remark. We can prove in a similar way the following strengthened version of 1.6.2.

Let B be an integral E-algebra endowed with a linear topology and a continuous action of

G, compatible with the ring structure. Suppose that BG = Frac(B)G = E. Then for every

V ∈ RepF (G), the F -linear morphism

%B,F (V ) : B ⊗E (B ⊗F V )G → B ⊗F V

is injective.

1.6.4. We say that V ∈ RepF (G) is trivial if V ∼= Fn for some n ∈ N (isomorphism as

F -representations of G). By 1.6.2, we see that V is trivial if and only if the map %F (V ) is

bijective or, equivalently, if and only if we have the equality dimE(V G) = dimF V .

1.6.5. We keep the notations of 1.2.1—1.2.2: K∞ is the cyclotomic Zp extension of K

contained in K, L = Frac(ÔK∞), the completion taken with respect to the p-adic topology. For

every r ∈ N we denote by Kr the unique extension of degree pr over K contained in K∞. We

have HK = Gal(K/K∞) and Γ = ΓK is the Galois group Gal(K∞/K). If γ0 is a topological

generator of Γ, γr = γp
r

0 is a topological generator of Γr = Gal(K∞/Kr).

We naturally have two ⊗-functors

RepK∞(Γ)→ RepL(Γ)(1.6.5.1)

V 7→ L⊗K∞ V

and

RepL(Γ)→ RepC(GK)(1.6.5.2)

W 7→ C⊗LW.

The object of the theory of Sen is to construct two functors in the opposite direction defining

⊗-equivalences of categories

RepK∞(Γ)
∼−→ RepL(Γ)

∼−→ RepC(GK).

1.6.6. Theorem ([Sen80, Th. 2]). Every C-representation of HK is trivial

Proof. By 1.6.2 we have to show that, for every W ∈ RepC(HK), the map %C(W ) is

bijective. Let {w1, . . . , wh} be a C-basis of W . We can define a continuous cocycle f : HK →
GLh(C) by the assignment g 7→Mg, where Mg is the matrix representing the action of g on W

in the basis {w1, . . . , wh}, so that the i-th column is given by the coefficients of g(wi). Let b

be the matrix of base-change for another basis of W : the corresponding cocycle is given by the

formula f ′(g) = bf(g)b−1, so that f and f ′ are cohomologous and the map does not depend on

the choice of {w1, . . . , wh}. By 1.2.3 (ii), H1
cont(HK ,GLh(C)) is trivial, so that we can choose

a basis formed by elements {wi}hi=1 fixed by HK . Hence, given w =
∑h

i=1 biwi ∈ W , we have

w ∈ WHK if and only bi ∈ CHK = L (by 1.2.3 (i)). Therefore WHK is the L-vector space of

basis {wi}hi=1 and the statement follows. �

1.6.7. Corollary. The functor W 7→ WHK defines a ⊗-equivalence between the category

RepC(GK) and the category RepL(Γ), quasi-inverse of the functor (1.6.5.2).
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Proof. By 1.6.6, the functor W 7→WHK defines a ⊗-equivalence between RepC(HK) and

the category of finite-dimensional L-vector spaces, where a quasi inverse given by

X 7→ C⊗L X.

If W ∈ RepC(GK), WHK is naturally an L-representation of Γ = GK/HK and C ⊗L WHK

is isomorphic to W as (trivial) representation of HK , but also as representation of GK . If

Y ∈ RepL(Γ), (C ⊗L Y )HK ∼= CHK ⊗L Y = Y , by definition of the action of GK on a tensor

product. �

1.6.8. Let V ∈ RepK∞(Γ) and let {v1, . . . , vh} be a K∞-basis of V as vectors space.

Let M0 be the matrix representing the action of γ0 on V in the basis {vi}. Let Kr be the

field generated over K by the coefficients of M0: the integer r is called the degree of the basis

{v1, . . . , vh}. Since Kr is complete and the action of Γ over V is continuous, the Kr-vector space

generated by {v1, . . . , vh} and contained in V is stable for Γ.

1.6.9. Theorem ([Sen80, Th. 3]). Let X ∈ RepL(Γ). Let Xf be the union of the sub-K-

vector spaces of finite dimension of X that are stable by Γ. The L-linear map

L⊗K∞ Xf → X

induced by the inclusion Xf ⊂ X is bijective.

Proof. As in the proof of 1.6.6, we fix a basis {x1, . . . , xh} of X over L and we consider

the continuous cocycle f : Γ→ GLh(L) that maps γ ∈ Γ to Mγ , where Mγ represents the action

of γ on X in the basis {x1, . . . , xh}: f does not depend on the choice of the basis. By 1.2.4 (ii),

the map

H1
cont(Γ,GLh(K∞))→ H1

cont(Γ,GLh(L))

is surjective, so we can suppose that f takes value in GLh(K∞). In other words, we can choose

the xi’s such that the sub-K∞-vector space Y of X is stable for Γ; in particular Y ∈ RepK∞(Γ).

Since the L-linear map L ⊗K∞ Y → X induced by the inclusion Y ⊂ X is clearly bijective, to

complete the proof of the theorem it is enough to show that Y = Xf .

First of all, we have Y ⊂ Xf . Indeed, let r be the degree of the basis {x1, . . . , xh}. For every

s ≥ r, the Ks-vector space generated by the xi’s is of finite dimension over K, stable by Γ and

Y is clearly equal to the union of those space.

Let x ∈ Xf , x =
∑h

i=1 cixi with ci ∈ L. For every γ ∈ Γ, γ(x) =
∑h

i=1 ci(γ)xi, for suitable

coefficients ci(γ) ∈ L. Let V be the Kr-subspace of L generated by ci(γ) for i = 1, . . . , h

and γ ∈ Γ is of finite dimension over K. Write (ai,j(γ))1≤i,j≤h for the matrix Mγ . Then

(ai,j(γ))1≤i,j≤h ∈ GLh(Kr) and

γ(x) =

h∑
i=1

(ci(γ))xi =

h∑
i=1

γ(ci)ai,j(γ)xi

so that V is also the Kr vector space generated by γ(ci) for i = 1, . . . , h and γ ∈ Γ. It is therefore

stable by Γ and, being finite-dimensional, it is contained in K∞ by 1.5.10. Hence ci ∈ K∞ and

x ∈ Y . �

1.6.10. Corollary. The functor X 7→ Xf defines a ⊗-equivalence between the category

RepL(Γ) and the category RepK∞(Γ), quasi-inverse of the functor (1.6.5.1).
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Proof. It follows directly from 1.6.9 that the functor defined by the compositionX 7→ Xf 7→
Xf ⊗K∞ L is naturally isomorphic to the identity functor. On the other hand, (L ⊗K∞ V )f is

isomorphic to V for every V ∈ RepK∞(Γ) by construction, since given a K∞-basis {v1, . . . , vh}
of V , {1⊗vi}hi=1 is an L-basis of L⊗K∞ V such that the K∞ sub-vector space that they generate

is stable by Γ. �

1.7. The study of RepK∞(Γ)

1.7.1. Theorem ([Sen80, Th. 4]). Let Y ∈ RepK∞(Γ). There exists a unique K∞-linear

endomorphism s of Y such that, for every y ∈ Y , there is an open subgroup Γy of Γ satisfying

γ(y) = exp (logχp(γ).s)(y)

for every γ ∈ Γy. Moreover, the characteristic polynomial of s has coefficients in K.

Proof. Let {y1, . . . , yh} be a K∞ basis of Y . We first prove the uniqueness of s. Let s, s′

be two endomorphisms of Y having the required properties. Then there exists an open subgroup

Γr of Γ such that for every γ ∈ Γr

γ(yi) = exp (logχp(γ).s)(yi) = exp (logχp(γ).s′)(yi)

for i = 1, . . . , h. Hence exp (logχp(γ).s) = exp (logχp(γ).s′) for every γ ∈ Γr and s = s′.

Let r0 be the degree of the basis {y1, . . . , yh}, Y ′ the Kr0-sub-vector space of Y generated

by the yi’s and stable by Γ: Γr0 acts linearly on Y ′ (since Γr0 fixes Kr0) and the action on the

yi’s is given by a continuous homomorphism Γr0 → GLh(Kr0), γ 7→Mγ . For γ sufficiently close

to 1 (but different from 1), Mγ is close to Ih in GLh(Kr0) and the series log(Mγ) converges to

an endomorphism log(γ) ∈ EndKr0
(Y ′). The endomorphism s0 = log γ

log(χp(γ)) does not depend on

the choice of γ. Indeed, let γ0 be a topological generator of Γ. Let γ = γt0 and let γ′ = γt
′

0 be

another element in Γ such that log γ′ is defined. Then

log(γ′) = log(γ
logχp(γ′)
0 ) = logχp(γ

′) log γ0

so that the quotient log(γ′)
logχp(γ′) = log(γ)

logχp(γ) is independent from γ.

Let s be the unique K∞ endomorphism of Y that restricts to s0 on Y ′.

1.7.2. Lemma. There exists r ≥ r0 such that the endomorphism exp(logχp(γ).s) of Y is well

defined for every γ ∈ Γr.

We postpone the proof of the lemma. Writing out the definition of s, for every y ∈ Y ′, we

have

γ(y) = exp (logχp(γ).s)(y).

For a general y =
∑h

i=1 ciyi with ci ∈ K∞, the formula is satisfied if γ ∈ Γy = Γ′ ∩ Γr, where Γ′

is an open subgroup of Γ which fixes all the ci’s. This proves the existence part of the theorem.

Let M be the matrix of s in the basis {y1, . . . , yh}. For every γ ∈ Γr we have

(γ(y1), . . . , γ(yh)) = exp(logχp(γ)M)(y1, . . . , yh).

As γγ0 = γ0γ we have, for every γ ∈ Γr

(γ0(γ(y1)), . . . , γ0(γ(yh))) = exp(logχp(γ)γ0(M))(y1, . . . , yh)

so that M and γ0(M) are similar, that implies that the characteristic polynomial of s is fixed

by γ0, i.e. it’s coefficients are in K. �
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Proof of Lemma 1.7.2. It’s enough to show that there exists an open subgroup Γr of Γ

such that the series

exp(logχp(γ).s) =
∑
n≥0

(log(χp(γ)))n

n!
sn

converges in the ring EndK∞(Y ) for every γ ∈ Γr.

Let {y1, . . . , yh} be a K∞-basis of Y . For every b ∈ Q, let Yb be the OK∞-sub module of Y

defined by

Yb =
{ h∑
i=1

ciyi ∈ Y | vp(ci) ≥ b
}
.

Let a ∈ Q be such that s(Y0) ⊆ Ya. Recall that (see [NS99, chap. II, Prop. 5.5])

logZ×p =

{
pZp if p 6= 2

p2Zp if p = 2.

Let rK be the unique integer such that logχp(ΓK) = prKZp: we have rK ≥ 1 if p 6= 2 (resp.

rK ≥ 2 if p = 2) and the equality holds if and only if K is absolutely unramified, i.e. vK(p) =

eK = 1 (see [NS99, chap. II, Prop. 5.4-5.5]). Let r be the smallest non-negative integer such

that r + rk + a > 1
p−1 . Then for every n ∈ N and γ ∈ Γr we have

(log(χp(γ)))n

n!
sn(Y0) ⊂ Yn(r+rK− 1

p−1
+a)

as vp(n!) = 1
p−1

∑r
i=1 ai(p

i−1) if n =
∑r

i=0 aip
i, 0 ≤ ai < p is the p-adic expansion of n ([NS99,

chap. II, Lemma 5.6]). Therefore the series exp(logχp(γ).s) converges. �

1.7.3. Let E be any field. We denote by SE the category whose objects are couples (Y, s),

where Y is a finite-dimensional E-vector space and s ∈ EndE(Y ), and morphisms f : (Y1, s1)→
(Y2, s2) are E-linear maps from Y1 to Y2 such that s2 ◦ f = f ◦ s1.

We set the unit object to be (E, 0) and we define the tensor product (Y1, s1) ⊗ (Y2, s2) by

(Y1⊗E Y2, s1⊗ idY2 + idy1⊗s2). The dual of (Y, s) is (Y ∗,−st) where Y ∗ is the dual vector space

of Y and st is the transpose homomorphism of s. With these definitions SE has a structure of

Tannakian category over E.

1.7.4. Let E be a field containing K∞. Let Y ∈ RepK∞(Γ). Let YE = E ⊗K∞ Y and

let sE be the E-endomorphism of YE deduced by scalar extension from the endomorphism s of

1.7.1. We have therefore defined a ⊗-functor

Y 7→ (YE , sE)

from RepK∞(Γ) to SE .

1.7.5. Theorem. In the notations of 1.7.4, let Y1, Y2 ∈ EndK∞(Γ). The canonical E-linear

map

E ⊗K HomRepK∞ (Γ)(Y1, Y2)→ HomSE ((Y1,E , s1,E), (Y2,E , s2,E))

is an isomorphism.
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Proof. We can reduce to the case Y1 = K∞. Indeed we have the following canonical

isomorphisms:

HomRepK∞ (Γ)(Y1, Y2) = HomRepK∞ (Γ)(K∞, Y
∗

1 ⊗ Y2)

HomSE (Y1,E , Y2,E) = HomSE (E, Y ∗1,E ⊗ Y2,E).

We put Y = Y2. For every ξ ∈ HomRepK∞ (Γ)(K∞, Y ), the map ξ 7→ ξ(1) allow us to identify

the K-vector space HomRepK∞ (Γ)(K∞, Y ) with H0
cont(Γ, Y ) = Y Γ. Moreover, we can identify

HomSE (E, YE) with Ker sE . Indeed, if ϕ : (E, 0) → (YE , sE) is a SE-morphism, then sE ◦ ϕ =

ϕ ◦ 0 = 0, so that ϕ(1) ∈ Ker sE . We are therefore reduced to prove that the canonical map

% : E ⊗K Y Γ → Ker sE

is bijective. By definition of sE , we see that it is enough to prove the statement for E = K∞.

Up to replacing Y by Ker s we can assume s = 0, Ker s = Y . By 1.6.2 % is injective. We

fix a K∞-basis {y1, . . . , yh} of Y . Let r0 be its degree. Being s = 0, by 1.7.1, there exists r

—that we may assume r ≥ r0— such that γ(yi) = yi for i = 1, . . . , h and γ ∈ Γr. Let Yr be

the Kr-sub-vector space of Y generated by y1, . . . , yh: by construction, Yr is stable by Γ, that

acts on it by means of the finite quotient Gal(Kr/K). As in the proof of 1.6.6, we can define a

1-cocycle f : Gal(Kr/K)→ GLh(Kr) describing the action of Gal(Kr/K) on Yr with respect to

{y1, . . . , yh}. By Hilbert’s Theorem 90 [Ser62, chap. X, Prop. 3], we have

H1(Gal(Kr/K),GLh(Kr)) = 1.

Hence we can assume that Gal(Kr/K) acts trivially on y1, . . . , yh, so that Γ fixes a basis of Y

and the map % is therefore surjective. �

1.7.6. Lemma. Let E be a field and let Z1, Z2 be finite-dimensional E-vector spaces. Let E0

be an infinite subfield of E, L a sub-E0-vector space of the E-vector space LE(Z1, Z2) of E-linear

applications from Z1 to Z2. The E-vector space LE = E ⊗ L contains an isomorphism if and

only if L already contains one.

Proof. Let f ∈ LE be an isomorphism, f : Z1 → Z2. Let {f1, . . . , fn} be an E-basis of LE
formed by elements of L. Let h be the dimension dimE Z1 = dimE Z2 and fix an E-basis of Z1

and an E-basis of Z2. For j = 1, . . . , n, let Aj ∈ Mh(E) be the matrix of fj with respect to

those basis. Let P (X1, . . . , Xn) be the polynomial

P (X1, . . . , Xn) = det(X1A1 +X2 + . . .+XnAn) ∈ E[X1, . . . , Xn].

If f =
∑n

i=1 λifi, λi ∈ E, we have P (λ1, . . . , λn) 6= 0, so that P is not identically zero. Being

E0 an infinite field, there exist µ1, . . . , µn ∈ E0 such that P (µ1, . . . , µn) 6= 0 and the element∑n
i=1 µifi is an element of L, isomorphism of Z1 over Z2. �

1.7.7. Corollary. Two K∞-representations of Γ, Y1 and Y2, are isomorphic in RepK∞(Γ)

if and only if (Y1,E , s1,E) and (Y2,E , s2,E) are isomorphic in SE.

1.7.8. Let W ∈ RepC(GK). Then we dispose of the L-representation of Γ WHK and of

the K∞-representation of Γ (WKK )f . We denote by ∆Sen(W ) the object of SK∞ formed by the

K∞-vector space underlying (WKK )f and by the endomorphism sW,f defined in 1.7.1.

∆Sen defines a faithful ⊗-functor

∆Sen : RepC(GK)→ SK∞ .
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By 1.7.7 we see that the knowledge of ∆Sen(W ) determines — up to isomorphisms — W as

C-representation of GK ,

1.8. Classification of C-representations

1.8.1. We keep the notations of 1.2.1—1.2.2. Let W be a C-representation of GK . In the

notations of 1.7.8, we call Sen weights of W the eigenvalues of the endomorphism sW,f in K. By

1.7.1, the characteristic polynomial of sW,f has coefficients in K. Hence the set of Sen weights

of W is stable by GK .

Let X be a subset of K which is stable by GK . We say that a C-representation W of GK
is of type SX if its Sen weights are in X. We say that W is of type SmX if it is of type SX and if

sW,f is semi-simple.

1.8.2. We denote by C(K) the set of the orbists of K for the action of GK . For every

indecomposable object W in RepC(GK), there exists a unique A ∈ C(K) such that W is of type

SA.

Let W be an indecomposable object of type SA. We can write its Sen endomorphism sW,f as

s0.su = su.s0, with s0 semi-simple and su unipotent. Let V be the K∞-vector space underlying

(WHK )f , V the vector space V ⊗K∞K. We denote again by s0 the endomorphism of V deduced

by scalar extension. Then we have:

i) a decomposition of V as a direct sum of the eigenspaces of s0;

ii) a nilpotent endomorphism log su of V .

1.8.3. The C-representations of GK of type S{0} correspond to representations of the

additive group Ga. Indeed, to give an action of the additive group Ga over a K∞-vector space

V comes down to give a nilpotent endomorphism ν of V (so that λ ∈ K∞ = Ga(K∞) acts over

V via exp(λν)). Let K∞[log t] be the algebra of polynomials in the variable log t and coefficients

in K∞. For every d ≥ 1, we denote by Zp(0; d) the sub Zp-module of K∞[log t] formed by the

polynomials in log t of degree < d with coefficients in Zp. Hence we see that, up to isomorphisms,

there exists a unique indecomposable C-representation of GK of type S{0} of dimension d over

C, namely

CK(0; d) = C⊗Zp Zp(0; d)

where the nilpotent endomorphism ν is − ∂
∂ log t .

Notice that CK(0; d) is not simple, as CK(0; d) ⊃ CK(0; d− 1) ⊃ . . . ⊃ CK(0; 1).

1.8.4. Let W be a simple object of RepC(GK) and let A be the unique conjugacy class of

K such that W is of type SA. Then, for every d ≥ 1, we can define the indecomposable object

of type SA

W ⊗Zp Zp(0; d).

On the other hand, we see that a C-representation W ′ of GK is indecomposable of type SA if

and only if there exists d ∈ N∗ (necessarily unique) such that W ′ ∼= W ⊗Zp Zp(0; d). Then W ′

is simple if and only if d = 1.
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1.8.5. We fix a topological generator γ0 of Γ. For every r ∈ N, let ar be the OK-sub-module

of K

ar = {α ∈ K | vp(α) > −r − rK +
1

p− 1
}

where rK is the integer defined in the proof of 1.7.2. Let A ∈ C(K) and set PA(X) =
∏
α∈A(X−

α) ∈ K[X] be the minimal polynomial of any α ∈ A over K. Let KA ⊂ K be the field

K[X]/(PA(X)) and denote by β the image of X in KA. Let dA be the number of elements in

A. Let rA be the smallest integer r such that an element α ∈ A belongs to ar. By construction,

it is the smallest r ∈ N such that

vp(β logχp(γ)) = vp(β) + vp(log(χp(γ)) >
1

p− 1

for every γ ∈ Γr. We can therefore define a continuous homomorphism %A : ΓrA → K×A by

%A(γ) = exp(β logχp(γ)).

We denote by M [A] the field KA endowed with the linear and continuous action of ΓrA given

by %A.

Let N [A] = KA[Γ] ⊗KA[ΓrA
] M [A] be the induced KA-linear representation of Γ. It is a

KA-vector space of dimension prA , since {γi0⊗ 1}0≤i<prA is a basis of N [A] over KA. We denote

by N∞[A] = K∞ ⊗K N [A] the K∞-representation of Γ deduced by N [A] by scalar extension.

We choose a simple sub-object of N∞[A] in RepK∞(Γ) and we denote it by K∞[A]. We set

C[A] to be the C-representation of GK corresponding to K∞[A], i.e.

C[A] = C⊗K∞ K∞[A].

1.8.6. Theorem. In the notations 1.8.5, let W be a C-representation of GK .

i) W is simple if and only if there exists A ∈ C(K) such that W ∼= C[A]; then W is

of type SmA and has dimension dAp
sA over C, where sA is an integer 0 ≤ sA ≤ rA

verifying dimK∞(K∞[A]) = dimC(C[A]).

ii) W is indecomposable if and only if there exists A ∈ C(K) such that W ∼= C[A; d] =

C[A]⊗Zp Zp(0; d); then W is of type SA and has dimension d.dAp
sA over C.

iii) There exist natural integers (hA,d(W ))A∈C(K),d∈N∗, almost all zero, uniquely deter-

mined, such that

W ∼=
⊕

A∈C(K),d∈N∗
C[A; d]hA,d(W )

1.8.7. Lemma ([Fon04, Prop. 2.12]). Let F be a field, E a subfield of F , E a separable

closure of E, GE = Gal(E/E), η : GE → Q/Z a continuous homomorphism and b ∈ F . Let

E′ = E
Ker η

, N the degree of the cyclic extension E′/E, σ the generator of Gal(E′/E) such that

η(σ) ≡ 1/N mod Z. Let ΛE,F (η, b) be the associative and unitary E′⊗E F -algebra generated by

an element c satisfying

cN = 1⊗ b;(1.8.7.1)

c(u⊗ x) = (σ(u)⊗ x)c if u ∈ E′ and x ∈ F.

Then the algebra ΛE,F (η, b) is a central simple algebra. The center of ΛE,F (η, b) is F and of

dimension N2 over its center. ΛE,F (η, b) isomorphic to an algebra of square matrices with

coefficients in a skew field DE,F (η, b).
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Theorem 1.8.6 is then a consequence of the previous discussion and of the following

1.8.8. Proposition. In the notations of 1.8.5, let η : GK → Q/Z be the unique character of

GK that factors through Γ and that maps γ0 to 1
prA . Let b = %A(γp

rA

0 ). The KA-algebra

EA = EndRepK∞ (Γ)(N∞[A])

is identified with ΛK,KA
(η, b). The skew field DA = DK,KA

(η, b) has rank p2sA, where sA is an

integer verifying 0 ≤ sA ≤ rA. We have

dimK∞(K∞[A]) = dimC C[A] = dAp
sA .

Moreover, C[A] is a simple object of RepC(GK) of type SA and

EndRepK∞ (Γ)(K∞[A]) = EndRepC(GK)(C[A]) = DA.

Proof. Let M∞[A] = K∞ ⊗K M [A]. For every s ∈ N we set Ms[A] = Ks ⊗K M [A] and

Ns[A] = Ks ⊗K N [A]. We have then the following inclusions:

M [A] ⊂Ms[A] ⊂M∞[A]

∩ ∩ ∩

N [A] ⊂ Ns[A] ⊂N∞[A].

To simplify the notation, we set r = rA. For every s ≥ r we have the topological generator

γs = γp
s

0 of Γs ⊂ Γr. By construction, γs acts on M [A] by multiplication with the element

bp
s−r

= exp (β logχp(γ
ps

0 )).

Let f ∈ EndRepK(Γs)(M [A]). Then for every γ ∈ Γs, we have f(γ(x)) = γf(x) if and only

if f(γp
s

0 (x)) = γp
s

0 f(x), i.e. f satisfies f(bp
s−r
x) = bp

s−r
f(x) for every x ∈ K[A]. But we have

KA = K(bp
s−r

), since

β =
log bp

s−r

log(χp(γ
ps

0 ))

and log(χp(γ
ps

0 )) ∈ K×. Hence, the natural injection KA → EndRepK(Γs)(M [A]) is an isomor-

phism.

Let {e1, . . . , ed} be a basis of KA over K, seen as ring of endomorphisms EndRepK(Γs)(M [A]).

Let f ∈ EndRepK∞ (Γr)(M∞[A]). Then there exists s ≥ r such that f(M [A]) ⊂ Ms[A]. Since

f is K∞-linear, we also have f(Ms[A]) ⊂ Ms[A], so that the restriction fs of f to Ms[A] is an

element of EndRepKs
(Γr)(Ms[A]). Since Γs acts trivially on Ks, we have

EndRepKs
(Γs)(Ms[A]) = Ks ⊗K EndRepK(Γs)(M [A]) = Ks ⊗K KA.

We can therefore find λ1, . . . , λd ∈ Ks such that fs, as element of EndRepKs
(Γs)(Ms[A]), can be

written as fs =
∑d

i=1 λi⊗ ei. Adding the further condition that fs commutes with the action of

γr, we have γr(λi) = λi for every i = 1, . . . , d, i.e. λi ∈ Kr, so that

(1.8.8.1) EndRepK∞ (Γr)(M∞[A]) = Kr ⊗K KA.

By construction, every element ofN∞[A] can be written in a unique way as x =
∑pr−1

i=0 γi0(xi),

with xi ∈ M∞[A]. Let f ∈ EA. Then f(x) =
∑pr−1

i=0 γi0(ϕ(x)) where ϕ is the restriction of f to

M∞[A]. Therefore the application

EA → HomRepK∞ (Γr)(M∞[A], N∞[A]), f 7→ ϕ
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is bijective. Let c be the unique element of EA defined by c(x) = γ0(x) for every x ∈ M [A] (so

that c(λx) = λc(x) = λγ0(x) for every λ ∈ K∞, x ∈M [A]). Then, using (1.8.8.1), every element

of EA can be written in a unique way as
∑pr−1

i=0 cifi, for fi ∈ Kr ⊗K KA. We see therefore that

EA is an algebra over Kr ⊗K KA generated by an element c satisfying the conditions (1.8.7.1)

of 1.8.7. As cp
r

= b, we have that the dimension of EA over its center KA is p2r. The skew field

DA has rank p2sA over KA for a suitable 0 ≤ sA ≤ r and for any simple sub-object K∞[A] we

have therefore

EndRepK∞ (Γ)(K∞[A]) = DA

and dimK∞(K∞[A]) = dAp
sA . The statement for C[A] is clear. �

1.9. Hodge-Tate representations

1.9.1. We keep the notations of 1.8.5. Let W ∈ RepC(GK). We say that W is deployed

(fr. déployée) over K if the Sen weights of W are in K. Let aK0 = a0 ∩K be the fractional ideal

of OK formed by the elements of p-adic valuation > −rK + 1
p−1 . Every simple C-representation

of GK of type SaK0
has dimension 1 over C and the ring of its endomorphisms is reduced to K

(see 1.8.8).

Among the representations of type SaK0
we have the representations of type SmZ . These latter

are called C-representation of type Hodge-Tate (or simply C-representation Hodge-Tate). Thus

W ∈ RepC(GK) is Hodge Tate if it is semi-simple and its Sen weights are in Z.

Let V be a p-adic representation of GK , i.e. V ∈ RepQp
(GK). By base-change we get the

corresponding C-representation, namely

C⊗Qp V ∈ RepC(GK).

We say that V is Hodge-Tate if C⊗Qp V is Hodge-Tate.

1.9.2. We fix a generator t of the Tate module Zp(1) = Tp(Gm)(K). For every i ∈ N we

denote by Zp(i) the i-th power Zp(1)⊗
i

and by Zp(−i) its Zp-dual. For every Zp-module M , we

denote by M(i) the i-th Tate twist of M , i.e. M(i) = M ⊗Zp Zp(i). For x ∈ M and u ∈ Zp(i),
we write xu for x⊗ u ∈ M(i). The map x 7→ xti is a Zp-linear bijection between M and M(i),

depending on the choice of t.

The group GK acts over Zp(i) for every i ∈ Z: we have g.u = χip(g)u for every g ∈ GK
and u ∈ Zp(i). Similarly, if M is a topological Zp-module endowed with a linear and continuous

action of GK , we have an induced linear and continuous action on M(i). Namely, we have

g(xti) = χip(g)g(x)ti for every g ∈ GK , x ∈M.

We can therefore identify C(i) = C⊗ZpZp(i) with C[{i}] defined in 1.8.5 for every i ∈ Z. Indeed,

for A = {i} we have that Γ acts on K = KA via %A, that turns out to be χip. This identification

is not canonical, depending on the choice of a generator t of Zp(1), but is GK-equivariant.

Similarly, for every d ∈ N, C[{i}; d] is isomorphic to C(i)⊗Zp Zp(0; d).

Hence, by Fontaine’s classification theorem 1.8.6, for any Hodge-Tate objectW in RepC(GK)

there exist non negative integers hq(W ), almost always zero and uniquely determined by W ,

such that

W ∼=
∑
q∈Z

C(q)hq(W ).

The integer hq(W ) is called the multiplicity of q as a Hodge-Tate weight of W .
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1.9.3. Let BHT = C[t(1), 1/t(1)] be the polynomial algebra in the variable t(1). Let t be a

generator of Zp(1). Then t = (εn)n∈N where εn is a primitive pn-th root of 1 in K and εpn+1 = εn.

For p 6= 2, we denote by πt the unique uniformizer of Qp(ε1) such that

(πt)
p−1 + p = 0, vp(ε1 − 1− πt) ≥

2

p− 1
.

If p = 2 we set πt = ε2 − 1. Then the map

Zp(1) = Zpt→ BHT, λt 7→ λπtt
(1)

is injective and commutes with the action of GK . We can identify BHT with C[t, t−1] =⊕
i∈Z C(i). By 1.2.4, we have BGK

HT = Frac(BHT)GK = K.

1.9.4. For every C-representation W of GK , we set DHT(W ) = (BHT ⊗C W )GK . By

1.6.2—1.6.3, the canonical map

(1.9.4.1) % : BHT ⊗K DHT(W )→ BHT ⊗C W

is injective and dimC(DHT(W )) ≤ dimC(W ). Therefore, the representation W is Hodge-Tate if

and only if dimC(DHT(W )) = dimC(W ), that is if and only if (1.9.4.1) is an isomorphism.

1.9.5. Let V ∈ RepQp
(GK). Then the dimension inequality in 1.9.4 can be stated as

(1.9.5.1)
∑
i∈Z

dimK(C(i)⊗Qp V )GK ≤ dimC(C⊗Qp V ) = dimQp V.

V is Hodge-Tate if and only if the equality holds in (1.9.5.1).



CHAPTER 2

The Hodge-Tate decomposition Theorem for Abelian Varieties

2.1. Lubin-Tate formal groups and differential modules

2.1.1. Let K be a complete discrete valuation field with perfect residue field k of charac-

teristic p > 0, OK the ring of integers of K. We fix a separable closure K of K and we denote

by GK the absolute Galois group of K over K. Let OC be the p-adic completion of OK and let

C be its field of fractions.

Let E and K0 be discrete valuation fields and let E → K0 → K an injective homomorphism

such that E has finite residue field kE , a uniformizer of E is a uniformizer of K0, K is a finite,

separable and totally ramified extension of K0. Namely,

i) If K has characteristic 0, we take for E any finite extension of Qp contained in K. If

π is a uniformizer of E, then K0 is the subfield of K obtained by adjoining π to the

fraction field of the ring of Witt vectors W (k).

ii) If K has characteristic p, we have E = kE((T )) ⊆ k((T )) = K0 = K.

We fix a uniformizer π of E. We denote by v the valuation of C, extending the valuation of

K, normalized by v(π) = 1. Given any subfield L of C, we denote by OL = {x ∈ L | v(x) ≥ 0}
its valuation ring, by UL = {x ∈ L | v(x) = 0} the group of units of OL and by mL = {x ∈
L | v(x) > 0} the maximal ideal. If I is a sub-OL-module of L which is free of rank 1, we denote

by v(I) the valuation of a generator of I.

2.1.2. Let Γ ∈ OK [[X,Y ]] be a formal power series in the variablesX and Y and coefficients

in OK . We say that Γ is a one-parameter commutative formal group law over OK if the following

identities are satisfied:

(1) Γ(X,Γ(Y, Z)) = Γ(Γ(X,Y ), Z) [associativity];

(2) Γ(X, 0) = X, Γ(Y, 0) = Y ;

(3) Γ(X,Y ) = Γ(Y,X) [commutativity];

It follows immediately that there exist a unique G(X) ∈ OK [[X]] such that Γ(X,G(X)) = 0

and that Γ(X,Y ) = X + Y mod (X,Y )2. If Γ and Γ′ are one-parameter commutative formal

group laws over OK , a morphism from Γ to Γ′ is a power series f in one variable over OK with

no constant term such that f(Γ(X,Y )) = Γ′(f(X), f(Y )).

2.1.3. Let Γ be a one-parameter commutative formal group law over OK and let x, y ∈ mK .

Then the series Γ(x, y) converges and its sum belongs to mK . Under this composition law, mK

is a group which we denote Γ(mK). We put

Γ(mK) = lim−→
K⊃L

L/K finite

Γ(mL)

24
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If we equip OK [[T ]] with the T -adic topology and we consider OK with the π-adic topology,

we have a canonical isomorphism

mK
∼−→ Homcont,OK

(OK [[T ]],OK), x 7→ ϕx(T 7→ x),

the identification being compatible with the group structure induced by Γ. By passage to the

inductive limit from the finite case we get

(2.1.3.1) Γ(mK)
∼−→ Homcont,OK

(OK [[T ]],OK).

2.1.4. We equip OK [[T ]] with the T -adic topology. Let Ω̂1
OK [[T ]]/OK

be the module of

continuous OK-differentials of OK [[T ]]: it is a free OK [[T ]]-module of basis dT . Let Γ be a

one-parameter commutative formal group law over OK . An invariant differential with respect

to the formal group law Γ is a differential form

ω = α(T )dT ∈ Ω̂1
OK [[T ]]/OK

satisfying

(2.1.4.1) α(Γ(X,Y ))dΓ(X,Y ) = α(X)dX + α(Y )dY

or, equivalently,

(2.1.4.2) α(Γ(X,Y ))ΓX(X,Y ) = α(X)

where ΓX(X,Y ) is the partial derivative of Γ with respect to the first variable. We denote by

ωΓ the sub module of Ω̂1
OK [[T ]]/OK

of the invariant differentials. We say that α(X)dT ∈ ωΓ is

normalized if α(0) = 1.

2.1.5. Proposition. We keep the assumptions of 2.1.4. There exists a unique normalized

invariant differential with respect to the formal group law Γ, given by the formula

ω =
dT

FX(0, T )
.

ωΓ is a free OK-module of rank 1, generated by ω.

Proof. Suppose α(T )dT is an invariant differential on Γ. Putting X = 0 in (2.1.4.2) gives

α(Y )ΓX(0, Y ) = α(0)

as Γ(0, Y ) = Y . Since ΓX(0, T ) ≡ 1 mod (T ), we see that ΓX(0, T )−1 ∈ OK [[T ]]. Hence α(T )

is determined by α(0) and every invariant differential is of the form aω with a ∈ OK and

ω = ΓX(0, T )−1dT.

Since ω is normalized, it only remains to show that it is invariant. To prove this, we differentiate

the relation

Γ(X,Γ(Y, Z)) = Γ(Γ(X,Y ), Z)

with respect to X to obtain

ΓX(X,Γ(Y, Z)) = ΓX(Γ(X,Y ), Z)ΓX(X,Y ).

Putting X = 0 gives the desired result. �



2.1. LUBIN-TATE FORMAL GROUPS AND DIFFERENTIAL MODULES 26

2.1.6. Let q be the cardinality of the residue field kE and let Fπ be the set of formal power

series f ∈ OE [[T ]] such that f(T ) ≡ πT mod (T 2) and f(T ) ≡ T q mod (π).

2.1.7. Theorem ([LT65, Th. 1 and 2]). (i) For each f ∈ Fπ there exists a unique Ff (X,Y ) ∈
OE [[X,Y ]] such that

Ff (X,Y ) ≡ X + Y mod (X,Y )2,

f(Ff (X,Y )) = Ff (f(X), f(Y )).

The series Ff defines a one-parameter commutative formal group law over OE.

(ii) For each a ∈ OE and f, g ∈ Fπ there exists a unique [a]f,g(T ) ∈ OE [[T ]] such that

[a]f,g(T ) ≡ aT mod (X,Y )2 and f([a]f,g(T )) = [a]f,g(g(T )).

The series [a]f,g is a formal homomorphism from Fg to Ff .

(ii) The map a 7→ [a]f = [a]f,f defines an isomorphism from OE to EndOE
(Ff ), inverse of

the morphism
∑

i≥1 ciX
i 7→ c1. Under this isomorphism,

[π]f (T ) = f(T ).

The Ff ’s for f ∈ Fπ are canonically isomorphic by means of the isomorphisms [1]f,g. We

call any one-parameter commutative formal group law over OE of the form Ff , for f ∈ Fπ, a

Lubin-Tate formal group over OE .

2.1.8. Let f ∈ Fπ and let Γ = Ff be the corresponding Lubin-Tate formal group. By

2.1.7, Γ(mK) is canonically equipped with an OE-module structure. For a ∈ OE , x ∈ mK we

write a.x = [a]f (x). For every n ≥ 0, let

Γπn(mK) = {x ∈ Γ(mK) |πn.x = 0}

be the set of πn-torsion points of Γ(mK). It is naturally an OE/πnOE-module. Moreover, the

maps Γπn+1(mK) → Γπn(mK) given by x 7→ π.x are OE-linear and Γπ0(OK) = 0. We call the

projective limit

Tπ(Γ) = lim←−Γπn(mK)

the Tate module of Γ.

2.1.9. Proposition. Under the assumptions of 2.1.8, Tπ(Γ) is a free OE-module of rank 1.

Proof. According to 2.1.7, we may choose f(X) = πX+Xq. Firstly, we prove that Γ(mK)

is π-divisible. With this choice of f , the map

Γ(mK)
π−→ Γ(mK)

is given by x 7→ πx + xq. For every α ∈ mK , the polynomial f(X) − α is separable and so

solvable in K. All its solutions belong clearly to mK . To prove that Tπ(Γ) is a free OE-module

of rank 1, it’s enough to show that, for every n ≥ 1, Γπn(mK) is isomorphic to OE/(πn) as

OE-module. We proceed by induction on n. For n = 1, Γπ(mK) is the set of solutions of the

equation f(X) = 0: it has therefore q elements and it is isomorphic to OE/(π). Consider the

sequence

(2.1.9.1) 0→ Γπ(mK)→ Γπn(mK)
π−→ Γπn−1(mK)→ 0.
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Since Γ(mK) is π-divisible, (2.1.9.1) is exact. By induction hypothesis, Γπn−1(mK) ∼= OE/(πn−1),

and the sequence (2.1.9.1) cannot split, since Γπn(mK) contains an element of order exactly πn:

it is enough to divide a generator of Γπn−1(mK) by π. �

2.1.10. Let Γ be a Lubin-Tate formal group law over OE . Let u ∈ Γ(mK): according to

2.1.3.1, u corresponds to ϕu ∈ Homcont,OE
(OE [[T ]],OK). Let

ω = α(T )dT ∈ Ω̂1
OE [[T ]]/OE

be a continuous differential form. We denote by u∗(ω) the pull-back ϕu(α(T ))dϕu(T ): it is a well

defined element in Ω1
OK/OK

. Indeed, by construction, the OE-linear and continuous morphism

ϕu factors through a finite extension L/K

ϕu : OE [[T ]]→ OL
where u = ϕu(T ) ∈ mL ⊂ mK . Since L is complete, ϕu(α(T )) = α(u) converges in OL and we

can consider α(u)du as an element in Ω1
OL/OK

. We denote by u∗(ω) its image by the canonical

map

Ω1
OL/OK

→ Ω1
OK/OK

.

Restricting to the sub-module of invariant differentials, we have a map:

〈 , 〉 : Γ(mK)× ωΓ → Ω1
OK/OK

(u, ω) 7→ 〈u, ω〉 = u∗(ω).

2.1.11. Proposition. The pairing 〈 , 〉 is OE-bilinear and it is compatible with the action of

GK , i.e. for any g ∈ GK , u ∈ Γ(mK), ω ∈ ωΓ we have 〈g(u), ω〉 = g(〈u, ω〉).

Proof. Indeed, for u, u′ ∈ Γ(mK) and ω ∈ ωΓ, 〈u+u′, ω〉 = 〈u, ω〉+〈u′, ω〉 by (2.1.4.1). The

fact that 〈au, ω〉 = a〈u, ω〉 for any a ∈ OE , ω ∈ ωΓ, u ∈ Γ(mK) follows from the identification

of OE with EndOE
(Γ) in 2.1.7. The linearity in the second variable and the compatibility with

the action of GK are clear. �

2.1.12. Let Γ be a Lubin-Tate formal group over OE . Let GK act trivially on ωΓ and

consider the K-vector space

K ⊗OE
Tπ(Γ)⊗OE

ωΓ.

By 2.1.9 and 2.1.5, it is a K-vector space of dimension 1, endowed with a semilinear continuous

action of GK .

Let α ∈ K ⊗OE
Tπ(Γ)⊗OE

ωΓ. Then α can be written (in a non-unique way) as

α =
a

πr
⊗ u⊗ ω

with u = (un)n∈N ∈ Tπ(Γ), a ∈ OK , r ∈ N and ω ∈ ωΓ. It follows immediately from 2.1.11 and

from the definition of Tπ(Γ) that the element au∗r(ω) depends only on α, so that the map

ξK,Γ = ξ : K ⊗OE
Tπ(Γ)⊗OE

ωΓ → Ω1
OK/OK

(2.1.12.1)

α =
a

πr
⊗ u⊗ ω 7→ au∗r(ω)

is well defined, OK-linear and compatible with the action of GK .

Let DK/K0
be the different of the extension K/K0 and let aK,Γ be the OK-module

aK,Γ =
{
a ∈ K | v(a) ≥ −v(DK/K0

)− 1

q − 1

}
.
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2.1.13. Theorem ([Fon82, Thm. 1]). Under the assumptions of 2.1.12, the map ξ is sur-

jective and

Ker(ξ) = aK,Γ ⊗OE
Tπ(Γ)⊗OE

ωΓ.

2.2. The proof of Theorem 2.1.13

2.2.1. Let K be as in 2.1. For any field extension L/K, we denote by DL/K the different

of L/K and by dL/K : OL → Ω1
OL/OK

the universal derivation.

2.2.2. Lemma. Let K ⊆ M ⊆ L be a tower of finite and separable field extensions, u the

canonical map Ω1
OL/OK

u−→ Ω1
OL/OM

. Then, for any ω ∈ Ω1
OL/OK

, we have:

v(Ann(u(ω))) = max{0, v(Ann(ω))− v(DM/K)}.

Proof. Let b be a generator of OL as an OK-algebra and let ω = adL/Kb ∈ Ω1
OL/OK

be a

non-zero differential form. Since Ω1
OL/OK

is generated by dL/Kb and is killed by DL/K , we have

v(Ann(ω)) = v(DL/K)− v(a). By definition u(ω) = adL/Mb, hence

v(Ann(u(ω))) = max{0, v(DL/M )− v(a)}.

By [Ser62, chap. III, Prop. 8], we have

v(DL/M ) = v(DL/K)− v(DM/K)

and we can conclude. �

2.2.3. Lemma. Let K ⊆ M ⊆ L be a tower of finite and separable field extensions. Let

ι : Ω1
OM/OK

→ Ω1
OL/OK

be the map induced by the inclusion OM ⊂ OL. Then, for every ω ∈
Ω1
OM/OK

, we have

AnnOL
(ι(ω)) = OL AnnOM

(ω).

Proof. It is enough to consider the case where L/M is unramified or totally ramified. If

OL/OM is étale, then Ω1
OM/OK

⊗OM
OL ∼= Ω1

OL/OK
by [EGA IV, 0.20.5.8] and the statement

is clear.

Suppose now that L/M is totally ramified. Let b′ be a uniformizer for L: it is a root

of an Eistenstein polynomial P (X) =
∑n

i=0 aiX
i ∈ OM [X], with −a0 = b a uniformizer for

M . Let ω = adM/Kb ∈ Ω1
OM/OK

be a non-zero differential and let a be its annihilator. Let

ι(ω) = adL/Kb ∈ Ω1
OL/OK

be the image of ω. As b =
∑n

i=1 ai(b
′)i, we have

dL/Kb = (a1 + 2a2b
′ + . . .+ n(b′)n−1)dL/Kb

′ = P ′(b′)dL/Kb
′,

so that ι(ω) = aP ′(b′)dL/Kb
′. Hence c ∈ AnnOL

(ι(ω)) if and only if

(2.2.3.1) v(caP ′(b′)) ≥ v(DL/K).

Since DL/M = (P ′(b′)) by [Ser62, chap. III, Cor. 2 to Prop. 11] and since DL/K = DL/MDM/K

by [Ser62, chap. III, Prop. 8], (2.2.3.1) is equivalent to v(c) ≥ v(DM/K)− v(a) = v(a), i.e.

AnnOL
(ι(ω)) = OLa.

�



2.2. THE PROOF OF THEOREM 2.1.13 29

2.2.4. The modules Ω1
OL/OK

for K ⊆ L varying in the set of finite and separable extensions

of K contained in K form an inductive system and we have

lim−→Ω1
OL/OK

= Ω1
OK/OK

,

that makes clear the fact that Ω1
OK/OK

is a torsion OK-module. By 2.2.3, the canonical map

Ω1
OL/OK

→ lim−→Ω1
OL/OK

is injective.

Let ω ∈ Ω1
OK/OK

, L a finite and separable extension of K such that ω ∈ Ω1
OL/OK

⊂ Ω1
OK/OK

,

a the annihilator AnnOL
(ω) ⊂ OL. Then the annihilator Ann(ω) of ω in Ω1

OK/OK
is simply given

by OKa: in particular Ann(ω) is a principal ideal of OK and its valuation is the valuation of a.

2.2.5. Lemma. Let ω, ω′ ∈ Ω1
OK/OK

. Then we have Ann(ω) ⊆ Ann(ω′) if and only if there

exists c ∈ OK such that ω′ = cω.

Proof. It is clear that ω′ = cω for some c ∈ OK implies the inclusion between the annihi-

lators.

Assume Ann(ω) ⊆ Ann(ω′). The case ω′ = 0 is trivial, so we can assume ω′ and ω both

non-zero: indeed ω′ 6= 0 implies Ann(ω′) — and a fortiori Ann(ω) — different from OK , so

that also ω is non-zero. Let L be a finite and separable extension such that ω, ω′ ∈ Ω1
OL/OK

. If

b is a uniformizer of L, we can write ω = adb and ω′ = a′db, with a, a′ ∈ OL.

As ω′ and ω are both non-zero, we have v(a) < v(DL/K) and v(a′) < v(DL/K), while

v(Ann(ω)) = v(DL/K) − v(a) and v(Ann(ω′)) = v(DL/K) − v(a′). The assumption Ann(ω) ⊆
Ann(ω′) implies

v(DL/K)− v(a) ≥ v(DL/K)− v(a′) hence v(a′) ≥ v(a)

so that a′ ∈ aOL, i.e. there exists a c ∈ OK such that ω′ = cω. �

2.2.6. We consider again the notations of 2.1.12: Γ is a Lubin-Tate formal group over OE
and Tπ(Γ) is its Tate module. We fix a generator (πr)r∈N of Tπ(Γ) over OE : for every r ≥ 1,

πr is a generator of the rank one OE/πr-module Γπr(mK).

Let Er be the field E[πr]. From [LT65, Theorem 2] and [CF67, VI, §3], we know that the

field extensions Er = E[Γπr(mK)] of E depend only on the uniformizer π of E and are totally

ramified, finite, abelian Galois extensions of E. Moreover, πr is a uniformizer of Er.

2.2.7. Proposition. For every r ≥ 1 we have v(DEr/E) = r − 1
q−1 .

Proof. By [CF67, p. 152], we have:

i) the Galois group Gal(Er/E) is canonically isomorphic to the quotient

UE/U
(r)
E = UE/(1 + πrOE);

ii) eEr/E = [Er : E] = qr−1(q − 1);

Under the isomorphism UE/U
(r)
E

∼−→ G = Gal(Er/E), the subgroup U
(i)
E /U

(r)
E maps onto the

ramification group Gqi−1. Hence, from the filtration

UE/U
(r)
E ⊃ U (1)

E /U
(r)
E ⊃ · · ·U (r)

E /U
(r)
E = 1,
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we get that a complete set of ramification groups for the extension Er/E is given by

G = G0;

G1 = . . . = Gq−2 = Gq−1;

Gq = . . . = Gq2−1;

. . .

1 = Gqr−1.

The corresponding upper numbering is Gi = Gqi−1 and

[G0 : G1] = q − 1 [Gi : Gi+1] = q.

By [Ser62, chap. IV, Prop. 4], we have

vEr(DEr/E) =
∑
s 6=1

iG(s)

where iG(s) = vEr(s(πr)− πr) for s ∈ G. Moreover:

vEr(DEr/E) =
r−1∑
i=0

∑
s∈Gi\Gi+1

iG(s)

and the function iG(s) is constant for s ∈ Gi \ Gi+1 and equal to qi for every i. For i ≥ 1 we

have that #Gi = qr−i and that #Gi \Gi+1 = (q − 1)qr−i−1, where #S denotes the cardinality

of the (finite) set S. Hence:

r−1∑
i=0

∑
s∈Gi\Gi+1

iG(s) = (q − 2)qr−1 +
r−1∑
i=1

qi(q − 1)qr−i−1 = qr−1(r(q − 1)− 1).

As v(DEr/E) = 1
eEr/E

vEr(DEr/E), we deduce that

v(DEr/E) =
1

qr−1(q − 1)
qr−1(r(q − 1)− 1) = r − 1

q − 1
.

�

2.2.8. Corollary. Let ω0 be a generator of the module of invariant differentials ωΓ. Then

for any non-negative integer r we have:

(2.2.8.1) v(Ann(π∗r (ω0))) = max
{

0, r − 1

q − 1
− v(DK/K0

)
}

Proof. The statement is evident for r = 0 (since u0 = 0), so we can assume r ≥ 1. By

passing to the limit in 2.2.2, we have

v(Ann(ν(ω))) = max{0, v(Ann(ω))− v(DK/K0
)}

where ν is the canonical map ν : Ω1
OK/OK0

→ Ω1
OK/OK

. We can therefore assume that K = K0.

Let Pr be the minimal polynomial of πr over E: it is an Eisenstein polynomial. Since the

uniformizer π of E is a uniformizer of K, then Kr = K[πr] = K ⊗E Er is a field extension of K,

totally ramified, with πr as uniformizer.

Since OKr = OK [πr], dπr generates Ω1
OKr/OK

and we have:

v(Ann(dπr)) = v(P ′r(πr)) = v(DEr/E).
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By 2.1.5, we know that ω0 is of the form α(T )dT with α(T ) invertible in OE [[T ]]. Hence, for

every r ≥ 1,

π∗r (ω0) = α(πr)dπr

with α(πr) unit. Therefore v(Ann(π∗r (ω0))) = v(DEr/E) and the statement follows from 2.2.7.

�

Proof of Theorem 2.1.13. We first prove the surjectivity of the map ξ. Let ω0 be a

generator of ωΓ and let u = (πn)n∈N be a generator of Tπ(Γ). Let ω ∈ Ω1
OK/OK

and let r be an

integer such that

v(Ann(ω)) ≤ r − 1

q − 1
− v(DK/K0

) ≤ v(Ann(π∗r (ω0)))

by 2.2.8. Hence Ann(ω) ⊇ Ann(π∗r (ω0)), so that there exists c ∈ OK such that ω = c.π∗r (ω0) (by

2.2.5) and

ω = ξ
( c
πr
⊗ u⊗ ω0

)
,

proving the surjectivity of ξ.

We now determine the kernel: any element α ∈ K ⊗Tπ(Γ)⊗ ωΓ can be written in a unique

way as a⊗u⊗ω0, with a ∈ K. Let r ∈ N such that r ≥ 1
q−1 +v(DK/K0

) and such that πra ∈ OK .

The element α is in Ker(ξ) if and only if v(Ann(ξ(α))) ≤ 0 (the annihilator taken in K). Hence

v(πra) ≥ r − 1

q − 1
− v(DK/K0

),

so that α ∈ Ker ξ if and only if α ∈ a⊗ Tπ(Γ)⊗ ωΓ. �

2.3. Consequences and corollaries

2.3.1. We keep the assumptions of 2.1.12. Let Tπ(Ω1
OK/OE

) be the π-Tate module of the

OE-module Ω1
OK/OK

, i.e.

Tπ(Ω1
OK/OE

) = HomOE
(E/OE ,Ω1

OK/OK
)

and let Vπ(Ω1
OK/OK

) be the E-vector space

Vπ(Ω1
OK/OK

) = HomOE
(E,Ω1

OK/OK
).

2.3.2. Corollary. Let â be the π-adic completion of a. We have the following canonical

isomorphisms of OK-modules (resp. OC-modules, C-vector spaces)

Ω1
OK/OK

∼= (K/a)⊗OE
Tπ(Γ)⊗OE

ωΓ,(2.3.2.1)

Tπ(Ω1
OK/OE

) ∼= â⊗OE
Tπ(Γ)⊗OE

ωΓ,(2.3.2.2)

Vπ(Ω1
OK/OK

) ∼= C⊗OE
Tπ(Γ)⊗OE

ωΓ(2.3.2.3)

that commute with the action of GK .

Proof. Isomorphism (2.3.2.1) simply follows from 2.1.13. As E/OE = lim−→( 1
πnOE)/OE we

have:

Tπ(Ω1
OK/OE

) = lim←−HomOE

( 1

πn
OE/OE ,Ω1

OK/OK

)
.
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Moreover

HomOE

( 1

πn
OE/OE ,Ω1

OK/OK

)
∼=
( 1

πn
a/a
)
⊗OE

Tπ(Γ)⊗OE
ωΓ

using (2.3.2.1) together with the fact that Tπ(Γ) and ωΓ are free rank one OE-modules (hence

torsion-free) and that the morphisms are OE-linear. Therefore

Tπ(Ω1
OK/OE

) = lim←−
( 1

πn
a/a
)
⊗OE

Tπ(Γ)⊗OE
ωΓ = â⊗OE

Tπ(Γ)⊗OE
ωΓ.

Finally, for (2.3.2.3) we write E = lim−→
1
πnOE . As above we have:

Vπ(Ω1
OK/OE

) = HomOE
(E,Ω1

OK/OK
) = lim←−HomOE

( 1

πn
OE ,Ω1

OK/OK

)
.

To get the isomorphism with C ⊗OE
Tπ(Γ) ⊗OE

ωΓ, we use again (2.3.2.1). The morphisms ξ

of Theorem 2.1.13 is compatible with the action of GK , so isomorphisms (2.3.2.1), (2.3.2.2) and

(2.3.2.3) commute clearly with the action of GK . �

2.3.3. Assume that K is of characteristic 0, that E = Qp and π = p, so that q = p and

K0 = Frac(W (k)). For this special case (see [LT65, §1, p. 380]), the Lubin-Tate formal group Γ

over Qp is the formal multiplicative group Ĝm, i.e. the completion along the unit section of the

multiplicative group Gm over Zp. For f(T ) = (1+T )p−1 ∈ Zp[[T ]], the group law Γ = Γf (X,Y )

is the power series X + Y + XY . By 2.1.5, we have a canonical generator of ωΓ, namely the

unique normalized invariant differential form ω0 = dT
1+T .

We can identify the Tate module Tp(Γ) with the points in K of the Tate module of the

multiplicative group Gm. More precisely we have, for any n ∈ N,

1→ µpn(K)→ K
∗ ·pn−−→ K

∗ → 1

and Tp(Gm) is the projective limit lim←−µpn(K), where the transition maps are given by raising

to the p-th power. As the map

(2.3.3.1) a 7→ 1 + a : mK → 1 + mK

is an isomorphism between the group Γ(mK) and U
(1)

K
(with standard multiplication), the points

of pn-torsion with respect to the formal group law correspond to the point of pn-torsion with

respect to the standard multiplication in K. Therefore

Tp(Γ) = Tp(Gm) = lim←−µpn(K)

is the free Zp-module of rank 1 formed by the sequences (εn)n∈N of elements of OK such that

ε0 = 1 and εpn+1 = εn.

Notice that, by definition, the character χ : GK → AutZp(Tp(Γ)) ∼= Z×p giving the action of

GK on the Tate module of Γ is nothing else but the cyclotomic character χp, giving the action

of GK on the group of units of order (a power of) p.

2.3.4. For any Zp-module M endowed with a linear action of GK and any i ∈ Z, we write

M(i) for the tensor product

M ⊗Zp Tp(Gm)⊗
i

with the convention Tp(Gm)⊗
0

= Zp and, for i > 0, Tp(Gm)⊗
−i

is the dual of Tp(Gm)⊗
i
.

In this setting, we can reformulate Theorem 2.1.13 in the following way:
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2.3.5. Theorem. The map ξ : K(1)→ Ω1
OK/OK

defined by

p−ra⊗ (εn)n∈N 7→ a.
dεr
εr

for a ∈ OK , r ∈ N is surjective with kernel a(1) and induces canonical isomorphisms:

Ω1
OK/K

∼= (K/a)(1),(2.3.5.1)

Tp(Ω
1
OK/K

) = HomZp(Qp/Zp,Ω1
OK/OK

) ∼= â(1),(2.3.5.2)

Vp(Ω
1
OK/K

) = HomZp(Qp,Ω
1
OK/OK

) ∼= C(1).(2.3.5.3)

2.4. Applications to Abelian Varieties

2.4.1. Let K be a complete discrete valuation field of characteristic 0 with perfect residue

field k of characteristic p > 0, OK the valuation ring of K, S = Spec(OK). We note by η the

generic point of S and by η a geometric point corresponding to an algebraic closure K of K.

We denote by GK the absolute Galois group of K over K. f : X → Spec(K) be a morphism of

schemes. We call proper OK-model of X any scheme X proper over S such that Xη = X.

2.4.2. Proposition ([EGA IV, 2.8.5]). Let f : X → S be a morphism of schemes and let

Xη = f−1(η) be the generic fibre of X. Let ι : Xη → X be the canonical morphism. Let Z be a

closed subscheme of Xη. Then there exists a unique closed subscheme Z of X, flat over S and

such that ι−1(Z) = Z.

The scheme Z is the schematic closure of Z by the composite morphism Z → Xη
ι−→ X,

where the first arrow is the canonical injection; its underlying space is the closure in X of Z.

2.4.3. From now on, let X be an abelian variety over K and let ϕ : X → PnK be a closed

immersion. Let ι : PnK → PnOK
be the canonical morphism. By 2.4.2, there exists a unique

scheme X, flat and proper over S, such that i−1(X) = X.

2.4.4. Let u : Spec(OK)→ X and let ω ∈ H0(X,Ω1
X/OK

). We denote by u∗(ω) ∈ Ω1
OK/OK

the image of u∗ω by the canonical OK-linear map

u∗Ω1
X/OK

v−→ Ω1
OK/OK

.

In this way we obtain a pairing:

(2.4.4.1) H0(X,Ω1
X/OK

)× X(OK)→ Ω1
OK/OK

by

(ω, u) 7→ 〈ω, u〉 = u∗(ω).

The map (2.4.4.1) is clearly OK-linear in the first variable and it is compatible with the action

of GK . More precisely, for any g ∈ GK , ω ∈ H0(X,Ω1
X/OK

), u ∈ X(OK) we have

〈ω, g.u〉 = g(〈ω, u〉) = g(u∗(ω)).
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2.4.5. By construction, we have the fibre product diagram:

X
q1- X

η

q2

?
- S

?

that allow us to identify H0(X,Ω1
X/K) with K ⊗OK

H0(X,Ω1
X/OK

). Indeed, let (Ui)i∈I be an

affine open covering of X and consider the canonical exact sequence:

(2.4.5.1) 0→ H0(X,Ω1
X/OK

)→
∏
i

H0(Ui,Ω
1
X/OK

)→
∏
i,j

H0(Ui,j ,Ω
1
X/OK

)

where Uij = Ui ∩ Uj . Since K is flat over OK , the latter induces an exact sequence

(2.4.5.2) 0→ H0(X,Ω1
X/OK

)⊗OK
K →

∏
i

H0(Ui,Ω
1
X/OK

)⊗OK
K →

∏
i,j

H0(Ui,j ,Ω
1
X/OK

)⊗OK
K

On the other hand, (Ui ∩X = Ui ⊗OK
K)i∈I is an affine open covering of X and we have, for

every i ∈ I,

H0(Ui,Ω
1
X/OK

)⊗OK
K = H0(Ui ⊗OK

K,Ω1
X/K).

Hence (2.4.5.2) implies that

H0(X,Ω1
X/K) = K ⊗OK

H0(X,Ω1
X/OK

).

2.4.6. By the Valuative Criterion of Properness [EGA II, 7.3.8] we have a canonical

identification of X(K) with X(OK): in this way X(OK) inherits a structure of abelian group,

even though X is not a group scheme over S.

2.4.7. Proposition. Under the assumptions of 2.4.4, there exists a non negative integer r0

such that for every ω ∈ pr0H0(X,Ω1
X/OK

) and every u1, u2 ∈ X(OK) = X(K) we have:

〈ω, u1 + u2〉 = 〈ω, u1〉+ 〈ω, u2〉

Proof. Let Y be an OK-model of X × X over K such that the canonical projections

p1, p2 : X ×η X ⇒ X and the group multiplication m : X ×η X → X extend to maps from Y to

X. We can construct Y as follows: if ψ : X×ηX → PmK is a projective embedding of the product

X ×η X, we can consider the composite map

X ×η X
id×m−−−→ X ×η X ×η X → X×S X×S X.

Let Y be schematic closure of the composite morphism, so that we have the diagram

(2.4.7.1)

X ×η X - X ×η X ×η X - PmK - η

Y

σ

?
- X×S X×S X

?
- PmOK

?
- S

?

We get the required extensions

p1,X, p2,X,mX : Y→ X

by mean of the other projections.
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We know ([BLR90, §4.2, Prop.1]) that the everywhere regular differential forms on X are

precisely the invariant forms, so that for any ω ∈ H0(X,Ω1
X/K) we have:

m∗ω − p∗1ω − p∗2ω = 0

in H0(X,Ω1
X×X/K). Let ω ∈ H0(X,Ω1

X/OK
) and consider the form ω′ ∈ H0(Y,Ω1

Y/OK
) defined

by

ω′ = m∗Xω − p∗1,Xω − p∗2,Xω.

The natural map

(2.4.7.2) H0(Y,Ω1
Y/OK

)→ H0(X ×K X,Ω1
X×X/K) = K ×OK

H0(Y,Ω1
Y/OK

)

corresponds to taking the pull-back of a differential form on Y via the map σ of (2.4.7.1). Let

q1 be the canonical map X → X. Then, by definition, mX ◦ σ = q1 ◦m. Similarly,

p1,X ◦ σ = q1 ◦ p1

p2,X ◦ σ = q1 ◦ p2,

so that

1⊗ ω′ = σ∗ω′ = m∗(q∗1ω)− p∗1(q∗1ω)− p∗2(q∗1ω) = 0.

The kernel of (2.4.7.2) is the torsion submodule of the OK-module H0(Y,Ω1
Y/OK

). Since

Y → S is proper and the sheaf of differentials Ω1
Y/OK

is coherent, H0(Y,Ω1
Y/OK

) is of finite

type. Therefore there exists an integer r0 ≥ 0 such that

pr0 [H0(Y,Ω1
Y/OK

)Tors] = 0.

The restriction

(2.4.7.3) pr0H0(X,Ω1
X/OK

)→ pr0H0(Y,Ω1
Y/OK

), ω 7→ ω′ = m∗Xω − p∗1,Xω − p∗2,Xω

vanishes.

Let u1, u2 ∈ X(OK) and denote by u1,X and u2,X the corresponding K-points of X. Let vX

vX : Spec(K)
∆−→ Spec(K)× Spec(K)

u1,X×u2,X−−−−−−−→ X ×K X

and let v ∈ Y(OK) be the corresponding point of Y. We have:

u1 = p1,X ◦ v; u2 = p2,X ◦ v;

u1,X = p1 ◦ vX ; u2,X = p2 ◦ vX ;

u1 + u2 = mX ◦ v.

By (2.4.7.3), we get for any ω ∈ pr0H0(X,Ω1
X/OK

),

(u1 + u2)∗ω = v∗(m∗Xω) = v∗(p∗1,Xω + p∗2,Xω) = u∗1ω + u∗2ω.

�
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2.4.8. Let r ≥ r0 be a non negative integer such that prH0(X,Ω1
X/OK

) is torsion free or, so

that the restriction of the canonical map

H0(X,Ω1
X/OK

)→ K ⊗OK
H0(X,Ω1

X/OK
) = H0(X,Ω1

X/K)

to prH0(X,Ω1
X/OK

) is injective. We can restrict the map (2.4.4.1) to

prH0(X,Ω1
X/OK

)×X(K)→ Ω1
OK/OK

.

By 2.4.7, this pairing is Z[GK ]-linear in the second variable. The associated homomorphism

(2.4.8.1) prH0(X,Ω1
X/OK

)→ HomZ[GK ](X(K),Ω1
OK/OK

)

is OK-linear.

2.4.9. Let

Tp(X) = Tp(Xη) = HomZ(Qp/Zp, X(K))

be the p-adic Tate module of X. Let Vp(X) = HomZ(Z[p−1], X(K)). We have a natural inclusion

of Tp(X) in Vp(X): given any α = (an)n∈N ∈ Tp(X) we can define a map ϕα : Z[p−1]→ X(K)

by the assignment p−n 7→ an for n ≥ 0. Let Vp(Ω
1
OK/OK

) be HomZp(Qp,Ω
1
OK/OK

) as in 2.3. We

have the isomorphism

(2.4.9.1) HomZp(Qp,Ω
1
OK/OK

) ∼= HomZ(Z[p−1],Ω1
OK/OK

).

We can compose the OK-homomorphism (2.4.8.1) with the map:

(2.4.9.2) HomZ[GK ](X(K),Ω1
OK/OK

)
ψ−→ HomZ[GK ](Vp(X), Vp(Ω

1
OK/OK

))

to get

prH0(X,Ω1
X/OK

)→ HomZ[GK ](Vp(X), Vp(Ω
1
OK/OK

))

and then, by extending the scalars to K:

%̂ = %̂0
X,X,r : H0(X,Ω1

X/K) = K ⊗OK
prH0(X,Ω1

X/OK
)→ HomZ[GK ](Vp(X), Vp(Ω

1
OK/OK

)).

2.4.10. Remark. The map ψ in (2.4.9.2) is injective, as X(K) is a p-divisible group (in the

classical sense).

2.4.11. For any ω ∈ H0(X,Ω1
X/K) we can take the restriction of the morphism of Z[GK ]-

modules

%̂(ω) : Vp(X)→ Vp(Ω
1
OK/OK

)

to Tp(X) ⊂ Vp(X) → Vp(Ω
1
OK/OK

). By continuity, %̂(ω)|Tp (X) is Zp linear and, in the end, we

get a K-linear map:

%0
X = %0

X,X,r : H0(X,Ω1
X/K)→ HomZp[GK ](Tp(X), Vp(Ω

1
OK/OK

)) = HomZp[GK ](Tp(X),C(1))

since Vp(Ω
1
OK/OK

) is Zp[GK ]-isomorphic to C(1) by Theorem 2.3.5.

2.4.12. Proposition. The restriction map

HomZ[GK ](Vp(X),C(1))→ HomZ[GK ](Tp(X),C(1))

induced by the inclusion Tp(X) ⊂ Vp(X) is injective
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Proof. Let X[p∞] be the subgroup of p-primary torsion of X(K). The quotient Dp(X) =

X(K)/X[p∞] is a uniquely p-divisible abelian group and we have a canonical isomorphism

between HomZ(Z[p−1], Dp(X)) and Dp(X) given by

ϕ 7→ ϕ(1), x ∈ Dp(X) 7→ (ϕx : 1 7→ x).

Therefore, the exact sequence

0→ X[p∞]→ X(K)→ Dp(X)→ 0

leads to the exact sequence

(2.4.12.1) 0→ HomZ(Z[p−1], X[p∞])→ Vp(X)→ Dp(X)→ 0.

Moreover, we have a canonical isomorphism:

(2.4.12.2) HomZ(Z[p−1], X[p∞]) ∼= Qp ⊗Zp Tp(X).

Indeed, given any Z-linear map ϕ : Z[p−1]→ X[p∞], let x0 ∈ X[pr] be ϕ(1). Then for any n ∈ N,

xn = ϕ(1/pn) ∈ X[pr+n], with pxn = xn−1, defining in this way the element p−r ⊗ (prxn)n∈N ∈
Qp ⊗Zp Tp(X): it is easy to check that the map is an isomorphism.

By applying HomZ[GK ](−,C(1)) to (2.4.12.1) we get

(2.4.12.3)

0→ HomZ[GK ](Dp(X),C(1))→ HomZ[GK ](Vp(X),C(1))
α−→ HomZ[GK ](Tp(X),C(1))

as

HomZ[GK ](Tp(X),C(1)) = (HomZ(Tp(X),C(1)))GK = HomZ[GK ](Qp ⊗Zp Tp(X),C(1)),

so that HomZ[GK ](Dp(X),C(1)) is identified with the kernel of α.

Since

X(K) =
⋃

K⊃L⊇K
L finite,Galois

X(L) =
⋃

HEGK
H open

X(K)H ,

also Dp(X) =
⋃

(Dp(X))H for H varying in the set of open normal subgroups of GK . Given

f ∈ HomZ[GK ](Dp(X),C(1)) we have

f((Dp(X))H) ⊆ (C(1))H = 0

by Tate’s Theorem (cfr. 1.5.15), for any open normal subgroup H of GK . Hence f(Dp(X)) =⋃
f((Dp(X))H) = 0. �

2.4.13. Proposition. The maps %0
X and %̂ do not depend on the choice of r and on the

choice of the OK-model X.

Proof. The K-linearity gives immediately the independence from r. It is clearly enough

to check the independence of the map %̂ from the choice of X. Let X1 and X2 be two proper
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OK-model of X and suppose that the identity map idX extends to a morphism f : X1 → X2:

X - X2

X -==
==

==
==

X1

f
-

η
?

- S.
?

In this situation we say that X1 dominates X2. The commutativity of the above diagram implies

that

%̂0
X,X2

: H0(X,Ω1
X/K)

∼- K ⊗OK
prH0(X2,Ω

1
X2/OK

) - HomZ[GK ](Vp(X), Vp(Ω
1
OK/OK

))

%̂0
X,X1

: H0(X,Ω1
X/K)

wwww
∼- K ⊗OK

prH0(X1,Ω
1
X1/OK

)

f∗

?
- HomZ[GK ](Vp(X), Vp(Ω

1
OK/OK

))

wwww
also commutes, proving that %̂0

X,X2
= %̂0

X,X1
. In the general case, if X1 and X2 are two models of

X, we can construct a third OK-model of X, say X3, forcing the existence of maps X3
f3,1−−→ X1

and X3
f3,2−−→ X2 extending the identity idX . Indeed, let ϕ : X → PnK be a projective embedding

of X. Arguing as in (2.4.7.1), we can consider the composite map

X
∆−→ ×KX ×K X → X1 ×OK

X2.

and we let X3 be the schematic closure of the composite morphism. �

2.4.14. Theorem. Let X be an abelian variety over K. Then

%0
X : H0(X,Ω1

X/K)→ HomZp[G](Tp(X),C(1))

defined in 2.4.11 is an injective K-linear map, functorial in X.

2.4.15. The same argument used in the proof of 2.4.13 allow us to prove that the map %0
X

just defined is actually functorial in X: given any homomorphism of abelian varieties f : X → Z,

it’s enough to choose two OK-models for X and Z respectively, say X and Z, such that f extends

to a morphism f : X→ Z.

2.4.16. The map %0
X is K linear by construction and functorial by 2.4.15. Since the

restriction map HomZ[GK ](Vp(X),C(1)) → HomZ[GK ](Tp(X),C(1)) is injective by 2.4.12, it’s

enough to prove that %̂ defined in (2.4.9) is injective. On the other hand, %̂ is the scalar extension

to K of the composition between the map (2.4.8.1) and the injective map ψ of (2.4.9.2). Hence,

we are reduced to prove the following

2.4.17. Proposition. The map

prH0(X,Ω1
X/OK

)→ HomZ[GK ](X(K),Ω1
OK/OK

)

defined in (2.4.8.1) is injective.

We dedicate section 2.5 to the proof of this result.
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2.5. The Proof of Proposition 2.4.17

The independence from the choice of the OK-model X given by 2.4.13, allow us to use the

following desingularization lemma:

2.5.1. Lemma. Let X be a projective variety over K, of dimension d. Let u ∈ X(K) be a

regular point of X. Then there exists a proper OK-model X of X such that if u denotes the

closed point in the closure of u in X, the mu-adic completion of OX,u is isomorphic to the ring

of formal powers series in d variables over OK .

Proof. Let ϕ be a closed immersion ϕ : X → PnK , so that:

X = Proj(K[X0, . . . , Xn)/I)

for a homogeneous ideal I of K[X0, . . . , Xn]. We choose homogeneous coordinates (X0; . . . ;Xn)

of PnK so that u is the point (1 : 0 . . . : 0): being u a regular point of X, the Jacobian criterion

implies — up to a variable reordering — that we can find homogeneous polynomials F1, . . . , Fn−d
in I, locally defining X, such that the (n− d)× (n− d) minor

(2.5.1.1)

(
∂Fi
∂Xd+j

(u)

)
1≤i,j≤n−d

of the Jacobian matrix at u is invertible. By a linear change of variables we can further assume

that such minor is the identity matrix In−d.

Let J be the homogeneous ideal of K[X0, . . . , Xn] generated by

(2.5.1.2)
Xi for 1 ≤ i ≤ d
XiXj for i, j ≥ 1.

If ri = degFi, 1 ≤ i ≤ n− d, we have

(2.5.1.3) Fi ≡ Xri−1
0 Xd+i (mod J), for 1 ≤ i ≤ n− d.

by (2.5.1.1) and (2.5.1.2). Let π be a uniformizer of OK . We choose non negative integers si
such that

πsiFi ∈ OK [X0, . . . , Xn], for 1 ≤ i ≤ n− d.
Let s ∈ N such that s ≥ si for every 1 ≤ i ≤ n− d and we set:

(2.5.1.4)

X0 = X ′0,

Xi = π2sX ′i for 1 ≤ i ≤ d,
Xi = πsX ′i for d+ 1 ≤ i ≤ n.

With this choice, a straightforward computation shows that we can find (n − d) homogeneous

polynomials Gi in the variables X ′i such that:

(2.5.1.5)
Fi = πsGi
Gi ≡ (X ′0)ri−1X ′d+i (mod πOK [X ′0, . . . X

′
n])

for 1 ≤ i ≤ n− d.

We adopt the linear change of coordinates (2.5.1.4) in PnK and consider the open immersion

(2.5.1.6) PnK = Proj(K[X ′0, . . . X
′
n])→ Proj(OK [X ′0, . . . X

′
n]) = PnOK

Let X be the schematic closure of X → PnOK
via (2.5.1.6). Let u be the closed point of the

closure of u in X. We place ourselves in the principal affine open neighbourhood of u (resp. u)

D+(X ′0) = PnOK
\ V+(X ′0) (resp. D+(X ′0) ∩ PnK), so to have affine coordinates xi = X ′i/X

′
0.
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Let mu ⊂ OX,u be the maximal ideal of the local ring of X at u. The ring OX,u is regular

and local of dimension d. By construction, the K-vector space mu/m
2
u is generated by x1, . . . , xd.

Let mu ⊂ OX,u be the maximal ideal of the local ring of X at u. Let I0,OK
be the ideal of

OK [x1, . . . , xn] defining X in D+(X ′0) = AnOK
. It is generated locally at u by the de-homogenized

polynomials X ′0
−riG(X ′i), written in the variables xi. Then mu is generated by π together with

the images of x1, . . . , xn modulo I0,OK
. The local ring OX,u is a regular local ring of dimension

d + 1. Indeed, OX,u has dimension at least d + 1, since when we invert π we obtain a ring of

dimension d. The equality in the dimension and the regularity follow from the fact that mu/m
2
u

is generated by π, x1, . . . , xd by (2.5.1.5).

We have

ÔX,u
∼= OK [[x1, . . . , xd]]

Indeed, any element of ÔX,u can be expanded as a power series in the xi with coefficients in OK ,

so we have a surjective map

OK [[x1, . . . , xd]]→ ÔX,u

and we conclude by [EGA IV, 0.17.3.5 (ii)], being OK [[x1, . . . , xd]] a regular local ring of di-

mension d+ 1 = dimOX,u = dim ÔX,u. �

2.5.2. Let e ∈ X(K) be the unit section of X and let X be the proper OK-model of X

provided by Lemma 2.5.1, so that

ÔX,e = OK [[T1, . . . , Tg]]

where g = dimX and e is the closed point of the closure of e in X. Let Ω̂1
ÔX,e/OK

be the

module of continuous OK-differentials of ÔX,e, i.e. the separated completion of the ÔX,e-module

of OK-differentials Ω1
ÔX,e/OK

(see [EGA IV, 0.20.7.14.2]). By [EGA IV, 0.20.4.5], we have the

canonical isomorphism

Ω̂1
ÔX,e/OK

= lim←−Ω1
OX,e/OK

/mn
eΩ1
OX,e/OK

.

If we take the composition with the (injective) canonical map

(2.5.2.1) Ω1
OX,e/OK

→ Ω̂1
ÔX,e/OK

we have an injective OK-linear morphism

(2.5.2.2) prH0(X,Ω1
X/OK

)→ Ω̂1
ÔX,e/OK

.

Indeed, a global section ω ∈ prH0(X,Ω1
X/OK

) ⊂ H0(X,Ω1
X/K) is mapped to 0 in the stalk

Ω1
OX,e/OK

if and only if it is mapped to 0 in Ω1
OX,e/K

, that implies ω = 0, since the everywhere

defined 1-form over an abelian variety are determined by the value in e.

2.5.3. We equip ÔX,e with the m = (T1, . . . , Tg)-adic topology and OK with the p-adic

topology. To give a continuous OK-linear map f : ÔX,e → OK amounts to give g elements

xf,1, . . . , xf,g in the maximal ideal mK of OK . Therefore we have a canonical map

(2.5.3.1) Ω̂1
ÔX,e/OK

→ HomZ(Homcont,OK
(ÔX,e,OK),Ω1

OK/OK
)
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given by

ω =
d∑
i=1

αi(T1, . . . , Tg)dTi ∈ Ω̂1
ÔX,e/OK

7→ (f 7→
d∑
i=1

αi(xf,1, . . . , xf,g)dxf,i)

as αi(xf,1, . . . , xf,g) converges in OK for every i and f .

Let ϑ be the composition of (2.5.2.2) with (2.5.3.1):

ϑ : prH0(X,Ω1
X/OK

)→ HomZ(Homcont,OK
(ÔX,e,OK),Ω1

OK/OK
)

Using the natural inclusion

Homcont,OK
(ÔX,e,OK) ⊂ X(OK) = X(K)

we see that for every ω ∈ prH0(X,Ω1
X/OK

), ϑ(ω) corresponds to the restriction to the subset

Homcont,OK
(ÔX,e,OK) of 〈ω,−〉 ∈ HomZ[GK ](X(K),Ω1

OK/OK
), image of ω through (2.4.8.1). To

complete the proof of 2.4.17 is therefore enough to establish the following

2.5.4. Lemma. The canonical map

Ω̂1
ÔX,e/OK

→ HomZ(Homcont,OK
(ÔX,e,OK),Ω1

OK/OK
)

is injective.

2.5.4 can be restated in the following purely algebraic form:

2.5.5. Lemma. Let ω =
∑d

i=1 αi(T1, . . . , Tg)dTi be a formal power series in d variables with

coefficients in OK . be a non-zero continuous differential form. Then there exist x1, . . . , xg ∈ mK

such that
d∑
i=1

αi(x1, . . . , xg)dxi

is a non-zero element of Ω1
OK/OK

.

Proof. We first verify the statement for g = 1. Let ω = α(T )dT =
∑

i≥0 aiT
idT with

ai ∈ OK . Let v be the valuation of K normalized by v(K×) = Z and let

s = inf
i∈N

v(ai) ∈ N.

As s ∈ N, there exists a smallest non negative integer i0 satisfying v(ai0) = s. Then, for any

x ∈ mK such that v(x) < 1
i0

we have:

v(α(x)) = s+ i0v(x) < s+ 1.

It’s enough to choose x to be a uniformizer for a finite (ramified) extension L of K, contained

in K such that v(DL/K) ≥ s+ 1. Then by 2.2.3 the annihilator of dx in OK is OKDL/K , so that

α(x)dx is not zero as element of Ω1
OK/OK

. �

The general case is a consequence of the following statement:



2.5. THE PROOF OF PROPOSITION 2.4.17 42

2.5.6. Lemma. Let α1, . . . , αg be g formal power series in g variables, αi ∈ OK [[T1, . . . , Tg]]

and suppose that at least one of them is non zero. Then there exist g formal power series

ϕ1, . . . , ϕg in one variable T over OK with no constant terms such that

g∑
i=1

αi(ϕ1, . . . , ϕg)ϕ
′
i

is a non zero element of OK [[T ]], where ϕ′i denotes the formal derivative of ϕi with respect to

the variable T .

Proof. We look for the ϕi’s of the form ϕi = aiT + biT
2 with ai, bi ∈ OK . Let λ =∑g

i=1 αi(ϕ1, . . . , ϕg)ϕ
′
i; we have

λ =

g∑
i=1

αi(a1T + b1T
2, . . . , agT + bgT

2)(ai + 2biT ).

Write αi in the form αi =
∑

m≥0 αi,m with αi,m homogeneous of degree m in the variables

T1, . . . , Tg. If r is the smallest integer such that there exists j with αj,r 6= 0, we have the

following expansion for λ:

λ =
( g∑
i=1

aiαi,r(a1, . . . , ag)
)
T r +

( g∑
i=1

aiαi,r+1(a1, . . . , ag)+

+

g∑
j=1

2bjαj,r(a1, . . . , ag) +
∑
i,j

aibj
∂αi,r
∂Tj

(a1, . . . , ag)
)
T r+1 + . . .

We now have three possibilities:

i) If F =
∑g

i=1 Tiαi,r(T1, . . . , Tg) 6= 0, being OK infinite, we can find a1, . . . , ag in OK
such that F (a1, . . . , ag) 6= 0. For this choice of the ai’s, λ 6= 0 for any choice of the bj ’s.

ii) If F = 0 we look at the next term in the expansion of λ: if

G =

g∑
i=1

Tiαi,r+1(T1, . . . , Tg) 6= 0,

we can use again the fact that OK is infinite to find ai’s such that G(a1, . . . , ag) 6= 0.

If we set bj = 0 for every j we see that λ 6= 0.

iii) If F = G = 0, we have, by taking the derivative of F with respect to Tj :

(2.5.6.1) αj,r(T1, . . . , Tg) +

g∑
i=1

Ti
∂αi,r
∂Tj

(T1, . . . , Tg) = 0

for every 1 ≤ j ≤ g. Moreover

λ =
( g∑
j=1

bj

(
2αj,r(a1, . . . , ag) +

g∑
i=1

ai
∂αi,r
∂Tj

(a1, . . . , ag)
))
T r+1 + . . .

so that if we substitute (2.5.6.1), we get

λ =
( g∑
j=1

bjαj,r(a1, . . . , ad)
)
T r+1 + . . .
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It is enough to choose a j such that αj,r 6= 0 to find ai’s inOK such that αj,r(a1, . . . , ag) 6=
0. If we set bj = 1 and bi = 0 for i 6= j we see that λ 6= 0.

�

2.6. Connections with Tate’s conjecture

2.6.1. Let K be as in 2.4.1, X an abelian variety over K, Tp(X) = Tp(Xη) the p-adic Tate

module of X.

2.6.2. Theorem (Tate-Raynaud). Under the assumptions 2.6.1, there exist canonical, bijec-

tive, K-linear homomorphisms

%1
X : H1(X,OX)→ HomZp[GK ](Tp(X),C),

%0
X : H0(X,Ω1

X/K)→ HomZp[GK ](Tp(X),C(1))

where %0
X is the homomorphism defined in 2.4.11.

Proof. Let g be the dimension of X. By 2.4.14 we have:

(2.6.2.1) d = dimK(HomZp[GK ](Tp(X),C(1))) ≥ dimK H0(X,Ω1
X/K) = g.

Equality holds in (2.6.2.1) if and only if %0
X is an isomorphism. Let X̂ be the dual abelian variety

of X. If we interchange the roles of X and X̂, we get from the injection

%0
X̂

: H0(X̂,Ω1
X̂/K

)→ HomZp[GK ](Tp(X̂),C(1))

the inequality

d′ = dimK(HomZp[GK ](Tp(X̂),C(1))) ≥ g.

The Weil pairing

Tp(X)× Tp(X̂)→ Zp(1)

is a perfect Zp-linear pairing, compatible with the action of GK (see [Mum70, p. 186]). It

induces a canonical isomorphism

(2.6.2.2) Tp(X) ∼= HomZp(Tp(X̂),Zp(1)).

Let W = HomZp(Tp(X),C(1)) and Ŵ = HomZp(Tp(X̂),C(1)). By (2.6.2.2) we have W ∼=
Tp(X̂)⊗Zp C and Ŵ ∼= Tp(X)⊗Zp C, so that there is a canonical non-degenerate GK-pairing

(2.6.2.3) W × Ŵ → C(1).

By (1.5.15), we have H0
cont(GK ,C(1)) = H1

cont(GK ,C(1)) = 0. By 1.6.2, ŴGK ⊗K C and

WGK⊗KC are C-subspaces of Ŵ andW . Since they are paired into C(1)GK , they are orthogonal

with respect to the pairing (2.6.2.3). Their dimensions are d′ and d respectively, and by (1.9.5.1)

we have d+ d′ ≤ 2g = dimC(Tp(X)⊗Zp C), as required.

In order to get the morphism %1
X we use again duality for abelian varieties. First of all,

recall that there is a canonical isomorphism between the tangent space at 0 to the dual abelian

variety X̂ and H1(X,OX) ([Mum70], Corollary 3, p. 130). Hence

H1(X,OX) = HomK(H0(X̂,Ω1
X̂/K

),K).
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The spaces H0(X,Ω1
X/K) and H0(X̂,Ω1

X̂/K
) are mapped injectively onto subspaces of W and Ŵ

which are orthogonal with respect to the pairing to C(1). Hence we have

HomC(H0(X̂,Ω1
X̂/K

),C(1)) = WGK ,

so that H1(X,OX) = WGK ⊗K C(−1). But then

WGK ⊗K C(−1) = HomZp[GK ](Tp(X),C(1))⊗K C(−1) ∼= HomZp[GK ](Tp(X),C)

providing the required isomorphism

%1
X : H1(X,OX)

∼−→ HomZp[GK ](Tp(X),C).

�
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l’Université de Nancago, VII, volume 1264. Hermann, 1959.

[Ser62] J.P. Serre. Corps locaux. Publications de l’Institut de Mathématique de l’Université de Nancago, VIII,
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