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Introduction

Let K be a local field and C the completion of the algebraic closure of K. The non-
archimedean upper-half plane over K is defined as Q :=P!(C) \ P}(K). (cf. [3])

In section 6 of [8], Drinfel’d cites three analogs of the complex upper half-plane in
the non-archimedean setting, viz., {0 as an analytic analog, the Bruhat-Tits tree on
the equivalence class of lattices as a homogeneous analog and the space of norms as a
topological analog. Also, in analogy with the action of GL3 (R) on the complex upper-
half plane by Mébius transformation (cf. chapter 2 in [5]), an action of the group
PGLy(K) is defined on each of these non-archimedean analogs and an archimedean
metric is defined on the space of norms. Then the space of norms is identified with
the Bruhat-Tits tree via an isomorphism and the reduction map is defined from {2
to the Bruhat-Tits tree in order to give a relation between these analogs. This map
commutes with the actions of PG Ly(K) and enables us to imagine intuitively 2 as the
boundary of a tubular neighbourhood of the Bruhat-Tits tree with the reduction map
corresponding to the projection onto the tree. (cf. subsection 2.5 in [3])

The simplest way to describe this map is to adopt the point of view of Goldman and
Iwahori (cf. [12]) i.e. to send the point [z,y] € Q to the equivalence class of the norm
| || on K2, which is defined as ||(a,b)|| = |ax + by| V (a,b) € K?, where | | denotes the
norm on C', obtained as the unique extension of the norm on K.

Finally, using the fibers of the reduction map, we obtain a rigid analytic structure on
Q2 in the following way:

The pre-image of any archimedean closed ball on the space of norms centred at the
equivalence class of an integral norm turns out to be a connected affinoid subset of
PY(C). Moreover, if we consider a set of concentric closed balls on the space of norms
centred at the equivalence class of an integral norm, their corresponding pre-images give
an admissible covering of €} by an increasing sequence of connected affinoid subsets of
P!(C). This defines a Grothendieck topology on € and thus, a rigid analytic structure
on 2 is obtained. (cf. proposition 6.1 in [8], prposition 1.2.5 in [6] and proposition
2.4(b) in [13])

The space €2 supports a theory of analytic functions, differential forms and it also
has interesting deRham and étale cohomologies. (cf. [3], [7] and [16])



The existence of the reduction map implies many important connections between €2
and the Bruhat-Tits tree. One of the most striking result among them is the theorem of
Schneider and Stuhler, which states that, the deRham chohomology group H}, 5 (€2, K)
is isomorphic with the space of harmonic functions on the Bruhat-Tits tree for K.

(cf. [16])

The rigid analytic structure on €2 lies at the heart of the theory of p-adic
uniformization of Shimura curves (cf. [3] and chapter 2 of [5]). If I is a discrete group
of GLy(K), then the quotient space I'\€2, may also be given a natural rigid analytic
structure and the natural map 2 — I'\Q) is a morphism of rigid analytic spaces (cf. [8]
or proposition 2.3(d) in [13]). In most of the times, The quotient space I"\§2 turns out
to be an algebraic curve defined over K, by a non-archimedean analog of the GAGA
theorem (cf. [11]). And amazingly, the curves constructed in this way are often the
same Shimura curves which arise out of the complex upper half-plane. (cf. [19] for an
explicit example)

In this thesis, we focus on the relation between the archimedean topology on the
geometric realization of the Bruhat-Tits tree and the rigid analytic structure on §2 via
the fibers of the reduction map.

In chapter 1, we construct an explicit isomorphism between the Bruhat-Tits tree
and the space of non-archimedean norms on K?2. Section 1 and 2 develop the necessary
material for this, by introducing the tree (cf. figure 1.1 on page 17) and its geometric
realization as well as proving the discreteness of the non-archimedean norms on
finite dimensional K-vector spaces and describing a natural map from the geometric
realization of the tree to the space of norms. Then we provide a map in the opposite
direction, which is shown to be the inverse of the former map. Thus establishing the
isomorphism between the geometric realization of the tree and the space of norms in
section 2, in the next section we proceed to investigate the effects of this isomorphism
on the natural metric of the geometric realization of the tree given by the length of the
unique path joining any two points on it. Indeed, the knowledge of the relation between
the metric on the geometric realization of the tree and the corresponding metric on the
space of norms turns out to be very useful in the next chapter.

Our goal in chapter 2 is to see the connection between the different geometric
structures on the geometric realization of the Bruhat-Tits tree and on €2, using the
fibers of the reduction map. In section 1, we define the reduction map from €2 to the
geometric realization of the tree, via the space of injective K-linear forms on K? and
the space of non-archimedean norms on K2 and then we give a precise description of
its image in the tree. In section 2, we introduce the action of the group PGLy(K)
on the tree, on the space of norms and on ). Next, we show that the metric on the
tree is invariant under the PG Lo(K)-action, whereas the reduction map is PG Ly(K)-
equivariant, i.e. the map commutes with the group action. Then in the final section, we



define the balls on the projective space P!(C') and prove that PG'Ly(K) sends the balls
to balls in P'(C'). Using these facts along with the transitivity of PG Ly(K)-action on
the tree, the situation becomes a lot simplified, i.e. considering only the finite subtrees
of the Bruhat-Tits tree around a specific vertex, we are able to draw general conclusions.
With these efficient tools in hand, we finally prove that the pre-image of the geometric
realization of any finite subtree of the Bruhat-Tits tree is a connected affinoid subset of
P!(C). Particularly, when this finite subtree is a closed ball around some vertex of the
tree, we have some more informations about the structure of this connected affinoid
subset (cf. proposition 10 on page 59). We also study the effects of varying the radius
of this closed ball in the tree, on the corresponding affinoid subset of P'(C) and obtain
a nice conclusion. (cf. remark 20 on page 60, figure 2.1 on page 61 and figure 2.2 on
page 62)
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Chapter 1

The Bruhat-Tits Tree

Notation 1.

K 1 Alocal field of characteristic 0 with a discrete valuation vk and
a finite residue field k = F, where, ¢ = p" for some prime p € Z and r € Z>.
: The ring of integers of K.

m A uniformizing parameter of O.
1

qu(J}) '

| |k @ The norm on K, given by |z|x:=

C  : The completion of the algebraic closure of K.
| | : The unique norm on C, which extends that of K.
v : The valuation on C, given by v(x):= log, |z|.

QO PYC)\P'(K).

Remark 1. # k<oco = [K:Q,] < oo.
Therefore, C' and C, can be identified.

1.1 The Tree

Definition 1. A lattice L C K? is a free O-submodule of rank 2.

Definition 2. Two lattices L and L' are equivalent, written L ~ L', if 3 X € K* such
that L' = A\L. We denote the equivalence class of the lattice L by [L] and we denote
the set of the equivalence classes of lattices by S. i.e.,

L):={L|L~L}

S ={[L]| L C K? is a lattice }.
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Definition 3. X is the graph with the set of its vertices, V(X) =S such that
given s1, 89 € S, we have {s1, s2} € E(X), the set of the edges of X,
iff s1 = [L1] and sy = [Lo] with

7TL1 _,C4_ L2 g Ll-

Remark 2. Note that, the edges of X are not directed, as
WngngLl = ngng%LQ = W(%I@)ngg(%LQ)
and we have, (£Ly) ~ Lo.

Definition 4.

i) A tree is a graph in which between any two vertices there is exactly one path.

i1) A homogeneous tree of degree d is a tree in which each vertex belongs to exactly d
edges.

Proposition 1. The graph X is a homogeneous tree of degree q + 1.
To prove this proposition, we need the following lemmas.

Lemma 1. If L C K? is a lattice, then L/7"L = O/7"O & O/7"O ¥V n € Z>g
In particular, L/7L = k.

Proof. Since, for any 2 pair of modules, M| C M; and M} C M,

Lemma 2. If Ly, Ly, L3, Ly C K? be lattices such that
7Ly C Ly C Ly and wly C Ly C Ly,
then, L2/7TL1 = L3/7TL1 & Ly = Ls.

P’f’OOf. L2/7TL1 = L3/7TL1
& Lo =Ly+nly = L. ]

Lemma 3. If Ly, Ly, Ly C K? be lattices such that
mwly C Ly C Ly and wly C Ly € Ly,

then, Lo ~ L3 < Ly = Ls.

Proof. Suppose, if possible, Ly ~ L3 and Ly # Ls.

Let L C K? be any lattice.

Then 7TL1 g L g L1

< {0} C L/nLy C Ly/7ly

< L/mL; is a 1-dimensional subspace of Ly /mL;.
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Let z,y € L and let Z,y € L/wL be their images such that
() = Ly/mLy and (y) = Ls/mLs.
Now, Ly # L3

& (T) = Lo/mLy # Ly/mLy = () (cf. lemma 2)

( (cf. lemma 1)

& (v,y) = L (cf. Nakayama’s lemma)
= (z,my) = Ls and (7wz,y) = Ls. (cf. lemma 2)

Again, Ly ~ Ls
= 3 XA € K* such that L3 = ALs.

= either Ly C wL3 C Lo or Ly C wlo C Ls. (as Ly = (z,my) and L3 = (7wzx,y))
Thus, we get a contradiction.
Hence, Ly = Ls. O

Lemma 4. Let L C K? be a lattice. For any 1-dimensional subspace N C L/7L,
3 a lattice ' C K? such that 1L C L' C L and L' /7L = N.

Proof. Let x,y € L and let z,y € L/nL be their images such that
(z)y =N and y ¢ N.
= (2,9) = L/7L (cf. lemma 1)
& (r,y) = L. (cf. Nakayama’s lemma)

Let L' := (z, y).
=L CL CLand L'/rL = N. (cf. lemma 2) O

Proof of the proposition. Lemma 3 implies that the edges leaving a given vertex s = [L]
correspond to the distinct lattices L', satisfying the relation

fLCLCL

and by lemma 1, 2 and 4, these are in bijection with the 1-dimensional subspaces of k2,
ie., with P'(k) = k U {oc0}.
Hence, there are # P'(k) = q + 1 edges leaving any vertex s € X.

Again, if X is not a tree, a cycle in X can be represented as a chain of lattices :
LyC Ly C...C L, for somen € Z>;

such that,
Z) mliyn S L, C Ly Vie Z[Om—l} .
it) Lo = 7" Ly, for some m € Zp 1) .
iii) L & L; ifi,j ¢ {0,n} and i # j.
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Considering the exact sequences,
0 — Lij/Li.y —— Ly/Liyw — L,/L; —— 0 Vi€Zpy,

starting with ¢+ = n, by induction and repeated applications of proposition 6.9 of
2], we get, L,/L; has length (n —i) Vi€ [0,n] .
Since L, /Ly is not cyclic, hence 3 iy € Zo,n—1) such that

ip :=max { i | L,/L; is cyclic but L, /L;_; is not}

= L,/L;, is a cyclic O-module of length n — iy

= Ln/Lio = O/’/Tn_ioo

= ﬂ.n—io—an g L,L'O

= ﬂ.n—io—an 7@ Lio—l (as Lio—l - Ll>

Also, 3 ry, 79 € Z>1, such that L, /L;,—1 = O/7" O & O/n O, where ry > 1.
As 7%~ does not annihilate all the elements of L,,/L;,_1, hence 75 > n — .
Again, 1y + ro = length of L, /L;;_1 =n —ig+ 1, where 1,79 € Z>;

=r;=1 and ry =n — 1.

= Ln/LiO—l = O/?TO SY) (’)/W”_io(’)

Hence, considering the image of a generator of L;,/L;,—1 in the inclusion
Liy/Lij,—1 — Lyn/L;,—1, we see, the exact sequence in the 1st row of the
following diagram splits.

0 — L /Lij1 — L,/Liyw — L,/Liy — 0

|

0 — Ljyw1/Liyn — Ly/Liy 1 — Ly/Ligsi —= 0
= L,/Li,—1 = Liy/Lijy—1 ® L,/ L;,.
Again, L; /L;;—1 € Liy+1/Liy—1 C Liy/Liy—1 @ Ly /Ly, .
= Liy41/Li,—1 contains a non-cyclic submodule.

And length of Li0+1/Lio—1
=(length of L,,/L;,—1)—(length of L, /L; 1)
=2

= L;y4+1/Li,—1 is a non-cyclic, length 2 O-module
= L;,—1 = mL;,+1, which contradicts (ii7).

Hence, X is a tree.

Remark 3. The tree X 1s called the Bruhat-Tits tree.
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Figure 1.1: The Bruhat-Tits tree for K = Q,

Definition 5. Xg := {(1 —t)s1 +ts2 | {s1,52} € E(X) and t € [0,1]}.

Remark 4. Xy is called the geometric realization of the Bruhat-Tits tree. Note that,
as X is a tree, hence, also for any two points in Xg, there is a unique path joining
them.

Definition 6. V z1, 19 € X ,

o(x1,x9) := The unique path joining x1 and x4 in Xg.

Definition 7. Xqg := {(1 —t)s1 +ts2 | {s1,52} € E(X) andt € QN [0,1]}.
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1.2 The Space of Non-Archimedean Norms

Definition 8. A non-archimedean norm on a vector space V- over K is a function
| II:V —Rso suchthat,Vax,y€eV and Va€ K,

i) ||| =0 iff x=0.
i) [l = lalx ], -
iit) ||z + y|| < max{||z|, [lyl|}, where equality holds if |[x|| # [ly|l

Lemma 5. Given a non-archimedean norm, || || on an n-dimensional vector space V
over K, there exists a unique n-tuple (ay,...,a,) € [1,q9)", where a; < ... < a,, such
that
n CL1|K|K Zf a;y = ... =0ap.
VI = JalKlx =
i=1 Uleai\K\K if o <...<ag=...=ap,.

Proof. There are 2 possible cases:

Case 1: (1l € |K|x V vy, 05 € V such that vy # 0)

[[o2]]

Let v € V '\ {0} be such that |[v| € [¢", ¢"*') for some n € Z.
Let v’ := 7™ and let a := ||¢/|. Then ||V| = |V'|||K|x = a|K|k.

Again, a € [1,q)

= qmac g™ ¢"") YmeZ
= a € [1,q) is the unique element such that ||V = a|K|x.

Case 2. (Jvy,v € V' \ {0} such that H ¢ |K|k)

Let wy,...,wg € V' \ {0} be such that ”iﬁ“ ¢ |K|lx Vi, jge{l,...,d}.
=V a,...,aq € K, we have,

lorwy + ... + aqwyl| = max {|oa|g|lwi |, |oalx|lwall}
==Ku®.. pKwy CV
=d<dimV

Hence, we can choose the set W := {wy,...,wq} €V \ {0} to have the
maximum possible cardinality.
i.e., if W/ C V be some other set such that

w
J

||‘|w,%|‘|‘ ¢ |K|x ¥V wj,w; e W’ then

d> 4 W .



1.2. THE SPACE OF NON-ARCHIMEDEAN NORMS 19

=VoeV, Jie{l, .. d}suchthat o € |K|x
= VI = Uuew [[w]| [K|k.

Let Vie{l,...,d}, vl:=n"w,; for some suitable n;, € Z such that ||v}|| € [1, q).
Let 7:{1,...,d} — {1,...,d} be a permutation such that

HU/T(1)|| <...< ||U/T(d)||-

HU,T(i)H if 1<i<d-1.
Let a; =
[l i d<i<n

Then |V = Upew ||w| |K|x = a1|K|x U. ..U ag|K|k.
Again, (aq,...,a,) € [1,q)"
= (¢™ay,...,q™a,) € [¢™, ¢™) Vm e Z

= (ay,...,a,) € [1,q)", is the unique element such that a; < ... <ag=...=a,
and ||V =a|K|gU...U a4 K|k O
Corollary 1. Given a non-archimedean norm, || || on a 2-dimensional vector space V

over K, 3 a unique pair (a,b) € [1,q) x [1,q), where a < b, such that

a|K |k if a=b.
VIl = alK|x Ub K|k =
a|K|x UbK|x if a#b.

Definition 9. Two non-archimedean norms || ||y and || ||2 on a K-vector space V are
equivalent, written || |1 ~ || |l2, if 3 ¢ € Rag such that || ||y = ¢|| ||2-

=TI~y

Y ={[l ]|l is a non-archimedean norm on K*} .

Remark 5. If we have had taken a weaker criterion of equivalence of norms, viz., ‘two
norms are equivalent, if they give the same topology on V', then, even if we have had
considered all the norms (i.e., which are not necessarily non-archimedean) on a finite

dimensional K -vector space V, the set of equivalence classes would have been a singleton
set. (Theorem 5.2.1 of [14])

Convention.
From now on, by a ‘norm’, we shall mean a ‘non-archimedean norm’.
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Definition 10. For any lattice, L = Oe; & Oey C K2, the norm || || is defined as :
Vv =aje; + asey € K?,

[0l == max {[as |, |k} -

Definition 11. For any two lattices, L1, Ly C K?, such that 1Ly C Ly C Ly, by
FElementary divisors theorem, 3 a basis (e1,e3) of Ly such that (ey,mes) is a basis of
Ly.We fiz some (e1,e3) as above. Then ¥V t € [0, 1], the norm || ||(L,,1,,¢) s defined as :
Vv =ae + asey € K2,

|’U||(L1,L2,t) ‘= Inax {|a1’K7qt|a2|K} .

Lemma 6. The norms || || and || ||(r,,1.,¢) are well-defined.

Proof. Let L C K? be any lattice. Given any two bases (v, vs) and (wy, ws) of L,
YV v = a1 + asvy = bywy + bywy € K2, we have,

vllr = max {|a1|k, laz|x } = max {¢" | 7™ "v € L} = max {[bi|x, |ba|x }-

Hence, || ||z is well-defined.

AgainV v = aje; + ages,
t [v]lz, it |vllz, = [Jv]lz,
ll(zy, 20,0y = max {|a1|k, ¢"|as|x } =
¢'lvllc, = ¢ Holle, if [Jvllz, # [Jv]lL,

And, || ||z, and || ||z, are well-defined.
= || /(21 L0,1) is Well-defined. -

Remark 6. Note that, any lattice L C K?, is the unit ball w.r.t. the norm || |1

Definition 12. For each {s1, s} € E(X), let us fix some lattices Ly, Ly C K? such
that sy = [L1], so = [Lso] and wLy C Ly C Ly. The map ¢ : Xg — Y is defined as

S((1—t)sy +t52) = || lzrran) V¥ (1—t)s) +1tss € X .

Lemma 7. The map ¢ : Xg — Y 1is well-defined.

Proof. Suppose, we have fixed some Ly, Ly C K? such that s; = [Ly], so = [Ls]
and 7TL1 g_ L2 g Ll.

Now, there are 2 possible cases:
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Case 1. We fix another pair L;, L, C K? such that L} ~ Ly, L) ~ Ly
and 7L} C L, C L
= 3 A € K* such that L] = AL,
= 7nL) C ALy C L} and L} C L, C L} with L, ~ ALy
= L), = AL (cf. lemma 3)
[olley = A lolle, i Jlvllzy = vl
= llvlley, 25,0 =
¢'[[vllzy = Mk g'llvlle, i follzy # llvllzg

= vlley 5.0 = Mllvllzy, 22,1y

= || i, zy.00 ~ Il 21, L2,0)-

Case 2. We fix another pair L;, L}, C K? such that L} ~ Ly, L) ~ Ly
and 7L, C L} C L.
7TL1 g L2 g L1
= wlo g_ wlq g L.
Again, 3 A € K? such that L}, = \Ls.
=L, C ALy C L and wLy C Ly € L), with L] ~ wALy
= L) = 7wAL,. (cf. lemma 3)
lwllzy = ¢ Ak ol 3 ol = [lollzy
> lellas, 0 = t—1 1 t -
¢ ol = e Mxe oz, i vl # ol

= [[vll 2. .0 = a7 Mk l0ll 2, 2o

= || 2.0 ~ I L2 U
Lemma 8. Given any norm, || || on K*,V a € Rag, Ly, :={v € K? | |v|| < a} isa
lattice.

Proof. By definition 5, L, is a non-zero O-submodule of K?.
Let u € L, and let v € K2\ Ku.
=v e K%\ Ou
= Ja € K such that v' = av € L, \ Ou
= L, is generated by more than 1 element.

Again, L, /7L, C k? is a k-vector space,
= dim(L,/7L,) < 2.
= L, is generated by less than 3 elements. (cf. Nakayama’s lemma)

Hence, L, is generated by 2 elements.
Let La = <’Ul,1}2>.
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If OUl N OUQ 7é {O}

= 34 € {1,2} such that v3_; € Oy,

= L, = (v;), which is impossible.

= O?)l N O’UQ = {O}

= L, = Ov; ® Ovs,. ]

Lemma 9. Let {s,s'} € E(X), where s = [L] and s’ = [L'] with 7L C L' C L.
Then giwven the norm || ||(z,r,4) , we have,

I L' Yaellq)
L VYaeld,q

In particular,

I L VYaellq ift=
1L Yacellyg

Proof. By definition 7, we have, L = Oe; ® Oey = {v € K? | max {|a;|x, |aa|x} < 1}.
Now, V v = aje; + azes € K2, 31,5 € Z such that |ai|x = ¢" and |as|x = ¢°.

= {v € K? | max{|ai|k, |az|x} < 1} = {v € K? | max{|ai|k, |a2|x} < a} Va € [l,q)
=L={veK?*| |plr<a}Vaellq)

= L,=L Vaec]|lq)ift=0.

Again, we have, L' = Oe; ® Omey = {v € K? | max {|a1|k, qlaz|x} < 1}.
Also, V v = aje; + azes € K2, 31,5 € Z such that |a;|x = ¢" and qlas|x = ¢°.
= {v € K? | max{|ai1|x, qglas|x } < 1} = {v € K? | max{|a1|k, qlas|x } < a} V a € [1,q)
=L={wveK?| |v|lpr<a}Vaellgq)
S Lo=L Yac[lqift=1

So, the claim holds for ¢t = 0 and ¢t = 1. Now suppose t € (0, 1).
Let v = aje; + azes € K% 31, s € Z such that |ai|x = ¢" and |ag|x = ¢°.
Ast € (0,1), hence r>s & r>s+t and r<s & r<s+t.

Case 1. (a€]l,q¢))
[vlle, 0 < ¢

& max {¢", ¢} < ¢

g <q if r>s
¢t <q if r<s

r<0 if r>s
s+1<0 if r<s

& vl <1
s vel ={veK?| max {|ai|k, qlas|x} < a} V a € [1,¢")
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C{ve K?| max {|a1|x, ¢ |as]k} < a} V a € [1,¢")

= L/ = {U < K2 ‘ HUH(L,L’J) S Oé} Y a € [th)
=L,=L Yacellq).

Case 2. (a€]d',q))
[ollz, L < q
& max {¢",¢°T'} < ¢

g <q if r>s
¢t <qg if r<s

r<0 if r>s
s<0 if r<s

& lvllr <1

s velL={veK?| max {|ai|x, |az|x} < 1}
= {v € K | max {|ai|k, ¢'laz|x} < 1}
C {ve K?| max {|a1|k,¢"|as|x} < a}Va>1
= veLC{ve K?| max {|ai[x, ¢'las|x} < o} YV a € [¢',q)

= [ = {U - K2 | ||U||(L7L’,t) S O[} Yace [qt,q)
=L,=L Vacld,q). O

Lemma 10. Given any norm, || || on K%, let (a,b) € [1,q) x [1,q) be the unique pair,
with a < b, such that |K?|| = a|K|x Ub|K|x. Then

[ {L., Ly} if a=1.
{La | ae[l,q)}—{ {nLy, Za, Ly} if a>1.

Proof. |K?|| = a|K|x Ub|K|x, where a,b € [1,q)
= K2 (L q) = {a,b}
= [IK2I N[5, 0) = (KN [ D) UAIKAIN[L,q) = {4, 2, a, b}

q’ q’

( Ly, C L,C L
and
= 4
Ly if OCG[I,CL)
Lo=4q L, if a€la,b)
Ly if ae[b,q)
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b
Again, Ly = {v € K? | Jo]] < =}
a q

={ve K| |~ 'v| <b}
=m{ve K | [jv] < b}

:7TLb
J— {La7 Lb} lf CL:1.
= {La|a€[1,q)}—{{ﬂLb7 Lo, Ly} if a>1. .
Definition 13. For cach y € Y, we fix some || ||, such thaty ={|| |,]-

By lemma 5, for || |l,, 3 a unique (a,b) € [1,q) x [1,q) such that a < b and
| K?|| = a| K|k Ub|K|x. And by lemma 10, we have,

{[La] | € [Lq)} ={[La, [Lo]} -
Let t := logq(g). The map ¢ : Y — Xg is defined as

by) = (A =t)[L] +t[Le] VyeY

Lemma 11. The map ¢ : Y — Xy is well-defined.

Proof. Suppose, given y € Y, we have fixed some || || such that y = [|| ||| and let
(a,b) € [1,q) x [1,q) be the unique pair such that a < b and ||K?|| = a|K|x U b|K|x.

Let || || ~ || || and let (a/,b") € [1,q) X [1,q) be the unique pair such that o’ < ¥’
and ||K?|| = d|K|x UV |K]|k.

= || |I' =¢|l || for some ¢ € Ry

= d|K|x UV |K|k = | K?||' = cal K|k U cb| K|k

= 3 m,n € Z such that {a’,0'} = {7, Can}

NOW, Va,ﬁ€R>0,
if Ly:={veK?||v]|<a} and L}, :={ve K?| || <p},

b
then, Ly = {oe K| ol < )
qn

b
= {ve K| || Sq—n}

= {ve K| = "] < b}
= m{ve K | [lv] < b}
= 7Tan
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and Ll = {veK?| || < ‘;im}
q
a
= {ve K| < q—m}

= {ve K| || <a}
= 7w e K| |v]| <a}
= "L,

= L/cb ~ Lb and L/CL ~ La .
qm

q"

I : ca_cb /o ca_cb
We have, a’ = min {q—m, q—n}, b’ = max {q—m, o

and as a,b,a’,V’ € [1,q), hence é < <4

= qul <c< qm+1 and qnfl <c< qn+1

Hence, there are 3 possible cases, viz., m=n—1, m=n or m=n+ 1.

Casel. (m=n-—1)

= (&/,b,) = or
(S o)
qn Y qn—l
b
v a
= - = or
a qa
b
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Hence, only the following 2 cases can occur:

Let t' := logq(z—l,).

Now if (a', ') = ( <, %)

qn Y qn
= La ~ L’caf - Lg/ 5 Lb ~ L/cb - Lg/ and t= t/.
q™ i

And if (', 1) = ( 2, ;)
= Lo~ L' =1Ly, Ly~L, =L, and t=1-1.

q

Therefore, in both cases, we have,

(1 = 8)[Le] + t[La] = (1 = ¢)[Ly] + '[ L]

Proposition 2. o ¢ = Idx, and ¢op = Idy.

Proof. Let z := (1 —t)s +ts’ € Xg. Let L,L/ C K? be two lattices such that
s=|[L],s =[L]and 7L C L' C L.

= ¢(z) = [l iz, 0]

Let (a/,b") € [1,q) x [1,q) be the unique pair such that o’ < ¥

and HKQH(L L' t) = a’]K]K U bllK‘K (Cf lemma 5)
= (a,V)=(1,¢"), Ly = L' and Ly =1L (cf. lemma 9)
= vop(x)=(1—-t)[L]+t[L]=(1-t)s+ts' =2

Conversely, let y € Y and let || || be a norm on K? such that y = [|| ||].
Let (a,b) € [1,q) x [1,¢) be the unique pair such that a <b

and || K?|| = a|K|x Ub| K|k (cf. lemma 5)
= ¥(y) = (1 — t)[Ls] + t[L,], where ¢ := log, (%)
= ¢ov(y) = [l lws.Lon]

Now, V v € K2, the following 2 cases are possible:
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Case 1. (||v]| € a|K|)
Let ||v]| = ¢™a for some m € Z.
[0, = maxnez {¢" [ 7"v € La} = ¢™
0]z, = maxpez {¢" | 7"v € Ly} = ¢™
= Avllzyray = ¢
Case 2. (||v]| € b|K|)

Let |[v]| = ¢™b for some m € Z.

[v]lz, = maxnez {g" | 7"v € Lo} = g™

=
|vllz, = max,ez {¢" | 7"v € Ly} = ¢™
= HUH(Lb,Lmt) = th/UHLb = gqm'
Hence, || || = all l[zy,z..0
= ¢ot(y) = [l llwpLan] = [l 1=y O
Corollary 2. Xg and Y are naturally isomorphic as sets. 0
Corollary 3. Given any norm || || on K?, there exists

i) a unique t € [0, 3]
i) a basis (e1, ez) of K*
i) s € [1,q)

such that ||aje; + ageq|| = sup {s|a1|, s¢'|as|} V a1,a2 € K2.

Remark 7. A norm on K? is called irrational, rational or integral according as,
respectiviely, the unique t € [0, %] determined by it, is 1rrational, rational or 0.
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1.3 A Metric on the Tree

Definition 14. For each y € Y, we fir some || ||, such that y = [|| ||,]. The map
pw:Y xY — Rsg is defined as

w(y,y2) = logq< sup Hv”“) + 10gq< sup l'”“”) (1.1)

veK2\{(0,0)} HUHyz veK2\{(0,0)} ||U||y1

[¥]]y, : V1],
= log sup —= 1 — log inf = (1.2)
‘ (vél@\{(0,0)} [0]], T\ ervo0r ol
Lemma 12. the map p is well-defined.
Proof. Follows directly from (1.2). O

Lemma 13. p is a metric on Y.

Proof. Let y1,y2,y3 € Y. We have,
i) p(y1,y2) > 0 where, equality holds iff y; = ys. (cf. (1.2)
i) (Y1, y2) = p(y2, 1) (cf. (1.1)

)
)

Again,

R N Y A
veK2\{(0,0)} ||U||y3 veK2\{(0,0)} ||U||y2 veK2\{(0,0)} ||U||y3

and
g o]y, > g [v]ly, g V]l
veK2\{(0,0)} |||y veK2\{(0,0)} [|v]ly, | \ vek2{00)} [[v]ly,
Hence,

iid) (Y1, y3) < (Y, ya) + (Y2, Y3)- (cf. (1.2))
]

Lemma 14. Let || ||, and || ||2 be 2 norms on K? such that ci||v|; < ||v]l2 < collv|lx
V v € K2, where ¢y, cy € Rsg. Then

).

&1
log, (=) < ([l I, Il ll2]) < log,(—
Co (&1
Proof. c1||v]ly < [jv]ls < e|lv| Vve K?
:>%<M§é and ¢, < 2 <) vy e K2

[[oll1

= log,(5) < p(lll L], 1 2)) < log,(Z)- (cf. (L.1))
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Definition 15. The metric d on Xg is defined as

d(xy,z2) = p(o(z1), p(x2)) ¥V a1, 29 € X .

Lemma 15. For s € V(X) andy € Y, let L C K? be a lattice and || || be a norm on
K? such that s = [L] and y = [|| ||]. Then

d =1 | inf .
(s,9(y)) ogq(fggﬂllvﬂ) ogq(vlgL\ﬂLHvH)

Proof. Since, K\ {(0,0)} = Upez 7*(L\ 7L) and |v|p =1 Yve L\rxL,
hence, the lemma follows directly from (1.2). O
Proposition 3. V 5,5 € V(X), d(s,s')=# (o(s,s)NV(X))— 1.

To prove this proposition, we need the following lemmas.

Lemma 16. Let k1,11 € R be such that ki > 1,. Then

klb ll
sup (max {a"b, a c}> — " Ve Ry,
b,c€R~0 max {b, C}

Proof. For b > ¢, max {a®b, a"'c} = a*b

max {aklb7 al1 c} akl
max {b, c} - :

=

And for b < ¢, X
b < gk (as b < c)
max {a®1b, alic} ¢
max {b, c} o or
al < ak1

Lemma 17. Let kq,l; € R be such that ki > 1. Then

klb l1
inf max {a™b, a7} =a"' VaeRy,.
b,c€R>0 max {b, c}

Proof. For b > ¢, max {a*b, a"'c} = a*b

—, mex {a*1b, al1c} — gk > ab
max {b, c}

And for b < ¢, X
aitb 5 gh if a¥1b > alte
max {a®1b, alic} ¢
max {b, c} o
alt otherwise.
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Proof of the proposition. ¥ s,s' € V(X), 3 a unique path joining them in X, which
can be represented as a chain of lattices :

Lo € Ly ( here, n :=1) if {s,s'} € E(X)
LyC Ly C...C L, forsomen € Z>, , otherwise.
such that,

i) Thiy1 © Li © Liy1 Vi € Zjgn—q) -
it) s = [Lo] and ' = [L,].

Now, by Elementary divisors theorem, 3 a basis (e, e2) of L,, such that

(mFe1, mley) is a basis of Ly, where [ > k.

If [ = k, we have, Ly = 7*L,,, hence s = s’ and we are done.
Now, we assume [ > k.

= Ly = Orfe; @ Onley C 78(Oey ® Oey) = 7L,

Let LI = Orkey ® Onl=™e; VYV m € 20,11 -

= Lo = Lj and kL, = L.

So, the unique path, joining s snd s’ in X, can be represented as a chain of lattices:
Ly C L, ifl—k=1
LyCLiC...C L), otherwise.

where, we have,

Z) 7TL;+1 g L; g L;Jrl Vie Z[Q I—k—1] -
ii) s = [Ly) and s" = [L;_,].
=n=%# (o(s,s)NV(X))—1=1—k

Hence,

d(s,s') = n((s), d(s))

(L Meods LI N1z D)
]| . vl
= lo sup — lo inf :
S <veK2\{(0,O)} vz, Sa | Lex\ 00 vllz,

—k _l
= logq< sup max {g"[a1, ¢ |a2\}> _
(

a1,a2)eK2\{(0,0)} Max {\al\, |az\}

1
1

—k 1
log,| inf max {g"[a1], ¢ |as|}
(a1,a2)€K2\{(0,0} max {|ay], |az|}

=1—k (cf. lemma 16 and 17, putting ky = —k, [ = —l and a = q)
= # (o(s,s) NV (X)) - 1.
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Corollary 4. Let, Ly C Ly C ... € L, for some n € Zsy be a chain of lattices in K>
such that 7Ly C Li C Liy1 Vi € Zpn—1). Then 3 a basis (e1,e2) of L, such that

Li ~ 061 D O?Tn_ieg ) S Z[Qm] .
Corollary 5. {s,s'} € E(X) < d(s,s') =1

Remark 8. As O is a d.v.r., hence, by Elementary divisors theorem, for any 2 lattices
L' CLin K? (L/L) is finite and has at most 2 cyclic components.

Corollary 6. Let L' C L be 2 lattices in K? and let k,1 € Z be such that L)L’ =
(O/7*0) ® (O/7'O). Then

d([L], [L']) = |l = kI,
where, | |g denotes the usual archimedean absolute value on R.
Remark 9. As any 2 vertices of X are joined by a path, hence, ¥ {s,s'} C V(X),

3 lattices L' C L in K?, such that s = [L] and s’ = [L']. Also note that, if necessary,
after replacing L' by 7=™L' for some m € Zs1, we can assume that L' € wL.

Lemma 18. If L, L' C K? be lattices, such that L' C L and L' ¢ 7L, then 3 a unique
n such that 7L C L' and 7" 'L ¢ L' , where,

n = length of (L/L") = # (o([L],[L']) N V(X)) — 1 = length of (L'/x"L).

Proof. Let n := length of (L/L') and let

L'=LyCLi=L forn =1
=Ly CILiC...CL,=1L for n > 2
be the lifting of a composition series of (L/L') (1.3)

= L;1/L; are simple O-modules

= Lin/L; = O/tO Vi € Ly

=7l C L, C L1 Vie Z[Om—l] (1.4)
= Li/mLiy1 = O/mO Y i € Ligp_1

= m'L;/m" Liyy = Li/m Ly are simple O-modules Vi € Zjy,,_1

= the following is the lifting of a composition series of (L'/7"L) (1.5)

7L=nL, C Ly=1L forn=1
"L =n"L, Cn" 'L,_1C...C Ly=L for n > 2.
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Now, by (1.4) we have, both of the chains of lattices (1.3) and (1.5) represent
the unique path joining [L/] and [L] in X.

= # (o(LLIL)NV(X) -1 = n
= length of (L/L')
= length of (L'/7"L). (1.6)
Again, if possible, suppose, 7" 'L C L'.
=n > 2.
=alLCr/ (cf. (1.4))
Now, let
7L=MyC My, =1 forn =2
™ L=MyC M C...C My, =1L for n > 3
be the lifting of a composition series of (L'/7" 'L). (1.7)

Then the chain of lattices (1.7) represents the unique path joining [L’] and [L] in X
= # (o([L],[L]) N V(X)) =1 = length of (L'/7"'L) = m.
= m =n. (cf. (1.6))

But, considering the chain 7"L C 7" 'L = My C M, C ... C M,, = L' modulo
7L, by (1.5) and proposition 6.7 of [2], we have, m <n — 1.
Thus, we get a contradiction. O]

Corollary 7. Let L C K? be a lattice, s € V(X) and d([L],s) = n for some n € Zso.
Then 3 a unique lattice L' C K? with [L'] = s, which satisfies the following conditions:

i) L' CL and L' is mazximal w.r.t. this property.
i) L'CLand L' ¢ L.

i) L' C L and L)L is cyclic.

iv) L' CLand L/L' = O/m"0O.

v) L'CLand L'/7"L = O/7"0O.

Corollary 8. Let L C K? be a lattice and let n € Zsq. The elements of the set,

{s

L,

e V(X) | d([L],s) = n} correspond bijectively to the direct factors of L/m™L of rank
i.e., to the points on the projective line P(L/7"L) = PY(O/x"O). (cf. definition 38)

Proposition 4. For s,s' € V(X), of 3 L, I’ C K? and n € Z>y, with s = [L],
s=[L), ""LC L CLandn" 'LEL L, then

d(s,s") =n.
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Proof. m"L C L' C L
= [olle < vl < ¢"llvlle ¥V ve K?
= p(ll 2] 1H[e]) <7 (cf. lemma 14)

Now, "L C L' C Land n" 'L ¢ L' ¢ L
= 3 a basis (e, ez) of L such that (e, 7"eq) is a basis of L.

(cf. Elementary divisors theorem)
= lleafl = llesllz = 1
= — logq ( infyer\nr [v][z) >0

Again, |le1||, =1 and ||es||r = ¢™
= lqu ( SuvaL\ﬂ'L ||U||L'> >n

= d(s,s') =n. (cf. lemma 15)
[

Remark 10. Note that, by remark 9 and lemma 18, we have the equivalence of
proposition 3 and proposition 4.

Lemma 19. Let © = (1 —t)s+ts and 2/ =(1—t)s+t's’ € Xg, wheret >t.
Then d(z',z) =t —t.

Proof. Let L,L' C K? be lattices such that s = [L], s’ = [L/] and L C L' € L. By
Elementary divisors theorem, 3 a basis (ey, e2) of L such that (e;, mey) is a basis of L'.

=V v =ae +ae € K2,
||U||(L,L/,t/) = max {|a1|K7qt/|a2|K} and ||U\|(L,L',t) = Inax {|@1|K7qt|a2|lf}

Hence, the lemma follows directly from lemma 16, lemma 17 and (1.2). O
Corollary 9. Let x = (1 —t)s+ts' € Xg. Then d(s,x) =t and d(s',z)=1—t.

Corollary 10. Let x = (1 —t)s; + tss € Xg. Then
d(z,s;)) =1]i—1—tlg Vie{l,2},

where, | |g denotes the usual archimedean absolute value on R.
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Proposition 5. For xy, 25 € Xg, 3 s1,82,8),s5 € V(X) and 1,15 € [0, 3]
such that x1 = (1 —t1)s; +t152 and xo = (1 — t2)s) + tash.

i) If o(xy,20) NV (X) =10,
|d(z1,8;) —d(z2,s)[]g Vie{l,2} if s1=4¢]

d((L‘l,ZEQ) =
|d(z1,8;) — d(z2,s3-:)|]r YV i€{l,2} otherwise.

In other words,

‘|z'—1—151|]R—|¢—1—752|R‘]R Vie{l,2) if s,=5
d(Il,[EQ):

|i—1—t1|R—|2—i—t2|R‘ Vie{l,2} otherwise
R

it) If o(x1,22) NV(X) # 0,

let {s;} = o(w1,m2)N{s1,82} and {s.} = o(x1,22)N{s], 85}, for somei,j € {1,2}.
Then

d(z1,22) = d(x1,s:) + d(si, s;) + d(s;, 22) (1.8)

= # (o(z1,22)NV(X))+|i—1—tilg+]j—1—ta]r—1 (1.9)

where, | |r denotes the usual archimedean absolute value on R.

Proof. i) Follows directly from lemma 19 and corollary 10.

ii) {si} = o(x1,22) N{s1,52} and {s}} = o(zy, 22) N {s], sh},

= 0(si,8;) € o(x1,72)

= 83-4,53_; & 0(84,5))

= d(s},83-4) — 1 =d(s},s;) = d(s3_;,8i) — (cf. proposition 3)
/
3—

and d(s}, s33) + 1 =d(s5_;,83-;) = d(s3_;, 5 ) (cf. proposition 3)

Now , d(s’, s3-5) < d(s}, x1) + d(w1,83-5) and d(s}, x1) < d(s},s;) + d(si, 71)

= d(s},83-4) — d(71,83-5) < d(s},21) < d(s, ;) + d(s,71)
= d(s},8;) + 1 —d(z1,83-5) < d(8),v1) < d(8), 81) + d(si, 71)
= d(s}, 5:) +d(si, v1) < d(s},x1) < d(8},5:) +d(si,71) (cf. lemma 18)
= d(s}, 1) = d(s}, s;) + d(s;, v1)
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Again, d(s3_;, s3-3) < d(s3_;, x1)+d(w1, s3-;) and d(s3_;, x1) < d(s3_j, 8i)+d(si, 1)
= d(s5_j,83-:) — d(x1,83-) < d(s5_j,21) < d(s5_j,5:) + d(s;, 1)

= d(sy_j,8) +1—d(w1,83-3) < d(sy_j,21) < d(sy_j,5) + d(si, 1)
= d(sy_j,8i) +d(si,v1) < d(s3_;,71) < d(sy_j, 8i) +d(si, v1) (cf. lemma 18)
(Sé’) —j» T ) = d(83—j7 8i) + d(Siwrl)

Also, d(x1, x2) < d(x1,8}) + d(s},x2) and d(z1,s5_;) < d(21,22) + d(2, 55_)

S3_j,8i) + d(si, 1) — d(wa,85_;) < d(x1,22) < d(w1,8:) + d(s4, %) + d(s], T2)
8, 85) + 1+ d(si, 71) — d(z9, 85_;) < d(w1,12) < d(1, 85) + d(si, 85) + d(s}, 2)

w1, 8;) +d(si, 85) +d(s), v2) < d(wy,w0) < d(21, 85) + d(s4,55) + d(s}, 72)

= d(w1,85 ;) — d(w, 85 ;) < d(w1,29) < d(w1, 85) + d(s}, 72)
= d(s:
= d(
= d(
= d( (cf. lemma 18)

T1, L) = d(z1, 8;) + d(si, 87) + d(s], 22)
)=# (o(@1,2) V(X)) +li—1—tile+ [/ —1—t2r — 1

(cf. proposition 3 and corollary 10)
0

(961,1’2

Corollary 11. V z1,29 € Xg, d(z1,22) € Q.

Corollary 12. Let xy, 9,23 € Xg such that xo € o(x1,23).
Then d(xq,x3) = d(x1,x2) + d(x2, T3).

Remark 11. Note that, both corollary 11 and corollary 12 can also be obtained as
trivial implications of the following corollary.

Corollary 13. The metric d is the same as the canonical archimedean distance metric
on Xgr, given by the length of o(xy,x9) V z1,29 € Xg.

Remark 12. At this point, one may ask that why we introduced the metric d through
1 and ¢, rather than taking corollary 13 as the definition. The reason is that we need
the knowledge of the relation between the metric on the Bruhat-tits tree and the metric
on the space of norms, which will very useful in the next chapter. So, if we have had
defined the metric d as in corollary 13, we had to work backwards all the propositions
in this section, in order to arrive at definition 13 anyway.
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Chapter 2

The Reduction Map

2.1 The Map and the Image

Definition 16. Two K-linear morphisms, f,g: K* — C are equivalent, written f ~ g,
if 4 ce C* such that f = cg.

fl={glf~g}.

Z:=1{1[f]| f: K* = C is an injective K -linear morphism } .

Definition 17. For each w € 0, we fiz some c¢,d € C' such that w = [c : d].
The map p : Q) — Z is defined as

pw) = [fea] where,

f(c,d)(x7y> =Ccr + dy v ($7y) € KQ'

Definition 18. For each z € Z, we fix some [ : K* — C such that z = [f].
The map p' : Z — ) is defined as

p(z) =1f(L0): f(0,1)] VzeZ

Lemma 20. The maps p, p' are well-defined.

Proof. Follows directly from the definitions. O

Lemma 21. p/op = Idqg.

Proof. Follows directly from the definitions. m

Lemma 22. pop = Idy.

Proof. Follows directly from the definitions. m

37



38 CHAPTER 2. THE REDUCTION MAP

Corollary 14. Q) and Z are naturally isomorphic as sets. 0

Definition 19. For each z € Z, we fix some f : K* — C such that z = [f].
The map v : Z — Y 1is defined as
v(z)=1lllls] Vz€Z such that

Jolly = |f(v)] Vve K>
Remark 13. The well-definedness of v is evident from the definition of Y .

Definition 20. The reduction map, 0 : Q0 — Xg s defined as

f:=1povyonp.

Proposition 6. §(Q2) = Xjg.

Proof. Let x := (1 —t)s+ts' € Xg and let L, L' C K? be two lattices
such that s = [L],s' = [L/] and 7L C L' C L.
= o) = [l . .0] -

So, we have,
ref(Q) & I e Qsuchthat yop(w) =1 |l 1,0l

Now, by Elementary divisors theorem, 3 a basis (ey, e2) of L such that
(e1,mey) is a basis of L.
Let w € Q and suppose, p(w) = [f], where f(e2) = c.

Let g :=c 1. (as p(w) € Z, hence ¢ # 0)

= p(w) = [g] and g(e;) =1

=g(ey) e C\ K (as g € Z, hence g(e1) ¢ Kg(e2))

Let ¢ := g(eq).

= o p(w) = [ll

where, ||aje; + azes|| := |g(arer + ases)| = |Cay + as] V (a1, a2) € K?

Hence,

r=0(w) < I €Rygsuch that ||are; + ases|(r, 1,5y = '[Car + as

& sup {|a1],¢'|as]} = 7'[Car + aa| ¥ (a1,a2) € K?
& sup {|ai],¢'laz]} = ¢'[Car + az| V (a1, a2) € K*
& sup {¢ " o} =|(+a| VaeK

There are 3 possible cases:
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Case 1. (t=0)

sup {¢",|a|} =[(+a| VaeK
S |¢l=1and [(+a|=1 VaecO\nO.

Case 2. (0<t<1)

sup {¢"", lal} =[(+a|] Vac K
¢l =q"

Case 3. (t=1)

sup {g Jal} = ¢ +a] VaeK
s[Cl=q¢ltand [(+a|=¢ ' VaerO\ 0.

Again, 3 oy, §; € K, such that e; = (oy, ;) Vi€ {1,2}

ap By
= s 62) € GLy(K)

C1 Co (03] ﬁl C1 Cg . 10
23 (%) comm e (2 2) (5 2) (1 9)

Let ¢ := (c; + ¢o, d:=(dy + dy and let h(z,y) :=cx +dy V (z,y) € K>
= h(aie; + ages) = hlai(aq, Br) + az(az, B2))

= h(ayonq + azag, a1 31 + azf32)

= c(mar + agaz) + d(a1 1 + az/32)

= (Co1 + ) (man + azaz) + (Cdi + d2) (a1 51 + azf3:)

= (a1 + ag

Hence, from case 1, case 2 and case 3, we have,

0 (s)={w|w=lc:d €Q, where |(|=1and [(+a|=1 VacO\70O} (2.1)
0 ((1—t)s+ts) ={w|w=][c:d] €Q, where || =q¢ '} Vte(0,1) (2.2)

01 (s)={w|w=[c:d €Q, where |(|=¢ ' and [( +a|=¢ ' Vac 7O\ 70O}
(2.3)
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where, ¢ := (c1 + co, d = (dy + ds.

Again, z € 0(Q) &  07'(x) #0.

Now, for a € C and 1’ € R, let us denote,

Dt (a,r):={¢eC||E—a| <r'}and D (a,r):={€C || —a|l <1}
= D+(O, 1) = UaeD+(071)D_(O{, 1)

Let k denote the algebraic closure of k and let n : D¥(0,1) — k denote
the canonical projection modulo D~(0,1).
Let a, 3 € DT(0,1),
i{ D= (e, 1) = D=(8,1) if n(a) =n(B)
D™ (e, )N D=(B,1) =0 if n(a)#n(F)
= D*(0,1) = Usez D (a, 1), for some o € n~1(0)
= 3¢ € D*(0,1)\(Usexr D~ (c, 1)), for some o € n~1(4) (as # k <oo=#k)
=|¢{|=T1and [(+a|=1 Vae O\rO
=01 (z)#£0 VreV(X).

Again, we have |C] = Q (cf. proposition 5.7.7 of
[14])

= Fort € (0,1), 3¢ € Csuchthat [(|=¢" < teQn(0,1)

= For x = (1 —t)s +ts’, where t € (0,1), 67 (z)#0 < teQn(0,1)

Therefore, 0(Q2) = Xg. O

2.2 The Action of PGLy(K)

Definition 21. (Mdébius transformation) For each w € §, we fiz some c¢,d € C such

that w = [c: d]. Let g := " ;2) € GLy(K). g defines a function from Q — Q,
2

S1
given by

g(w) = [ric+ rod : s1c+ sod] .
Lemma 23. V g € GLy(K), the Mdbius transformation is well-defined.
Proof. Follows directly from the definition. m
Definition 22. 7 :={cl | c€ K*} C GLy(K) and PGLy(K):=GLy(K)/Z.

Definition 23. For each § € PGLy(K), let us fiz some g € GLy(K) such that § = g.
The action of PGLy(K) on ) is defined by

f(w) =gw) Ywe.
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Lemma 24. The action of PGLy(K) on Q is well-defined.

Proof. For the action of GLy(K) on §2 by Mobius transformation, we have,
Z C Stab, Y w e
= the action of PGLy(K) on {2 is well-defined. O

1

Definition 24. Let g = (s
1

7:) € GLy(K). g defines a function from K* — K?,
2

given by

e T2
S1 S9

o(@) = (,9) ( ) V(ey) € K

Definition 25. Let g € GLy(K). For any lattice, L = Oe; & Oey C K2, the lattice gL
is defined as
gL = Og(e1) ® Og(ea) .

Lemma 25. V g € GLy(K) and for any lattice L C K?, gL is well-defined.

Proof. Given any 2 bases (v1,vs) and (wq,ws) of L, we have,
Og(v1) & Og(v2) = g(Ovy & Ovy)

={9(z,y) | (z,y) € L}
= g(Ow; ® Ow,)
= Og(w1) © Og(wy) .

Hence, gL is well-defined. m

Lemma 26. GLy(K) permutes the lattices in K? transitively.

Proof. Let L = Oe;®0ey and L' = Ov,BOvy be two lattices, where ey, e, v1, 09 € K2,
Let e; = (o, 3;) and v; = (74, 6;) Vi€ {1,2}.

ar B M 01
d € GLy(K).
- (042 52) o (72 52) 2(K)
-1

71 01 ar B
Let ¢ :=
o (72 52) (Oéz 52)
Then gL = L. O

Lemma 27. Let g € GLy(K). If L,L’ C K? are lattices, such that L' C L, then,
gL’ < gL.

Proof. Otherwise, we have, gL' = gL
= L'=g'(gLl") =g (9L) = L. =
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Definition 26. For each {s,s'} € E(X), let us fix some lattices L, L' C K? such that
s=|[L], s =[L) and 7L C L' C L. Let g € GLy(K). g defines a function from
Xr — Xgr , given by

g(L—=t)s+ts') == (1 —t)[gL] + t[gL] ¥V ((1—t)s+ts) € Xg

Lemma 28. The action of GLy(K) on Xg is well-defined.

Proof. Follows directly from lemma 25, lemma 27 and definition 2. O]

Definition 27. For each § € PGLy(K), let us fiz some g € GLy(K) such that § = g.
The action of PGLy(K) on Xy is defined by

iz)=g(x) YVexe Xg .

Lemma 29. The action of PGLy(K) on Xg is well-defined.

Proof. For the action of GLy(K) on Xy , we have,

Z C Stab, Ve Xg

= the action of PGLy(K) on Xg is well-defined. O
Lemma 30. PGLy(K) acts on V(X) transitively.

Proof. Follows directly from definition 25, definition 26 and lemma 26. [

Lemma 31. PGLy(K) acts on E(X) transitively.

Proof. Let, Ly, L) and Ly, L, be lattices in K2 such that

{[La], [L4]} and {[Lo], [L5]} € E(X).
= ey, e9,v1,09 € K? such that Ly = Oe; @ Oey, L) = Oc; & Omey

and Ly = Ovy & Ovg, Ly = Ovy & Omv,. (cf. Elementary divisors theorem)
1 g € GLy(K) such that g(e;) = v; and g(ez) = vo (cf. the proof of lemma 26)
= g({[L], [a]}) = {[La], [L5]}- O
Definition 28. For each y € Y, let us fix some || |, such that y = ||| ||,]. Let
g = C;l 22) € GLy(K). g defines a function from'Y —Y, given by, g(y) := || ||

152
where,

_ reor
122l = g™ o, 22)lly = || (1, 22) ( ) Y (01, 2) € K2,

)
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Definition 29. For each § € PGLy(K), let us fix some g € GLy(K) such that 6 = g.
The action of PGLy(K) on'Y is defined by

o(y)=gy) Vyey.

Lemma 32. The action of PGLy(K) on'Y is well-defined.
Proof. Follows directly from the definitions. O
Lemma 33. §(yop(w)) =v0p(d(w)) ¥V w e Q, where, § € PGLy(K).

r

Proof. Let g = < 22) € GLy(K) be such that § = g and let w = [c¢ : d].
2

S1

= g(w) = [r1c+ rod : s1¢+ sod|
= 70 p(g(w)) = [ |l], where,

[yl = |(ric+ rad)a+ (sic+ sod)y| V (2,y) € K?
@ (272 (3)
o (7 77)

(vop(w))

Lemma 34. ¢¥(6(y)) =6(¢v(y)) Yy eY, where, 6 € PGLy(K).

T

Proof. Let g = <

= (1 —t)[L] + t[L'] € X, where, L, L' C K? are lattices such that 7L C L' C L.

5 22) € GLy(K) be such that § = g and let
1 52

Now, for any lattice L; C K2, we have,
Vove K2

[vllgr, = max{¢" [7"v € gL}
neL

= max {¢" | g7 (v "v) € L}

_ -n T
= max {¢" |7 U(s 32) €L}

el

= Ny~ (@)llz,
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Again, ¢(6(z)) = Il llgr.or p)], Where, Vv € K2,
vllyz it follge = l[vllgre
lolor.orn =4 '
q'lvllgz it Jollgz 7 l[vllgz

-
—

g~ ()L g™ ()l = llg~" (v)||
= |[vllgr.gr,0) =

¢lg~@lle i g™ @)l # g™ @)l
= [[vllgz.gzny = g™ ()l L)
= ¢(d(x)) = (¢(z)) Ve Xg (cf. definition 26)
= ¢Y((y) =0(W(y)) VyeY (cf. proposition 2).
[l
Lemma 35. Let 6 € PGLy(K). Then 0(§(w)) = d(0(w)) V w € Q.
Proof.
0(0(w)) = woyop(d(w))
= YP(6(y o p(w))) (cf. lemma 27)
= (Y oyopw)) (cf. lemma 28)
= 6(0(w)).
[l

Lemma 36. Let 6 € PGLy(K). Then pu(y1,y2) = p(d(y1),0(y2)) Y y1,y2 € Y.

Proof. Let g € GLy(K) be such that § = g.
= g_l S GLQ(K)

= ¢ !: K? — K? is an isomorphism.
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Hence, we have,

v v
nys) = logq( wp ||yl> . 1ogq( o 0l

veK2\{(0,0)} ||U||y1

veK2\{(0,0)} ||U||y2

)

45

g™ () lly,

g™ ()l
= log sup ———— | + log sup e
! (9‘1(1))6[(2\{(0,0)} g7 (V) ! g~ 1(v)EK2\{(0,0)} 197 (V) |y,

= u(9(y), 9(12))

= w(6(y1),9(y2))

Corollary 15. Let 6 € PGLy(K). Then d(xy,x2) = d(d(z1),0(x2)) YV 21,29 € Xg.

2.3 The Fibers of the Map

Definition 30. coc denotes a symbol satisfying the following formal identities :

i) c+ooc = oo Veel .
i) cooc = oo¢ VeeC.
iii) cfooc = 0 Vel
Definition 31. The map n : P}(C) — C U {oo¢} is defined as
S if d#0.
n([c:d]) =
¢ if d=0.
Lemma 37. n(Q) = C'\ K.
Proof. Follows directly from the definition of €.

Definition 32. V u = [c: d] € P(C), where, ¢,d € C,

Remark 14. Note that, V v € P1(C)\ {[1:0], [0: 1]}, we have,

u=[n(u): 1] = [1:n()] .

)
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Convention. We extend the norm | |: C =R to ||: CU{ococ} — RU{o0}
by defining |ooc| := oo .

Lemma 38. min {|n(u)|,|n(x)|} <1 VuePYC).
Proof. Since, from the definitions, we have,

0 if w=o00c.

O
Definition 33. v : C — Ry is defined as
v(c):=inf |[c—b] VceC.
beK
Remark 15. Note that, v(c) is just the distance from ¢ € C to K — C.
] if e ¢ K|
Lemma 39. v(c) =
infbeK, |b|=|c| |C - b| Zf |C’ c ‘K‘
Proof. Follows directly from the definition. O
Definition 34. 7 :=von|,.
Definition 35. A := O(1,0) ® O(0,1) and x:=[A].
Lemma 40. d(x,0(w)) =d(x,0(w")) YV w € Q.
Proof. Follows directly from lemma 15 and the definitions of x and 6. O

Proposition 7. V w € (1,

—log, 7(w) if [nw)]<1.
d(x,0(w)) =
—log,7(w') if [nW)<1.
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Proof.
Case 1. (|n(w)| < 1)

= [n(w)r +y| < max {|pw)[ [z, [yl} <1V (z,9) € A\ 7A.
Also, (z,y) €e A\T7A = max {|z],|y|} =1
If |z| < 1, then, we have, |y| = 1 and hence, |n(w)z +y| =1

= SUP( yeaa MW)r+y[=1 and

inf = inf
nf In(w)z +y| inf |n(w) +y|
= inf [n(w) +y| (as [nw)] < 1)
yeK
— Vo)
= 7(w)
= d(x,0(w)) = —log, 7(w) (cf. lemma 15)
Case 2. (|n(w)] <1)
Follows directly from Case 1 and lemma 39. O

Remark 16. Since any other s € V(X) is x wupto the action of PGLy(K), 6 is
PGLy(K)—equivariant and d is PGLy(K)—invariant by lemma 30, lemma 34 and

corollary 15 respectively, hence from proposition 7 we obtain d(s,0(w)) V s € V(X)
and YV w € Q.

Corollary 16. Let, s € V(X) and let § € PGLo(K) be such that §(s) = x.
Then ¥V w € €,

—log, 707 w)) i In(0T (W)l <1,

—log, (07" (w))) if (67 (w))) <1 .

d(s, 0(w)) =

Definition 36. V z € X, and V a € R,
B(l’,&) = {y S XR ‘ d(l‘,y) < CL}-
Definition 37. V u € P1(C) and V a € Rsy, the open balls in P'(C) are defined as
{£ePC) | In(©) —n(uw)] <a} if w#[1:0]
B(u,a) :=
{&£eP(C) | nOl> 3} if w=[1:0]
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and the closed balls in P'(C) are defined as
{£ePHC) | n(€) —n(u)| <a} if u#[1:0].
Bt (u,a) :=

{€eP(O) | )=} if uw=[1:0].
Definition 38. A connected affinoid subset of P(C') is the complement of a non-empty
finite union of open balls.

Definition 39. «a, 3, uy € PGLy(K) are defined as

0 1 11 A0 .
a.z(l 0), ﬁ.:(o 1) and u,\.:<0 1>V/\EK.

Lemma 41. Let a € Ry, vy € PH(C) and § € PGLy(K).
Then 6(B(ui,a)) = B(ug,b) for some uy € P1(C) and b € Ryy.
Moreover, we have, either us = §(uy) or ug = [1:0].

Proof. 1t is enough to consider §(By(u,a)), where § is a generator of PG Ly(K).
And we have, PGLy(K) = (o, B, {tix}rer)- (cf. section 2 of chapter 1 of [1])

Now, there are two possible cases:
Case 1. (u#[1:0])

For 6 = 3, we have,

B(B(u,a)) ={ B(&) e PHC) | [n(§) —n(u)| <a}

& B(B(u,a)) ={ £€PYC) | [n(B7(&) —n(w)| <a}
& B(B(u,a)) ={ £€PY(C) | (&) —1-n(w)|<a}
& B(B(u,a)) ={ £€PY(C) | [n(&) —n(B(w)] <a}
@B(B(uaa)) :B(ﬁ(u>7a)

{ (1a(§) € PY(C) |
& m(Bu,a)) ={ £ € PYC) | In(py"(€) —n(u)| <a}
& pa(B(u,a)) ={ £ € PHC) | [n(ur-1(8) = n(u)] < a}
& pa(B(u,a)) ={ £ € PYC) | [A"'n(€) = n(u)| <a}
& ua(B(u,a)) ={ £ € PHC) | [n(§) — (n(pa(w))] < [Aa }
 a(B(u, a)) = Blpa(u), [Ala)

For 6 = o, we have,

a(B(u,a)) ={ a() e PH(C) | [n(€) —n(u)] <a}

& a(B(u,a)) ={ £ € PHC) | [n(a™(&) —n(u)| <a}
& a(B(u,a)) ={ £€PYC) | n(€) —n(w)] <a}

Now, there are two possible cases:
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Subcase 1. (|n(u)| <a or |n(u)] =0)

= a(B(u,a)) ={eP(C) | n€)] <a} (by ultrametric inequality)
& a(B(u,a)) ={£€PYC) | (E)]>7}
< a(B(u,a)) = B([1:0],a)

Subcase 2. (|n(u)| > a and |n(u)| #0)

= a(B(u,a)) = { € PYC) | In(§) —n(w)| < aand [n(g)| = [n(u)] }
(by ultrametric inequality)

& a(Bu,a)) = { £ €PY(O) | Bl < o}
& a(B(u,a)) = { £€PHC) | () —n(W)] < 5z}
& a(B(u,a)) = B(a(u), mroe)

Case 2. (u=1[1:0])
For 0 = a, we have,

a(B(u,a)) = { a(§) € PY(C) | (&) > ¢}
& a(B(u,a)) ={ £ € PY(C) | (e () >3}
< a(B(u,a)) ={ £ € P(C) | (&) >3}
& a(B(u,a)) ={{ePHC) | )] <a}
< a(B(u,a)) = B([0: 1], a)
For § = uy, we have,
r(Blu,a)) = { (ua(§) €PHC) | In(&)] >3}
& A(B(u,a)) ={ £ € PHCO) | |n(py'(€))] > 5}
& u(Bu,a)) ={ £€PHC) | [n(in— ()] > 5 }
< A(B(u,a)) ={ €€ P(O) | X&) > ¢}
< A(B(u,a)) ={ £€P(C) | 0] > 5 }
< pa(B(u,a)) = B(u, [Aa)
For 0 = 3, we have
B(B(u,a)) ={ (&) €ePHC) | n(&)] >}
& B(Blua) = { £€P(C) | (5 e)> 1}
& 8(Bw,a) ={ £€P(C) | |n(&) —1>1}
< B(B(u,a)) ={ £ € PY(C) | n(&)] >3}
(by ultrametric inequality, as a < 1)
& B(B(u,a)) = B(u,a). O

Remark 17. If we wish to consider also the open balls of radius > 1 in the previous
lemma, then to make sure that the open balls centred at [1 : 0] remain in the set of
open balls on P1(C) after the action of any element of PG Ly(K), it is necessary also to
include the sets {€ € PH(C) | |€=¢| > b} VCePHO)\{[1:0]} andV be {¢°|seQ}
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in the definition of open balls centred at [1 : 0].

And if we wish to prove a similar lemma for closed balls Bt (u,a), where a < 1, it is
necessary to include at least the sets {¢ € PY(C) | |€—1| > b} Vbe{q° | s € Qs0} in
the definition of such closed balls centred at [1 : 0]. (cf. section 2.1 of [9])

Corollary 17. Let aj,as € Ry, u € PH(C) and § € PGLy(K).

Then
radius of 6(B(u,a1)) a1

radius of §(B(u,as)) as

Definition 40. V n € Zs, Let 3, : O — (O/7"T1O) denote the canonical projection.
We fix a sequence of injective set-morphisms 1, : (O/7"T1O) — O such that

i) i 15 a section of Jp, i.e. )y 01y = id(©)xnt10)-

i1) 1,(0) = 0.

Below, we recall the definition of P! of a ring:

Definition 41. Let R be a ring with identity. Two pairs (a,b) and (¢,d) € R X R are
equivalent, written (a,b) ~g (¢,d) if 3 X\ € R* such that (a,b) = (Ac, \d).

[a:b] == {(c,d) | (a,b) ~r (¢,d)}.
Ry = {la:1] | a€ R}.
Ry = {[l:4d]|a€ R}.

PY(R) = RyUR,.

Lemma 42. Vac O,
){(c,d) € Ox O (a,1) ~o (¢,d)} ={(c,d) € C x C | (a,1) ~¢ (¢,d)}.
ii){(c,d) € O x O | (1,a) ~o (¢,d)} ={(c,d) € C x C | (1,a) ~¢ (¢,d)}.

Proof. Follows directly from the definition. O]

Corollary 18. P}(O) — P(C).

Definition 42. r, : PY(O) — PY(O/7" 1 O) is defined as

ro(la:1]) = [nla):1] Vae€O.
ro([1:a]) = [1:g.(a)] VaeO.
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Definition 43. s, : P}(O/7" ™ O) — PY(O) — PY(C) is defined as

sp([b:1]) = [wm(b):1] VbeO/a"O.
sp([L:b]) = [1:4,(b)] VbeO/"TO.

Remark 18. Note that, ), 01, = id©/mm+10) = Th 0 Sy = idp1(O/ant10) -

Definition 44.
i) A" :=[0(1,0) @ O(0, )] and y := [A].
i) e:={(1—t)x+ty | te]0,1]}
i) e ={(1—t)x+ty|te(0,1)}

Lemma 43.

i) 071 (x) = PY(C) \ (Ueepr(0/x0) B(sn(€),1)) .

i) 07 (y) = PHC)\ ((Uee (zerr1(0/m20) | Intsn(=))] < -1} B(sa(€),q7)) UB([1:0],q)) .
iti) 071 (') =PHC)\ (BY([0:1],¢ )y u BT([1:0],1)).

w) 071 (e) = PH(C) \

((Weerr o/ron oy B(sa(€), 1)) U (Uee fzer1(0/720) | n(sn(e)] < a1y B(sa(§),a71))) -
Proof. All the assertions follow directly from (2.1), (2.2) and (2.3). O

Proposition 8. Let Tk be the geometric realization of a finite subtree T of X.
Then 071(Tr) = complement of a finite number of disjoint open balls in P1(C) each of
which contains an element of P*(K).

To prove this proposition, we need the following lemmas:
Lemma 44. Let By and By be two open balls in P*(C). Then,
i)By N By # ).
it)B; € Bs—; Vi€ {l,2}.
< da,b e Ryy such that

i') ab > 1.
ii') {B1, Ba} = {B([0: 1],a), B([1:0],b)}

Proof. (=)

As the norm that we have used to define the open balls in P!(C) is the non-
archimedean norm on C, hence for uj,us € PH(C) \ {[1 : 0]} and a;,as € Rsg, we
have, B(u1,a1) N B(ug,az) # 0 iff one of the balls is contained in the other.

(cf. proposition 2.3.6 of [14])
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= 3 j € {1,2} and b € R.( such that B; = {[1: 0], b}
(since, By and By satisfy (i) and (i7) simultaneously)
= [1 : 0] ¢ Bg,j.

As the open balls in P!(C') have been defined using the non-archimedean norm on
C', hence, except the balls containing [1 : 0], which have their fixed centres at [1 : 0],
any other ball can be taken as a ball centred at any of its point. (cf. proposition 2.3.6(i)
of [14])

Suppose, [0: 1] ¢ Bs_;.
]

Now, By ; ¢ B,

= By 1(PHC)\ By) £

& B0 BH(0: 1], 1) £0

& By ; € BY([0:1],3) (since, [0: 1] ¢ Bs_;, cf. proposition 2.3.6 of [14])

& B3 ;N Bj = By A B([1:0,b) =0
& By N By = (), which contradicts (i).

Hence, 3 a such that Bs_; = B([0: 1], a).

Now, ab < 1

= B([0:1],a) € B([0:1],7) € B*([0:1],3)

< B([0:1],a) N B([1:0],b) = 0, which contradicts (z).

Hence, ab > 1.

(<)
(l,bER>0
= [0:1] ¢ B([1:0],b) and [1:0] ¢ B([0: 1],a)
= B, ¢ By Yie{l2).

Again, ab > 1

© (5,0)NQ#0
s{celC|i<|d<a}#0 ( since |C| = Q, cf. proposition 5.7.7 of [14])
& B NB,=B(0:1],a)nB([1:0],0) ={[c:1] e P(C) | ; <|c|<a}#0 O

Lemma 45. Let T and Ty be two subsets of Xr such that
i) TiNTyN Xg # 0.

ii) 071(T;) is the complement of a finite number of disjoint open balls in P*(C),
each of which contains a point of P*(K) Vi € {1,2}.

Then, 0=Y(Ty UTy) is also the complement of a finite number of disjoint open balls in
PY(C), each of which contains a point of P'(K).
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Proof. As 6 was defined from 2 = P!(C) \ P}(K) to Xg, hence P!(K) is contained in
the complement of the pre-image of any subset of Xg,

Suppose if possible, 3 i € {1,2} such that the open ball containing [0 : 1] in
(PY(C) \ 6~(T;)) and the open ball containing [1 : 0] in (P'(C) \ 6~!(T3_;)) intersects.
Let, B; and By denote these balls respectively. Now, 4 a,b € Ry such that
By = B([0: 1],a) and By = B([1:0],b).

Hence, we have,

i{w e PO | In(w)] < 3} = Bi\ By
iif{w € PY(C) | § < In(w)| < a} = B1N B,
iti){w € PX(C) | [n(w)| = a} = B2\ By

= Bl U BQ - ]PI(C>

Let, U; := the union of the disjoint open balls in the complement of T} in
PYC) Vie{1,2}.

= B, CU; Vie{l,2}.

= P(C)=B,UB, CU,UU, CPYCO)

= U, ul, =PYC)

Now,

0T NTy) = 01T N HT)
= (PY(O)\U1) N (PHC)\ Ta)
= PC)\ (1 UDy)
=0

But T NToNXg #0

=0 Y T'NTy) #0 (since 6(Q) = Xg)

Thus, we get a contradiction.

Hence, the open ball containing [0 : 1] in (P'(C) \ 7(7})) and the open ball

containing [1 : 0] in (P'(C) \ 6~!(T3_;)) does not intersect.

Therefore, by lemma 44, two open balls, which are in the complements of §=1(T})
and 0~1(Ty) in P'(C) respectively, intersects if and only if one of the balls is a subset
of the other.

= 04Ty UTy) =PYC) \ (U, NUy)=the complement of a finite number of disjoint
open balls in P!(C'), each of which contains an element of P!(K). O
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Proof of the proposition. Let eg C Tk be the geometric realization of an edge ¢ € E(T).
Then by lemma 31, 3 § € PGLy(K) such that d(e) = eg. Hence, by lemma 35, lemma
43(iv) and lemma 41, we get, 67! (eg) = the complement of a finite number of disjoint
open balls in P!(C'), each of which contains an element of P!(K).

Since T is a finite subtree, hence 3 an ordering of the edges of T such that
E(T)=A{e1,....x} and ¢ Ny # OV i € Zp ).
Let, le = UZ:I €EiR \V/j S Z[l,n] and T2j = €j+1]R VJ S Z[l,n—l]-
= le N ng N X@ 7& 0 and T1j+1 = le U ng V] € Z[l,n—l]-

Hence, applying lemma 45 for j=1,...,n — 1 successively, we get,
0~ (Tg) = 0'(Ty,) = the complement of a finite number of disjoint open balls in P*(C),
each of which contains an element of P'(K). n

Proposition 9. Let n € Z>o and let a € [n,n+ 1). Then

0~ (B(x,a)) =P'(C)\ ( | ] B(sn<€>m5)>

£EP1(O/an+10)

where,
n(sn(E)1Pq  if 1< |n(sa(§))| < 00

7“5 =
q“ otherwise.

To prove this proposition, we need the following lemmas.

Lemma 46. Let n € Z> and let a € [n,n+ 1).
For &1,& € {z € PO/ 10) | [n(sn(2))] < 1}, with & # &,

B(sn(&1), ¢ ) N B(sn(&2),q7") = 0.

Proof. Let w € B(s
Since, |1(sn(£1))
Let v,(aq) = f1.
Now, w € B(sn(&1),q7%)

n(&1),q7%) for some & € {z € PLO/7"TO) | |n(s,.(2))| < 1}.
| <1, hence & = [a; : 1] for some oy € O/7" 1O
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Swe B([B:1],¢77)
& n(w) =Bl < g

Suppose, if possible w € B(s,(&2),q~) for some & # &, where
& € {z € PHO/7"™HO) | In(sa(2))] < 1}

= & = [ay : 1] for some ay € O/7" T O.

Let 2,(ag) = Pa.

Now, &1 & & arFar & gu(61) # 9u(B2)
& By # B2 (mod 7" O)

& (61— fo| > ¢~ TV

S|b—Fao|l>q¢">q (as (61 — B2) € K)

= [n(w) — Go| = |f1 — o] > ¢ (by ultrametric inequality)

= n(w) & B(sn(&2).q7)

Thus, we get a contradiction. [

Lemma 47. Let n € Z> and let a € [n,n+ 1).
For &1,& € {z € PHO/7" T O) | In(sn(2))] > 1}, with & # &,

B(sn(&1),76) N B(sa(&2),7e,) = 0

where,

{ n(sn())Pg if 1< |n(sa())] < o0
’I“g =

q“ otherwise.

Proof. ¥ § € {z € PH(O/x"0) | [n(sn(2))| = 1},
we have, B(s,(&),re) = a(B((5,(£)),¢7%). (cf. lemma 41)
= B(sn(£),7e) = a7 (B((sa(§))',47)- (as a = a™)

Suppose, if possible, 3 w € P!(C) and

&,& € {2 e PHO/7"O) | In(sn(2))] > 1}, with & # &, such that
w e B(STL(gl)?Tﬁl) A B(Sn(£2),7‘§2).

= a(w) € a(B(sn(&1),7¢,) N B(sn(E2),7¢,))

= a(w) € B((sal&1)), a7*) N B((sn(&2)),a7°)

Now, &1,& € {z € PH(O/7"O) | [n(sa(2))| > 1},
=& =[1:a;] and & = [1: as] for some ay, ay € O /7" TLO.
Let, & = [y : 1] and & := [ag : 1].
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Then (s,(&))" = sn(&) and |n(sn(&))| <1 Vi€ {1,2}.
Again’ fl 7£ 52
= #&.

Therefore, as a(w) € B((s,(£1)),¢7%) N B((s,(&2)),¢7%) ,
we get a contadiction from lemma 46.

]
Lemma 48. Let, £1,& € PHO/7" T O) be such that |n(s,(&))] < 1 and [n(s,(&))] > 1.
Then
B(sn(81),q7) N B(sn(&2),1e,) = 0.
where,

{ n(sn(&2))Pq* if 1< |n(sn(é2))] < o0
Tgy =

—a

q otherwise.

Proof. Suppose, if possible, 3 w € PYC) and &,& € PYHO/a"T1O) such that
w € B(sn(£1),47") N B(sa(&2), 1¢,) where, [n(sn(&1))] <1 and |n(sn(&2))| > 1.

n(sn(&1))] <1
= 3 3, € (O\ 7" O) U {0} such that s,(&) =[5 : 1]
= ’61| < 1.

Now, w € B(s,(£1),47%)
& nw)— B <ge<1
= [n(w)] < max {|n(w) — Bil,|A]} < 1.

We consider two possible cases for & :

Case 1. (s,(&)=1[1:0))

Then re, = ¢ ¢
Now, w € B(s,(&1),¢7%)
< nw)|>q¢* =1

Case 2. (s,(&) #[1:0))

= 3 B, € (O\ 7O) such that s,(&1) = [L: 3]

= ¢ " <|f| <1 and re, = (5p

Now, w € B <3n(£1), fé;;)
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& Inw) - L] < 45

Also, a € [n,n+1)

Sq¢tsq”

= q“‘ < !ﬁz! (since ¢~ < |B])

< 1ar < mr

Hence, |n(w) — \ < ‘62‘

= |n(w)| = @ > 1 (by ultrametre inequality)

Thus, both of the cases lead to contradictions. O
Lemma 49. Let n € Z> and let a € [n,n+ 1).
For 51,52 € ]P)l(O/?TTH_IO), with 51 75 52 s

B(Sn<§1)v T&) A B(Sn<§2)7 T€2) =0
where,
n(sn(E)Pa if 1< [n(sa(§))] < o0
Te i=
qg“ otherwise.

Proof. Follows directly from lemma 46, lemma 47 and lemma 48. [
Lemma 50. Let n € Z>g, a € [n,n+ 1) and let ¢ € C be such that |c| < 1.

Then

vic) <q " & [c:1] € Uge zepro/mmh10) | sn(z)<1y B(sal€), ¢77) -

Proof. v(c) <q™*

& b € K be such that |¢c —b| < ¢

Now, || <1

=becO (as otherwise, |c —b| = |b] > 1> ¢™)

Let ¢ := 5,,(b)

Then |c —b] < q_“

S le—1,0) <q (by ultrametric inequality, as [b — 1,,(£)| < ¢~ ™D < ¢=%)

< [n([e: 1)) = n([e(€) - 1] < g7
< [n(le: 1)) = n(sa([f: 1)) < g
S e 1] € B(su([0:1]),¢7%)
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Lemma 51. Let n € Zxo, a € [n,n+ 1) and let ¢ € C be such that |c| < 1.
Then

vic)<q® & [l:d € Uec (2P (0/mm10) | In(sn(z))>1} B(sn(§),7¢) -

where,

—a

{ n(sn(©)Pq™ if 1< [n(sn(§))] < o0
Te ==

q otherwise.

Proof. From lemma 50 , we have,
v(e) <q* & e 1] € Use (zem(0/an10) | In(sa(z)l<1} B(sn(§),q7") -
Now, there are two possible cases:
Case 1. ([c:1] € B([0:1],¢7)
Then [1:¢]=a([c:1]) € a(B([0:1],¢g7%)) = B([1:0],¢7%) (cf. lemma 41)
Case 2. ([c:1] € B([tn(¢) : 1],q™*) for some £ € (O/7"1O) \ {0})

Then 1,,(£) € O\ 7" O
= ()| > ¢ >q°

= [1:d = a(fe: 1)) € alB([m(0) : 1,47) = B ([1: w(0)], 12757 )
(cf. lemma 41)
= [1: ] € B(sn([1: ), [n(sa([L: )%™ 0

Proof of the proposition. Let w € €.
Now, w € 071(B(x,a))
& f(w) € B(x,a)
S dx,0(w) <a
{ —log,7(w) <a if [nw)| <1
=

—log, 7)) Sa i |p() <1

(cf. proposition 7)
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“log,(vonw) <a if Inw)| <1

~
—log,(vonw)) <a if [pw)l <1
von(w) =g if Inw)<1
=
vonw)=q* if [pw) <1
w € PHO)\ (Uge (zepi(0/nmt10) | nsnzpi<ty B(sn(€),a7) if  In(w)| <1
<~
w e PY(C)\ (l—lfe{zE]P’l(O/w"“'lO) | In(sn(z)1213 B(sn(), 7“&)) if In(W)] <1
(cf. lemma 50 and lemma 51 and remark 14)
S w e PHCO)\ (Ueepo/mmr10) B(5a(€), 1¢)) (cf. lemma 48 and lemma 49)
Ul
Remark 19. Let us fix some ordering of the ¢"(q + 1) elements of P1(O/x"T10O).
i.e. let
B O/T"10) = {61 Eprain ).
Let Vi€ Z[an(q{_l)} ,
yi(z = n(sa(&))) — 7 if  n(sa(&)) <1
filw,ys) = vile —n(sa(&))) — w2l @NTH if 1 <|n(sn(&))] < o0
y; — g otherwise

Note that, P*(C) \ (Ugeri(o/mmr10) B(sn(€), ¢7%)) is an affinoid space with

Kz, y1, .. Ygrar1)) [ S1s - fariarn)

as its associated affinoid algebra.

(cf. defn. 2 of sec. 1.2, defn. 1 in sec. 1.4 of [4] and defn. 3.3.1, exmpl. 3.3.5 in [9])

Proposition 10. Let s € V(X) and n € Zsq. Let, a € [n,n+ 1).
Then 3 ue € PHK) and be € Ry V € € PHO/7" T O) such that

971(B<S, a)) = ]pl(C) \ ( Uéepl(o/ﬂ-n-&-lo) B(U£, bf))
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Proof. Let 6 € PGLy(K) be such that d(x) =
Now, w € 7'B(s,a)
& 0(w) € B(s,a)
< d(s,0(w )) <a
& d(x, 6(0 (w))) <
& 07 (w) € PIO)\
< 3 ue € PH(K) an

07 (B(s, a)) = P}(C

(as s = 0(x), cf. lemma 34 and corollary 15)

a

(ugepl(o/w7z+lo) B(sn(&),r )) (cf. proposition 9)
nd be € Rog V & € PHO/7" T O) such that
) (

\ (|—|€EJP’1 o/m+10) Blue, bg))- (cf. lemma 41)

]

Remark 20. Let n € Z>og and s € V(X). From proposition 10, we see that the pre-
image of the archimedean closed ball B(s,b) of the geometric realization of the Bruhat-
Tits tree, is the complement of ¢"(q+ 1) disjoint open balls in P1(C) Vb€ [n,n+1).
Now, if b increases by € in the interval [n,n+1) for some e € [0,n+1—0), the radii of
all these open balls in P (C) decrease by the factor q~¢ (cf. proposition 9, proposition
10 and corollary 17). Whenb=n+1, ¢""(q¢+ 1) new vertices of the tree enter in the
closed ball B(s,b) (cf. corollary 8); whereas in P1(C), each of the former ¢"(q + 1)
open balls split into q disjoint open balls of smaller radii (decreased by the factor ¢"+1=°
compared to the original radius of the corresponding former ball, (cf. corollary 17)) and
each of these smaller balls lie in the corresponding former ball. (cf. proposition 9)

Remark 21. Thus, we see that the connected affinoid subsets of P1(C) obtained as the
pre-images of the archimedean closed balls in the geometric realization of the Bruhat-
tits tree via the fibers of the reduction map, define a Grothendieck topology on 2 and
hence, gives an admissible covering of this non-archimedean upper half-pane.

Thus, a rigid analytic structure on € is obtained.

(cf. chapter 3 of [7] or section 6 of [8])
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0—1
T —

Figure 2.1: The fibers of the reduction map for K = Qo
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Figure 2.2: The fibers of the reduction map for K = Qo
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