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Preface

HukTo He 0OHHMET HEOOBATHOTO.
— Kossma IpyTroB

(One can’t embrace the unembraceable.
— Kozma Prutkov)

One of the central topics in number theory is the study of L-functions. Probably the most well-known
of these is the Riemann zeta function, which is defined by the series

s)=n =[] 5 _1p75.

nz1 p prime

This is convergent for Re s > 1, and it has analytic continuation to C which is holomorphic, except for
a simple pole at s = 1. We denote the analytic continuation also by . Its values at s and 1 — s are
related by a functional equation

c(1—s) = cos (E) 2(27)~5T(s) &(s),
2
where I'(s) is the gamma function (which is I'(n) = (n — 1)! for positive integers).

One may ask what are the values of £(n) at n € Z. For instance, one special value is

1
0)=—-.
£ =
If n=3,57,9,... are positive odd numbers, then the values ¢(n) are rather mysterious; the func-
tional equation is supposed to relate them to the values at negative even numbers n = -2, -4, -6, -8, ...,

but it just tells us that
¢(—n) = 0 is a simple zero for n > 2 even.

Less mysterious are the values at n = 2,4,6,8,... They were discovered already by Euler about
1749 (see [Ayo74] for a historical overview):

C(2)=1+%+%+%+---=%,
4
C(4)=1+%+%+%+-~=g—0,
6
C(6)=1+%+%+2—6+---=&—5,
8
C(8)=1+%+%+%+---=972ﬁ,
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The pattern is more clear if we consider the corresponding values ¢(—1), £(—3), &(-5),¢(=7),...
These are some rational numbers. To explain them, introduce the Bernoulli numbers B, by a
generating function

T wsp Ty 1 AT T 1T 4TS 5 70 6ot T
eT—1 4" "nl~ "2 762 304 426 308 ' 6610 2730 12!

n=0

Then the values of ¢ are related to these numbers as follows:

Bn+1
—n)=— > .
¢(—n) —] for n > 1 odd

This is essentially the Euler’s calculation. In particular,

1 1 1 1 1 1 691

6(~1) = =150 6(=3) = o E(=5) = ==, 6(=T) = 515, £(=9) =

We refer to [Neu99, Theorem VII.1.8] for a proof. Just to spice up this introduction, recall a proof
of ¢(—1) = —11—2 that one would suggest in the 18th century. If we formally differentiate the geometric
series formula .

l+x+x®+x°+-- =
1-x

then we get

1
(1 —x)*

Now consider the sums (literally meaningless without the functional equation)

1+2x +3x%2 +42x3 .- =

—
3*
=

E—1) “="1+2+34+4+---
LE(—1)“="44+8+12+16 + - --

C(-1) —4¢(-1) =" =3¢(-1) “="1+(2—-4)+3+(4—-8)+---
1
”:”1— _4 ‘_.n:» =,
243 + 7
where the last equality is thanks to the formula (*) with x = —1 (which may be considered wrong, but

was used by Euler in his 1760 paper “De seriebus divergentibus’—cf. [BL76]). Therefore

1

_1 n:» 1 4 e u:n -
¢(-1) +24+3+4+ 1
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The corresponding values at the positive even integers are

(_1)n/2+1 Bn (27[)11
2n!

for n > 2 even.

C(n) =

Now we want to generalize the situation and consider a number field F, i.e. a finite algebraic
extension of the field of rational numbers Q. In F we have its ring of integers Op, which is a free
Z-module of rank d = [F : Q].

F<—)(9F
d

Q<—z

d

By definition, the Dedekind zeta function of F is given by a series

Cr(s) = L(SpecOf, s) = Z(Na)—s _ H 1_(1Np)_s’
p

a

where a runs through all nonzero ideals of Of, and p runs through all prime ideals of Or. By Na we
denote the norm of ideal. In particular, if F = Q, then this is the same as the Riemann zeta series
€(s) as above. Again, this is convergent for Res > 1, and has an analytic continuation to C which is
holomorphic, except for a simple pole at s = 1. The functional equation is

Cr(l—s) = | A2 (COS§)”“Q (sin )" @@m=T(s)" ¢r(s),

where

e r; is the number of real places, i.e. embeddings F — R.

e ry is the number of complex places, i.e. conjugate pairs of embeddings F — C.

e d¥ [F:Q] =r1 + 2ry is the degree of F.

e Ar is the discriminant of F.
(If F=Q thenone hasr; =1, r,=0,d=1, Ap=1.)
For basic facts about Dedekind zeta functions we refer to [Neu99, §VIL5].

We again want to investigate the values €r(s) at points s = —n with n = 0,1,2,... Looking at the
functional equation, we note that these are zeros, unless ro = 0 (when the number field is totally real).
In the latter case if n = 0 or n > 1 is odd, values €r(—n) are non-zero, actually some rational numbers.
The fact that ¢p(—n) € Q is known as Siegel-Klingen theorem ([Kli62]; cf. [Neu99, VIL.9.9]). There are
certain ways to relate these values to some fundamental rational numbers, just as Euler related €r(—n)
to Bernoulli numbers. For instance, a formula of Harder [Har71, §2.2] connects the values of €r, for
totally real F to Euler-Poincaré characteristic of arithmetic groups. In case of symplectic groups
Spon(Of) the formula reads

2(SPo(08) = sy |1 et —20).

1<i<n

Here x(Spon(OF)) is a rational number. So by induction on i, the last formula implies that ¢r(1 — n)
are rational for even n. We will not get into details and refer to [Ser71, §3.7] and [Bro74].
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This may be seen as a manifestation of a general philosophical principle:

special values of L-functions are captured by cohomological invariants.

In this text we will not be too ambitious and we will look at the zeros €r(s) at s = —n. This may seem
trivial, but such zeros have multiplicities, depending on ry and ry. Let us denote by u, the multiplicity

of zero at s = —n (if there is no zero, then p, = 0). The functional equation, together with the fact that
Cr(s) has no zeros for Re s > 1 and a simple pole at s = 1, shows readily

ri+ro—1, n=0,
Up =< Iy, n>1 odd,
ry +ro, n > 2 even.

Here is an example of zeta function for F = Q(i). In this case ry = 0 and ry = 1, hence all negative
integers are simple zeros:

) —3 N 1 . s
N4 —2 \ .

\
\
! \
! \
I
I

If we take F = Q(«) where « is a root of polynomial X + X + 1, then r; = ry = 1, and simple zeros
of p(a) alternate with zeros of multiplicity two:

Coa) (8)

A

We are going to see some cohomological account of these multiplicities of zeros!

Recall that for a number field F one can define its ideal class group CI(F) [Neu99, 1.3]. This was
studied already by Gauss, Kummer, Dedekind, and other 19th century mathematicians. It is some
abelian group which vanishes if and only if Of is a principal ideal domain. Moreover,

CI(F) is finite.
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Another basic invariant is the group of units O —the multiplicative group of invertible elements in
Or. A remarkable theorem of Dirichlet tells that O is finitely generated, it has rank exactly ry +ro —1,
and its torsion part is pp, the group of roots of unity in F:

(9; ~ Zr1+r271 ®nr.
We will review briefly CI(F) and Oy in chapter 1.

Now the main objects of our study come into play. For any ring R (and actually any scheme, if you
like) one can define a whole series of intricate algebraic invariants, named algebraic K-groups:

Ko(R), K1(R), K2(R), K5(R), K4(R), ...

These are some abelian groups. The first invariants in this list were introduced in the 50s and 60s by
Grothendieck (Kj); Hyman Bass, Stephen Schanuel (K;); and John Milnor (Kjy). A brief review that fits
our needs constitutes chapter 1. The general definition of K;(R) for i > 2 (both pretty technical and
conceptual) is due to Quillen and it is the subject of chapter 2 and also appendix Q.

The only ring that interests us is R = Op, and in this case

Ko(OF) = C](F) @7 and K1((9F) = (9;

So Gauss, Dirichlet, Kummer, and Dedekind were all actually studying algebraic K-theory of number
fields! We note that the isomorphism Ky(Or) = CI(F) @ Z is pretty obvious (see § 1.1) since K is really
a kind of generalization of the class group. On the other hand, K;(Or) =~ Oy is a nontrivial theorem
due to Bass, Milnor, and Serre (see § 1.2).

As for the higher K-groups Ky (Or), K3(Or), K4(OF), ... for Op, one can think of them as of some
analogues of the two basic invariants CI(F) and Of. The first important result about higher K-groups
of Op, due to Quillen [Qui73a], is that all K,(Ofr) are finitely generated abelian groups. Next it is
natural to ask about their ranks. Of course rk Ko(Or) = 1 (by finiteness of the class group) and
rk Ky (Of) = ry + ro — 1 (by Dirichlet). The other ranks are much harder to get. It is a result of Garland
[Gar71] that Ky(OF) is a finite group, i.e. rk Ko(Op) = 0. This was generalized by Armand Borel [Bor74]
whose intricate calculation tells that the ranks of rk K, (Or) are periodic, depending only on r; and ro.
Putting together the results of Dirichlet, Garland, and Borel, we have

1, n=0,
ri+ro—1, n=1,

rk K, (Op) =< 0, n=2i,i>0
ri+ro, n=4i+1,i>0,
ro, n=4i—1,i>0.

If we recall the Dirichlet’s theorem proof [Neu99, §1.7], for K;(Ofr) =~ Oy it is not very difficult to see
that Of is finitely generated, but getting the exact rank ry + ry — 1 requires more work. For higher
K-groups this is similar: it is a very nice result that K,,(Or) are finitely generated, but calculating the
ranks is much harder. A detailed exposition of this is the main point of this mémoire.

As we promised, this is related to the zeta function of F; we note that these ranks are exactly the
multiplicities of zeros €r(—n):

n: O 1 2 3 4 5 6 7 8 9
rk KH(OF)Z 1 rm+r—-1 0 ro 0 rm+ry O ro 0 ri+ry
= Ho =M = M2 = M3 = 4
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To introduce more intriguing numerology, we recall that Bott periodicity gives us homotopy groups
of the infinite orthogonal group O(R) &f lim O (R) (cf. [Bot70]). They are periodic with period eight:

n: 0 1 2 3 4 5 6 7
T(OR)): 22 72 0 Z 0 0 0 Z

If we are interested only in rational homotopy, then m,(O(R)) ® Q is periodic with period four. The
same period in K-groups of O has the same nature. This will pop up during the calculation (§ 4.6).

Often one is interested in the ring of S-integers Or s for S a finite set of primes in Of. In this case
K-groups have the same rank, and they are finitely generated as well:

rk Ko(Or,s) =1,
rk Kl(@F,S) = fk@?,s = |S| +r+r—1,
rk KH(OF'S) =rk KH(GF). (n = 2)
—this is an easy consequence of the so-called “localization exact sequence”, as will be explained in

corollary 2.5.7. It was also established by Borel in [Bor81] using different arguments.
Similarly, if we take the algebraic number field F itself, then

Ko(F) = Z,
K1(F) = FX,
Kn(F)®2zQ = Ky(Or) ®2Q. (n>2)

In this case, however, the groups are not finitely generated: while K,,(F) ®; Q = K,(Or) ®z Q, there
may be infinite torsion in K, (F). E.g. this is obvious already for K;(Q), and the infinite torsion

Ko(Q) = Z/2® (Z/3Z)* @ (Z/5Z)* @ (Z/)TZ)* @ (Z/UZ)* @ - -

has interesting arithmetic meaning, cf. [Mil71, §11] and [BT73].

The torsion in K-groups of Or or F is very important for arithmetic, but it will not be dealt here. We
refer to surveys [Wei05], [KahO05], and [GonO5] for the general picture. The rest of this text examines
just ranks of K,(Of). Here is a brief outline of the text.

e Chapter 1 introduces the groups Ky(R), K;(R), and Ky(R).

e Chapter 2 defines higher K-groups of rings via the so-called plus-construction. We also collect
some facts from Quillen’s papers [Qui73b] and [Qui73a].

e Chapter 3 reviews some rational homotopy theory and shows that in order to calculate ranks of
Kn(Or), it is enough to know the cohomology ring H*(SL(Of), R).

e Chapter 4 finally gets the ranks of K, (Or), assuming certain difficult and technical result about
stable cohomology of arithmetic groups.

The rest is devoted to certain steps in the direction of that “technical result”. One who is interested
only in the general strategy of computing rk K,(Or) may content themselves with chapters 1-4.

e Chapter 5 examines a theorem of Matsushima that involves the so-called Matsushima’s constant
m(G(R)) that is very important for stable cohomology.

e Chapter 6 proves certain variation of Matsushima’s result, due to Garland.
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I tried to make the exposition as much coherent and self-contained as possible. I did my best to
give motivation and explain used facts, reviewing the proofs—when they are instructive and not too
technical—or providing the references. Certain constructions are both very interesting and hard to
take on hearsay, so I included a long discussion of them. The tools that one would consider standard
are included in the appendices. They serve to fix definitions and notation, and summarize some basic
facts to be used in the main text. The additional appendix O outlines Quillen’s Q-construction, which
is not crucial for the main text, although at some point we should assume results that are normally
proved using that.

Some notation
Let us fix some notation for all the subsequent chapters:

e F is a number field.

Or is the ring of integers in F.

pr denotes the group of roots of unity in F.

ry is the number of real places.

ry is the number of complex places.

e d¥ [F: Q] =r1 + 2ry is the degree of F.

Ar is the discriminant of F.

Letters like G, H, K will often denote Lie groups, and the corresponding Lie algebras are written in
the Fraktur script like g, b, &

As usual, the end of a proof is denoted by a tombstone sign B; when there is no proof, I mark it
with @ (unless it is something really well-known). End of an example is marked with A.

References

The primary sources that I used writing this text worth a separate mention: the original Borel’s article
is [Bor74], and there are also some surveys written by Borel himself, notably [Bor06], [Bor95], and a
monograph [BWO00] by Borel and Wallach.

I hope this text will be useful for someone who wants to learn about algebraic K-theory of number
fields.

A note about this version

My intention was to cover all the details and preliminaries needed to calculate rk K, (Op). At some point
the text became quite long, so I took decision to explain only first steps towards the technical result
(theorem 4.7.2), to avoid making all fifty pages longer. Understanding nuts and bolts of Borel's proofs
is a starting point of my future PhD project suggested by Boas Erez, so I will soon post online a more
detailed and lengthy version of these notes (it more resembles a book than a mémoire!).

Please send all your comments to alexey.beshenov@math.u-bordeaux.fr.
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Chapter 1

Classic algebraic K-theory: Ky, K1, Ko

In this chapter we will review briefly the definitions of groups Ky, K, and Ky of a ring. We are
interested in K;(Of) for a number field F, so the main point is the following.

e Ko(Or) = Z® CI(F), where CI(F) is the class group of F, giving the finite torsion part of Ko(Or).

e Ki(Of) = OfF is the group of units of Of, which is isomorphic to Z"*"~! @ pp, according to
Dirichlet’s unit theorem.

It is very standard yet provides an important motivation for the rest of this text: it shows that K-
groups of Or are related to the arithmetic of F. Moreover, this suggests some properties of the higher
K-groups, e.g. one expects K;(Of) to be finitely generated, with ranks depending on r; and ry, and
torsion related to the values of Cr(s).

Finally, we briefly review Ky, even though we will not get into details about its importance in arith-
metic.

References. The classic reference for Ky, K;, Ky is the Milnor’s book [Mil71]. A good modern textbook on
algebraic K-theory is [Ros94].

1.1 Ky of a ring

Let R be a ring. For our purposes, just to simplify things, we assume from now on that R is commutative.
Recall that an R-module P is projective if one of the following equivalent properties holds [Wei94, §2.2]:

1. Any surjective R-module morphism p: M — P has a section s: P — M such that pos = 1p:

M-—2>p—>0

~ _ -
S

2. Any short exact sequence of R-modules
0O-M—>N-—-»P->0
actually splits.

3. There is an R-module M such that the direct sum P @® M is a free R-module.

1



Now consider the isomorphism classes of finitely generated projective R-modules. They form a set

Proj;(R), which can be made into a commutative monoid with addition [P] + [Q] o [P ® Q] and the

0-module as the identity element. It is not a group and not even a monoid with cancellation, since in
general

PreQ=P,®Q = Py = P,.

Proposition-definition 1.1.1. Let M be a commutative monoid. Then there exists the Grothendieck
group associated to M, which is an abelian group M+ together with a monoid morphism M — M™*
such that for any group G and a monoid morphism M — G there is a unique group morphism
M™ — G making the following diagram commute:

M——M*

Ve
Ve
7 31
y

G

The construction of M™ is clear: we take the free abelian group on generators [x] for all x € M
modulo relations
[x]+[y] =[x +y] forallx,yeM.

The morphism M — M is given by x — [x]. We see that each element of M* can be expressed as
a difference [x] — [y] of two generators. By the universal property, M is unique up to isomorphism,
and moreover, M «~» M™ is a functor Mon — Grp, since for any monoid morphism f: M; — M, one
gets canonically

M1*f>M2
Mfr—f:>M2+

This functor +: Mon — Grp is left adjoint to the forgetful functor Grp — Mon:
Homg,(M™, G) = Homgy,, (M, G).
Now we are ready to define the O-th K-group.

Definition 1.1.2. Let R be a ring. The group Ko(R) is the Grothendieck group Proji(R)* associated
to the monoid Projg(R) of the isomorphism classes of finitely generated projective R-modules.

So the elements of Ky(R) are [P] for finitely generated projective R-modules P, with addition given
by [P] + [Q] o [P @ Q] and formal subtraction. We can also make Ky(R) into a ring by putting

[P] - [Q] €' [P ®& Q]. The identity in this ring is the class [R!] of the free module R!.
Ko(R) is a functor, since a morphism of rings ¢: Ry — Ry functorially induces a morphism of
monoids Proj;(Ry) — Projg(Re) given by

[P] = [P ®¢ Ro].

This is well-defined: if P is a finitely generated projective R;-module, then P ®4 Ry is a finitely
generated projective Ry-module. It is a homomorphism since ® commutes with .

Example 1.1.3. If R is a principal ideal domain, then every finitely generated projective R-module P
is isomorphic to R" for some n (as a consequence of the fact that over a principal ideal domain a

submodule of a free module is free). So to each [P] € Ko(R) one can associate its rank rk[P] € n
This is well-defined and gives a group homomorphism

2



rk: Ko(R) — Z,
[P] — rk P.

This is an isomorphism Ky(R) = Z. A
Definition 1.1.4. For any ring R there is a canonical morphism i: Z — R which induces a morphism
of Ko-groups i,: Ko(Z) — Ko(R). The reduced Ky-group of R is given by

Ko(R) € Ko(R)/ix(Ko(2)).

In a sense, IN{O(R) measures how R is far from being a principal ideal domain. Intuitively this

suggests that for a Dedekind domain 2l the group I~<0(R) should coincide with the class group CI(2().
Establishing this is our next goal.

Ko of a Dedekind domain

We want to show that for a number field F the group Ko(OF) is exactly the class group CI(Of). In fact,

for any Dedekind domain 2 one has Ko(2) =~ CI(). Let us briefly recall some facts about Dedekind
domains [[R05, Chapter §].
A Dedekind domain can be defined by various equivalent conditions, e.g.:

e In 2 every nonzero ideal I < R factors uniquely into a product of maximal ideals

~ mct e
I=mi'---mpn.

e 2 is regular of dimension < 1, i.e. 2 is Noetherian and for every maximal ideal m < 2 the
localization 2, is a principal ideal domain.

Every prime ideal in 2 is automatically maximal.

In order to identify the group Ky(2), we need to know what are the finitely generated projective
modules over 2.

Lemma 1.1.5. Every finitely generated projective 2-module M is isomorphic to a direct sum I;®- - -®I,
of ideals of 2.

Proof. By assumption M is a direct summand of ™.

If n =0, then we are done.

Assume now the lemma holds for 0,1,...,n — 1. Consider the projection to the last coordinate
p: A" — 2A. If p(M) = 0, then M lies in a submodule kerp = 2"~!, and we are done by induction.

Otherwise, I &' p(M) < 2 is a nonzero projective ideal
0—kerplyy =M —»pM)—0
hence M = ker p|,, @ I. Now by induction ker p|,, € 2" ! is a direct sum of ideals. u
We want to relate Ko(2() to the class group CI(21). Let us recall the definitions.

Definition 1.1.6. A nonzero 2-submodule I © Frac? is called a fractional ideal of 2 if al € 2 for
some a € .

A principal fractional ideal is given by ¢ 2 for some § € Frac®. To underline that an ideal I is
not fractional, sometimes one says that it is an integral ideal.
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Fractional ideals of 2 form a group under multiplication with 2 being the unit and the inverse
I™' = {a e Frac2 | al c 2}.
Definition 1.1.7. The class group of 2 is given by

def fractional ideals
~ principal fractional ideals’

Cl(2)

Observe that Cl(2() is isomorphic to the group of isomorphism classes of integral ideals (as 2I-
modules). Indeed, any fractional ideal I is isomorphic to an integral ideal al for some a € 2. On
the other hand, if ¢: I — ] is an isomorphism of 2-modules, then we can pick xo € I\{0} and since

P(x0)

d(xpx) = x0 P(x) = x P(x0), we have | = =%~ I, meaning [I] = [J] in the class group as defined above.

Lemma 1.1.8. Any fractional ideal I € Frac 2l is a finitely generated projective 2A-module.

Proof. If I is generated by (x1,...,x,) and I~! is generated by (y1,...,y,) with Y x;y; = 1, then we
have a splitting

~= =<
An o I 0
(at,...,an) ——=> a; x;
which is given by
s: 1 — A",

b— (byy,...,byn).

Lemma 1.1.9. For any two fractional ideals I,] < Frac 2 one has an 2-module isomorphism
I®e]=ADI].

If I and J are two relatively prime ideals, then this is easily to be seen. We consider a map (x,y) —
x —y. It has image 2 and kernel consisting of pairs (x,x) with x € I n J = I], and then the following
short exact sequence splits since 2 is projective:

O-In]J—-1®]—-2A—->0

In general, the lemma should somehow follow from the fact that any ideal factorizes uniquely into
prime ideals.

Proof. Pick a nonzero element b € ] such that bJ~! is an integral ideal.
Claim. al ' +bJ ! =% for someacel.

We consider the factorization into prime ideals
b=t =pft - pik.

Now take a; € Ipy---p;---pr (as usual, ~ means that we omit the factor) such that a; ¢ Iy ---pp.

Then a; I=! € p; for each j # i and a; [7! & p;. If we take a def Y a;, then aI~! & p; for any i, so it is

coprime with bJ~1, as we claimed.



Thus we have c € ™! and d € J~! such that ac + bd = 1. This gives an invertible matrix

c —b
d a)’
We use it to define an isomorphism

Ie]-2A®1],
c -b

(x,y)H(x,y)-<d a>=(cx+dy, —-bx +ay).

eA elj

The inverse matrix gives the inverse map A @ 1] - [ @]J. [ |

Now we are ready to describe the finitely generated projective 2[-modules. Each of them is isomor-
phicto [ ®---®I, by lemma 1.1.5. Applying inductively lemma 1.1.9, we get that the latter is isomorphic
to A" ' @I ---I,. So any projective A-module of rank n is isomorphic to A"~ @ I, and the ideal I is

uniquely determined up to isomorphism.
Claim. 2" '@l A" @I implies [ = I'.

This follows from isomorphisms A" (A" '@ 1) = I:

/\H(an—l ) I) i> /\H(an—i ) I/)

Putting all together, we have an isomorphism

Ko(21) - Z @ CI(21),
[t @ 1] = (n, [1]).

This allows to conclude Ko(ﬂ) =~ CI(20).

Remark 1.1.10. Recall that Ky (2() = Z @ Cl(2l) is a ring with multiplication [P] - [Q] & [P ®q Q]

If we think of the elements of K,(2) as of formal differences [P] — [Q], then Ko(2) consists of the elements
[P] — [Q] with rkP = rk Q = n. Over a Dedekind domain these are [A" '@ L] — [A" '@ L] = [I] — [L]- We

calculate the product in Ko(2):
([1] = [B]) - (U] = D)) = (1] - D] = [0 - o] — [Bo] - U] + [B] - [a]-
Now [I]- /] € [I®]] = [J], and so
] + (B Jo] = (L Jo] = [ )il = L s @ L Jo] — (L o @ I 1]
Since over Dedekind domains [ @] =~ ' @ (I]), remains
RSLI L) - [ @hL)Li]=0.

Hence on K (2) = CI(2) the product is zero.

In particular, Ko(Or) =~ Z & CI(F), so Ky is an important arithmetic invariant. Recall that the class
group CI(F) of a number field is finite—this is usually shown by the celebrated Minkowski’s theory

[Neu99, §1.6]. From this also follows



Proposition 1.1.11. For any n there are finitely many isomorphism classes of projective Op-modules
of rank n.

1.2 K, of a ring

Definition 1.2.1. Let R be a ring. Consider the group GL,(R) of invertible n x n matrices over R.

Denote by ei(jn)(x) forxreRand 1 <i,j < n,i#jan n x n matrix having 1’s one the diagonal and
0’s outside, except for the position (i, j) where it has x. We call such a matrix elementary.

N

1

We observe that multiplying a matrix by an elementary matrix corresponds to adding to some row
(or column) a multiple of another row (column).

All such matrices generate the subgroup of elementary matrices E,(R) ¢ GL,(R). One has
embeddings

GLp(R) — GLn+1(R),
M 0
M o < " 1) ,
and similarly E,(R) — Ep;1(R). Under these embeddings one gets
def

GL(R) € lim GL,(R), E(R) € limE,(R);

n n

these are just groups of arbitrarily big matrices: to multiply matrices of different size, we use the

embedding M — <A6[ (1)>

For a moment it may seem like working with elementary matrices is too restrictive. However, they
generate a big group. The following is basically a computation with matrices, but it is a very important
fact:

Claim (Whitehead’s lemma). For any matrix M € GL,(R) one has

<A(;I MO1> € Eon(R).

Further, there are the following relations for elementary matrices:

e (a)el’ (b) = ef’ (a +b), (1.1)
]=eM(ab) fori+k, (1.2)
1=1 forj+#k,i#/l (1.3)



As usual, by [x,y] we denote the commutator x y x~'y~!. By [G, G] we will denote the subgroup

generated by all commutators [x, y] with x,y € G. From (1.2) one sees that [E,(R), E,(R)] = E,(R) for
n > 3, and hence [E(R), E(R)] = E(R). We claim that [GL(R), GL(R)] € E(R), and so [GL(R), GL(R)] =
E(R). Indeed, for two elements M, N € GL,(R) their commutator in GL(R) becomes

[M,N] 0\ (MNM'N! 0\ (MN 0 M-t 0 N1 0
0 1)~ 0 1)~ 0 N!'M! 0 M 0 N)’
and by Whitehead’s lemma all factors are in Epy(R).
So one has a very noncommutative group GL(R) formed by arbitrarily large matrices, and its

noncommutativity is measured by its commutator E(R) = [GL(R), GL(R)]. This suggests that one
should study the abelianization of GL(R):

Definition 1.2.2. For a ring R the group K, is given by
Ki(R) ¥ GL(R)/E(R) = GL(R)* = H;(GL(R),Z).

We note that GL,(-) is a functor CRing — Grp, and similarly GL(-) is a functor CRing — Grp. Also
the abelianization is a functor Grp — 4b (which is left adjoint to the inclusion 46 — Grp), hence K; is
a functor from commutative rings to abelian groups.

Remark 1.2.3. K; was discovered in topology in the work of J.H.C. Whitehead (e.g. [Whi50]). A great exposition
of topological use of K; is [Mil66]. In algebra, K; of a ring appeared first in [BS62].

By Whitehead’'s lemma, the product [M] - [N] = [M - N] in K;(R) can be viewed as the “block sum”
of matrices [M] - [N] = [M @ N], since M - N and M @ N differ by an element of E(R):

MN 0\ (M 0\ /(N O
0 1) \0 N 0 N1J-
| ——
€E(R)

Definition 1.2.4. We have the usual determinant homomorphism det: GL,(R) — R*, and it obviously

extends to a homomorphism det: GL(R) — R*, since det (Ag 1?]) = detM detN. The kernel of
this map is by definition the special linear group SL(R). One sees that E(R) lies in SL(R), since all
elementary matrices have determinant 1.

We put

SKi(R) ¥ SL(R)/E(R).
One has a split short exact sequence
0 - SL(R) — GL(R) » R* -0
(the splitting is given by inclusion R* = GL;(R) — GL(R)), and there is a split short exact sequence
0 — SKi(R) — Ki(R) - R* >0

That is, K4 (R) = SK;(R)®R*. Now the question is whether SK;(R) vanishes, i.e. whether elementary
matrices generate the whole SL(R). In other words, given a matrix of determinant 1, can we always
transform it to the identity matrix using the elementary row (or column) operations? If R is a field, then
the answer is “yes” by basic linear algebra. If R is a Euclidean domain, or more generally a principal
ideal domain, then the answer is “yes” [R0s94, §2.3], although it is less easy.

As in the rest of this mémoire, we are interested in the case when R = Of is the ring of integers of
a number field. It is not necessarily a principal ideal domain, but we will see soon that SK;(Of) = 0.
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Theorem 1.2.5 (Bass-Milnor-Serre). Let O be the ring of integers in a number field F. Then
K1((9F) = @FX

However, it is a subtle fact relying on the arithmetic of F.

Remark 1.2.6. In general SK;(R) does not vanish, but discussing such examples is beyond the scope of this
text. For instance, for the group ring ZG, where is G a finite abelian group, SK;(ZG) vanishes “rarely’; see
[ADS73, ADS85, ADOS87] and [Oli8§].

Transfer map in K;

Following [Mil71, §3 + §14], we review an additional construction that will be used below. Let R be
a ring and S be its subring such that R is a finitely generated projective S-module. The inclusion
i: S — R gives by functoriality a map i.: Ki(S) — Ki(R), but one can also get the transfer map
i*: Ki(R) — K;(S) going the other way.

Note that for Ky the transfer i*: Ko(R) — Ko(S) is obvious: a finitely generated projective module
P over R can be viewed as such a module over S. This gives a map [P] — [Ps] on the generators of
Ko. By abuse of notation we will identify [P] and i*[P].

First observe that K;(S) has a Ko(S)-module structure. Let [P] € K((S) be an isomorphism class of
a finitely generated projective S-module. For an element x € K;(S) we would like to define the action
[P] - x.

Since P is projective and finitely generated, one has P ® Q =~ S" for some S-module Q. An auto-
morphism a of P gives an automorphism a @ 1o of P ® Q, which after fixing a basis of P @® Q can be
viewed as an element of GL,(S). So there is a map

Aut(P) — Aut(P ® Q) = GL,(S) — GL(S).

Claim. This is well-defined up to an inner automorphism of GL(S), and hence gives a well-defined
homomorphism
Aut(P) — Ky(S) = GL(S)“.

Proof. Assume that from a € Aut(P) we got a matrix A € GL(S) using some basis by,...,b, of P® Q.
With respect to another basis by, ..., b/, the resulting matrix is CAC~! € GL(S) for some invertible
s x r-matrix C.

If we replace Q with another O’ such that P® Q' =~ S/, then Q@® S’ ~ Q' ® S", hence a different
choice of Q also alters the embedding Aut(P) — GL(S) by an inner automorphism. [ |

Now for [P] € Ko(S) we have a map

GLn(S) ——> Aut(S") — = Aut(P® S") —= Ky (S)
a1 ®a

Observe that hpgp: = hp + hp, so hp depends only on the class [P] € Ko(S). Now passing to
abelianization and n — oo, we get a map K1 (S) = GL(S)®® — K;(S). By definition, this is the action of

[P]:

Ki(S) — Ki(S),
x — [P]-x.
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Now we define the transfer for K;. Again, we assume that R is a finitely generated projective S-
module. We pick a projective S-module Q such that R® Q = S" is a free S-module of rank r. An
element x € K;(R) is represented by a matrix A € GL,(R) =~ Aut(R"). Now R" @ Q" is also a free
S-module of rank nr. We can consider an automorphism A @ 1o € Aut(R" @ Q"), represented by a
matrix in GL,,(S). As before, this gives a map i*: GL,(R) — GLp,(S), which induces a well-defined
morphism i*: K;(R) — K;(S) (by the same considerations as above).

Now if we take an element x € K;(S) and calculate i*i,(x), then it is the same as [R] - x, where [R]
is viewed as an element of K((S) and the action is defined above.

Ki(S)

This is really immediate from the definitions, yet it will be useful below.

Remark 1.2.7. Compare to the transfer in group cohomology [Bro94, §II1.9, I11.10].

Proof of K;(Or) = Of

Our goal is to show that SK;(Or) = 0 for a number field F, which means that SL(Or) is generated by
elementary matrices. This is a very important and nontrivial result and it seems that there is no slick
proof of it. A great article [BMS67] gives the solution. The exposition below is based on [Mil71, §16].

First observe that it is enough to consider SLy:

Proposition 1.2.8 (Bass). Let 2 be a Dedekind domain. Then every matrix in SL(2) can be re-
duced by elementary row and column operations to a matrix in SLy(2). That is, SLy(21) surjects to

SL(A)/E@) L' SK, ().

Proof. We take a matrix M € SL,(2() for n > 3 and proceed by induction on n. We need to show that
modulo elementary operations, M comes from SL,_41(2(). Consider the last row of the matrix:

& * Ed

M = : € SLn(2).
£ * *
X1 Xo ‘e Xn

One should have x12 + - - - + x,2 = %, since the coefficients are relatively prime.
Case 1: If xy,x9,...,x,_1 generate the whole ring 2, then we can replace x, by 1 by elementary
column operations, and then by elementary operations replace M with a matrix

!
(Ag 2) M’ € SLn_4(2).

Case 2: If xy =0, then by elementary column operations one can replace xs with 1 and proceed as in
Case 1.

Case 3: If xo # 0, then there are finitely many maximal ideals my, ..., ms containing xo,...,x, 1 (and
here we use the hypothesis that 2 is a Dedekind domain). Assume that the first r ideals my,..., m,
contain x; and the remaining ideals m, 1, ..., ms do not contain x;. Choose an element y € 2 such that
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1 (mod my,...,my),
0 (mod mpyq,...,mg).

y
y
Adding the last column multiplied by y to the first column replaces x; with x; + x, y. Now
X1+ Xn¥, X2, ..., Xn-t
generate the whole 2, and we can proceed as in the first case. |

b

The next step is to develop some calculus for SLy. Observe that a matrix (a d

> € SLy(R) modulo

Es(R) is uniquely defined by coefficients a and b. Indeed, if we have another matrix ((;1'

then
a b\ 1 0\ (a b
c d) \ed —-c'd 1 c d)

—_—
EEQ(R)

b
d’) e SLy(R),

If we have two elements a and b such that a R+b R = R, then there existc,d e Rwithad—-bc =1,

and hence a matrix (Z Z) € SLy(R). This suggests the following definition:

Proposition-definition 1.2.9. An element of SK;i(R) given by a matrix (g Z) € SLy(R), viewed

modulo Ey(R), is called a Mennicke symbol and denoted by [g]
First we collect some properties:

Proposition 1.2.10. For any a,b € R such that aR + bR = R one has the following identities in
SKi(R):

1. o] =1[5]

2. [o] = [P and [g] = [, 5] for all A€ R.
5T =151

4. [2] =1 ifa or b is invertible.

Proof. This is a calculation with matrices [Mil71, Lemma 13.2], one just routinely checks the identities
modulo Ey(R). [ |

Now we know that Mennicke symbols generate SK;(2) for a Dedekind domain 2. The group
SLy(OF) is finitely generated—it is a general property of arithmetic groups, important in the subsequent
chapters—hence we know that SK; (Of) is at least finitely generated by Mennicke symbols.

Example 1.2.11. For instance [Ser73, §VII.1], the group SLy(Z) is generated by two elements

def (1 1 def (0 —1
T‘(o 1)' S‘<1 o>'
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S has order 4 and ST has order 6, and in fact SLy(Z) it is the “amalgamated free product” C; ¢, Ce—
see [Alp93] for an elementary proof.

SLy(Z) < (ST)
|~
(S) ~—{£1}
A

Now observe that for any symbol [2] we can find an integer r > 0 such that b* =1 (mod a)—here
we use that Or is a number field!—and then by the listed properties

br_ bl [M+Aial [1 1

al |al | a al
So SK;(Or) is a finitely generated torsion group, hence it is finite. We need to invoke some number
theory to show that in fact SL;(Of) is trivial. Let k be a local field containing n-th roots of unity. We

denote their group by p,. For b € k* consider an abelian extension k(</b)/k. Then the “norm residue
symbol” map (cf. [Neu99, Chapter IV + V]) has form

kX — Gal(k(Vb)/k),
a — (a, k(Vb)/k).

And Hilbert symbol [Neu99, §V.3] is a nondegenerate bilinear form

(5) s sy s ) =

which is given by

(a;,> _ (a,k({’f%k) Vb

Here p = {a € k | v(a) > 0} is the maximal ideal of k, and n is implicit in the notation “ (F)
Fact 1.2.12. Hilbert symbol has the following properties [Neu99, Proposition V.3.2]:
aa’b) _ (ab) (a’b a,bb’\ _ fab) [ab’
1 ( b )‘(P) (p)and( b )‘(p) (P)

2) <% =1 if and only if a is a norm from the extension k({/b)/k.

7 ()= ()

4) (“'1;‘1) =1 (assuming a # 1) and (“';a) = 1.

5) 1f (42) =1 for all b e k*, then a € (k*)".

If F is a number field having n-th roots of unity, then for each place p € Mr (including infinite) we
can consider the completion F, and the corresponding Hilbert symbol

<p> RS JEO)" x FYJ(F)" = .
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All completions are put together by the product formula [Neu99, Theorem VI.8.1]:

H (a‘;b> =1 foranya,beF*.

peEMF

Remark 1.2.13. For F = Q and n = 2 these are the classic Hilbert symbols [Ser73, Chapter III]
(o)t @y /(@57 x QF /(Q)? — {1}

that are related to the properties of quadratic forms over Q [Ser73, Chapter IV]. In this case the product formula
gives the quadratic reciprocity law [Neu99, VL.8.4].

The case with roots of unity. Let us assume that Or has p-th roots of unity for a prime p, so that
we can consider Hilbert symbols (%) € pp,. Later on we will see that this assumption is harmless and
one can always pass to a field extension F(¢&,)/F. We want to show that SK;(Of) has no p-torsion. For
this it is enough to prove that every Mennicke symbol [Z] € SK1(Or) has a p-th root, i.e. [Z] = [si]p for
some symbol [Z]

By Chinese remainder theorem we can find a; such that

ay=a (mod bOr), (1.4)
ai=1 (modyp) forp|p, ptb.

b

So we have [

] = [;’1] where a; is relatively prime to p.
Claim. Let q | p be a prime lying over p. Then there exist uy, wy in the q-adic completion of Of, such

that (“22) # 1,

Proof. Let U be the group of units of the g-adic completion of Or. This group contains p-th roots of
unity and the residue field is of characteristic p, hence [U : UP] > p? (cf. [Lan94, §I1.3, Proposition 6]).
Let 5t be a uniformizer. Consider the subgroup

Up & (ueU| (uf) —1).

It has index [U : Uy] < p, hence there exists up € U such that ug is not a p-th root of unity in

the completion F,; and (%) # 1 for some y = 51! wy—see above property 5) of Hilbert symbols. Now

(%) # 1. u

By Chinese remainder theorem we pick by such that

bo=b (mod ai0F), (1.5)
bg = Wo (mod C[N),
bp=1 (modp™) forp|p, p#q.

Here N is an integer large enough so that fv—f) has a p-th root in the completion F;, and by has a p-th

root in F, for each p | p, p # q.

Claim. Consider an “arithmetic progression” consisting of all by satisfying (1.5), (1.6), (1.7). Then it
contains a “prime”, i.e. a number by, such that by Or is a prime ideal. Further, this by can be chosen
to be positive in every real completion of F.
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This is essentially a generalized version of the Dirichlet’s theorem on arithmetic progressions which
is deduced from the Chebotarév density theorem—cf. [Neu99, §VII.13].

Now by (1.6) holds (keep in mind that (?) is defined on Fy/(F;)P, modulo p-th roots)

(uo,bQ) _ <uo,W0> 21
q q

def
Hence for some power u = ug of ug, one has

ai, b u, by
<52®F> ' ( q ) =t 1.8)

Choose as to be a “prime” (i.e. such that azOf is prime) satisfying the congruences

aq (mod b2(9[:), (19)
u (mod qV),

) | b

o

as

as

b2 (L{)) b2 (1;5) b (1.
as N aq N aq

For az and by consider the product formula:

I1(%57) -t

pEMF

with N as above. Now

>~

e By the choice of by one has (%:22) =1 for p | p and p # g, and also for infinite places.
p

e If v is a finite prime such that ¢ { p, then the symbol (@) is “tame” and (‘13—:’9) =1, unless t | as

or t | by (see [Neu99, §V.3] for calculation of tame symbols).
So from the product formula remains
(aor) - (5ior) - (557) -
asOr boOF q '
For the second two symbols in this product
(i) = Gior) - (57 = ()
boOF boOF )’ q a )’

. 5,b
and using (1.8) we conclude (Z;os

) = 1, which means that by is a p-th power modulo asz, so that

by =x? (mod azOf) for some x,

bl _[be] [xP] [x]°

al  las|  |az| |az|’
and [2] is a p-th root. This shows finally that SK;(Of) has no p-torsion whenever F contains p-th roots
of unity.

and for Mennicke symbols it means
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The general case. To finish the proof, assume now that F has no p-th roots of unity. Then consider
the extension F(&,)/F:

The inclusion O — Of(¢,) induces a morphism i, and transfer map i*, and their composition i* oi,
is the action of [Of(¢,)] € Ko(OF):

i

Ky (Op) —> Ki(Or(c,))
> ~ i¥
Orep] >
K1(Or)

Note that under the isomorphism Ko(Of,)) = Z @ RO(OF(CP)) one has i*[Of,)] = d + 7, where
d = [F(&) : F] = [Or,) : Or]. Let a € Op(,) be an element of order p. Then i,(a) has order p in
SKi(@F(Cp))’ SO
i*ig(a)=(d+7y)-a=0.

Recall that multiplication in Ko(O) is trivial, thus 32 = 0, and
d?>-a=(d-y)(d+7y)-a=0.

However, p does not divide d, which means that « = 0. This completes the proof that SK;(Of)
vanishes and K3 (Of) = Of. ]

Structure of K;(OF)
Now knowing that K;(Of) = Oy, we recall what this group is.

Theorem 1.2.14 (Dirichlet unit theorem). The group K;(Op) =~ Oy is finitely generated; precisely,

Ki(Op) = OF =z @y,

where
e ry is the number of real embeddings oy,...,0p: F = R,
e 1y is the number of conjugate pairs of complex embeddings Oy, +1,...,0p,, Op;+1,.+.,0p,: F — C.

e . is the group of roots of unity in F,

We just recall briefly that calculation of the rank starts with the logarithmic embedding (which is
clearly a homomorphism from the multiplicative group F* to the additive group):

A F* — RN,

a— (A(a), .., Arry(@))

' (log|oi (a)

, ..., log|oy, (a)

, 2109 (01, 41(@)], ..., 210G [0ry 41, (@)])-
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For algebraic integers a € Op one has Np/g(a) = £1, so Y, Ai(a) = log|Nr/g(a)| = 0, which means
that the image of Of under A lies in the hyperplane of codimension one

HE {21, Xy ) € R | Y 2 = 0},

It is easy to see that the image of Oy under A is a discrete subgroup in H, i.e. a lattice Ar def A(OF).
Indeed, if we consider a ball B ¢ H and the points A(a) = (Joi(a)l,...,|0p+r(a)|) € B for a € OF, then
we have a bound on |o;(a)|, and hence some bound on the coefficients of the minimal polynomial of a
(which are symmetric functions in o;(a)). So in each ball there are finitely many points A(a) coming
from a € Of.

The kernel of A clearly consists of some roots of unity pr, since it is a subgroup of the cyclic group
F*. Moreover, every root of unity is mapped to 0 because Ar is a free group.

Now the really hard part of the theorem is to show that the lattice A ¢ H is of the full rank
ry +ry —1 (see e.g. [Neu99, Theorem 1.7.3], or [Jan96, p. 74-77]).

This of course can be found in any algebraic number theory textbook (e.g. [Neu99, §1.5-1.7]), and it
would be embarrassing to discuss the full proof. We recall it just to note that for the higher K-groups
Ks(Or), K3(Or), K4(OF), ... it is also relatively easy to show that they are finitely generated (which is
made in a rather short note [Qui73a]), but calculation of their ranks is quite involved (which is the result
of [Bor74]). However, these ranks also depend only on ry and ry, in a simple and beautiful way.

Further we recall the class number formula giving the residue of zeta function ¢r(s) at the simple
pole s =1 [Neu99, VIL5.11]:

2r (271)" hp R

— Ry,
WF - \/AF
def

where hr = # CI(F) = #Ko(OF )tors is the class number, and wp def #pp = #K1(OF)tors is the number of
roots of unity. Here Rp is the regulator, which is related to the volume of the lattice described above
by Vol AF = RF \/m

Basically, this formula involves torsion in Ky and Kj, and suggests that for higher K-groups one
can also define regulators and get similar expressions. Using the functional equation, rewrite the class
number formula for the zero at s = 0O:

lim(s — 1) € (s)

lim s~ 1= ep(s) = #Ko(OF )tors

— Rp.
s—0 #Ki(OF)lors F

The Lichtenbaum’s conjecture [Lic73] reads for n > 0

#Kon
lim(n —s)7™# €p(—s) = £ Kon(Or) Rr, up to a power of two,
s—n

o #K2n+1 (OF)tors

where p1,, is the multiplicity of zero ¢p(—n) (see the preface), and Rr, is the so-called Borel’s regulator.
The group Ko, (OF) is finite for n > 0, which will be established in the subsequent chapters.

Example 1.2.15. If F = Q, then R, g = 1, and for ¢(—1) we get a formula

(1) = £ )

+—— "~ up to a power of two.
#K3(Z)tors P P

In fact Ko(Z) = Z/2 (see below) and K3(Z) = 7Z /48, so up to a power of two, this indeed coincides with
the right value ¢(—1) = —By/2 = —1/12. A

This was a little digression related to the class number formula; in this text we are interested only
in ranks of K-groups. We refer to [BG02], [Gon05], and [Ram89] for further discussion of regulators.

15



1.3 A few words about K,

Recall that the group E(R) is by definition generated by elementary matrices. They satisfy relations
(1.1), (1.2), (1.3), however, depending on R, there can be other less obvious relations, and the group of
elementary matrices E(R) is far from being “elementary”. This suggests the following

Definition 1.3.1. The Steinberg group St,(R) is the group generated by formal symbols xi(]-") (a) for
1<i,j<n,i+#j and a € R, modulo relations

xi(].")(a) xi(j")(b) = xi(j") (a+b), (1.10)
[xi(].") (a),xj(;)(b)] —x{)(ab) fori#k, (1.11)
[x{" (@), x(y ()] =1 forj#k,i+¢. (1.12)

(These are the same as (1.1), (1.2), (1.3).) The Steinberg group St(R) is the limit

h_r)nStn(R)l

n
given by the obvious maps St,(R) — St,1(R). (These are not necessarily injections though!)
Obviously, St is a functor from the category of rings to the category of groups.
By the definition, there are surjections St,(R) — E,(R) given by xi(jn) (a) — ei(j") (a). Passing to a
limit gives a surjection St(R) — E(R).

Definition 1.3.2. The group K; of a ring R is given by
Ks(R) & ker(St(R) — E(R)).
We do not discuss in details K, and its properties, in particular its réle in arithmetic (cf. [BT73] and
[Tat76]). A great reference is [Mil71], [Mag02, Part V], and the chapter on Ky in the textbook [Ros94].

Perfect groups

Perfect groups play a major rdle in everything what follows, so we record here some basic facts about
them.

Definition 1.3.3. A group P is called perfect if [P, P] = P. In other words, if
p/[P,P] = P®® = HY(P,Z) = 0.
Here are some immediate properties of perfect groups:

Proposition 1.3.4. 0) If P < G is a perfect subgroup, then it is contained in every subgroup of
the derived series
G2[G,G]2[[G,Gl, [G,G]| 2 -

1) The image of a perfect group under a homomorphism f: P — G is also a perfect group.

2) Any group G has a maximal perfect subgroup, the perfect radical 3G, which is a character-
istic subgroup of G.

3) If : G — H is a homomorphism, then ¢(PG) < PH.
4) If ¢: G — H is a homomorphism and ‘BH = 1, then BG < ker ¢.
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Proof. 0) is clear from the definition.

1) is the fact that homomorphisms send commutators to commutators.

For 2) note that if P; and P, are two perfect subgroups of G, then the subgroup generated by P;
and P, is perfect as well. Hence there is the maximal perfect subgroup BG. By 1) any automorphism
G — G should send BG within itself, hence PG is a characteristic subgroup.

3) is a particular case of 1), and 3) implies 4). |

Example 1.3.5. Recall that for GL(R) the derived series is given by
[GL(R),GL(R)] = E(R), [E(R),E(R)]=E(R),

therefore E(R) is the maximal perfect subgroup of GL(R). Similarly, the relation (1.11) tells that
[St(R),St(R)] = St(R), so the Steinberg group is also perfect. Note that E(R) is the image of St(R)
under the surjection St(R) — E(R). A
Kervaire’s theorem

Let us recall briefly the theory of central extensions. We will freely use some basic group cohomology—
cf. [Bro94] and [Wei94, Chapter 6].

Definition 1.3.6. An extension of a group G by an abelian group A is a short exact sequence
0-A-X->G-1

An extension such that A lies in the center of X is called a central extension. A morphism of two
extensions of G is a homomorphism X — VY giving a commutative diagram

0 A X G 1
0 B 1% G 1

An extension 0 - A - X — G — 1 is called a universal central extension if for every other
extension 0 - B - Y — G — 1 there exists a unique morphism as above.

A universal central extension of G is clearly unique up to an isomorphism, since it is an initial object
in the category of central extensions of G. Here is a criterion of existence:

Theorem 1.3.7. A group G has a universal central extension if and only if G is perfect. Precisely,
consider a presentation G = F/R where F is a free group and R < F its normal subgroup:

1->R->F->G-1
Then the universal central extension is given by

[F. F]

0 HyG,Z) > '

—-G-1

Theorem 1.3.8. A central extension
0-A-XBGo1

is universal if and only if X is a perfect group and every central extension of X is trivial, i.e. of the
form
0-B->XxB->X-—-1

17



The latter two theorems are really standard. We refer to [Wei94, §6.9] for proofs.

Concerning K-theory, one has the following remarkable result:

Theorem 1.3.9 (Kervaire). The group extension from the definition of K,

0 — Ko(R) - St(R) - E(R) —» 1 (1.13)
is a universal central extension. In particular, Ko(R) = Ho(E(R), Z).

This was proved by Kervaire in [Ker70]. To establish this, first one should verify that the group extension
(1.13) is central. More precisely, we have

Claim. Ky(R) is the center of St(R).

Proof. Take an element y € St(R). If it lies in the center of St(R), then its image ¢(y) under the
map ¢: St(R) — E(R) should lie in the center of E(R). However, we know that an n x n matrix
a

commuting with all n x n elementary matrices should have form for some a € R. This

means that the center of E(R) is trivial, represented by the identity matrix , and therefore

Z(St(R)) < ker ¢ & Ky(R).
Conversely, if we start with an element y € St(R) such that ¢(y) = 1, we would like to see that y
commutes with all the generators of St(R). The element y itself is a word of generators xi(jn) (a) for n

big enough. We can take n in such a way that i,j < n. Now consider the subgroup P, generated by
(n) (n) (n)

elements x;,’(a), x,,"(a),...,x, 4 ,(a) for a € R. This is a commutative group thanks to the relation
(1.12). Each element of P, can be written uniquely as xi(;l) (ai),xéﬁ) (ag),... ,x,@m (an—1). The image of

this group in E(R) is the group of matrices

1 aq
1 (0 1))
1 an—1
1
For i,j < n we have
(n) .
() ¢ 7y () gy () _ ) Xun (B), j#k
x;; (a)xy, (b)x;; ' (—a) =

ij ( ) kn( ) ij ( ) {xl(:)(ab)xlii)(b); ]:k

This shows that

xi(j") (a) P, Jcl.(j")(a)’1 = xi(jn) (a) P, xi(jn)(—a) c P, fori,j<n.
Since y is a product of xi(-n) (a) for i,j < n, we have y P,y~! c P,.

By assumption, ¢(y) = 1, hence for all p € P,

dypy™") =d(y)d(p) (") = d(p),

1

and ypy ' =p.
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Now y commutes with every x,(:,? (a) with k < n. By a similar argument one sees that y commutes

with every x,(l';) (a) with £ < n. So y commutes with the commutator

[\ (a), xW(1)] = x(a) where k + ¢ and k, ¢ < n.

Since n can be chosen to be arbitrarily large, this means that y commutes with all the generators
of St(R). |

To finish the proof of theorem 1.3.9, we should show that the extension (1.13) is universal. According
to theorem 1.3.8, this is equivalent to St(R) being perfect and having only split central extensions.

Claim. Every central extension
0->A—->X25StHR) »1
splits.

Proof idea. We need to find a section

0 A X —~ St(R) 1
~

We send an element x;j(a) € St(R) to some element s;;(a) € X. We should choose these s;j(a) in
such a way that they satisfy the Steinberg relations (1.10), (1.11), (1.12), so that this is a homomorphism.
Further, we should take s;j(a) € p~!(xij(a)), so that it is a section.

Since the kernel of p lies in the center of X, for any two elements x,y € St(R) it makes sense to
take the commutator [p~!(x), p~!(y)] as a well-defined element of X. One can observe [Mil71, p.49]
from the commutator identities that if i, j, k, k' are distinct indices, then

[p~"xir(@), P~ xki(b)] = [P~ xir (1), P~ xpj(@ b)]-
This shows that the map
xij(a) — sij(a) def [p 'xir(1), p 'xgj(a)] for some k #1i,k #j
is well-defined and does not depend on k. We see that p(s;j(a)) = [xlk( ), xpi(a)] = xij(a) by the
Steinberg identity (1.11). Moreover, one can check that s;;(a) satisfy (1.10), (1.11), (1.12). [ |
Example: Ky(Z)

To get a feeling of Ky, let us look at Ko(Z) [Mil71, §10]. It is the kernel of St(Z) — E(Z), where St(Z)
captures the “obvious” commutator relations (1.1), (1.2), (1.3) in E(R). So Ky(Z) should correspond to
non-obvious relations between elementary matrices. In Ey(Z) there is a matrix of order 4 defining a

rotation by 90 °:
A def 1 1 1 0 1 1 0 1
- -1 1 0 1 -1 0

VREN. 7& €

This gives a relation
2 2 2
(o2 (1) eg (D) efy (1)) =1,

which corresponds to a nontrivial element (xf?m) xéi)( 1) xf?( 1))* € Ky(Z). One can check that it has
order 2 in Ky(Z), and in fact it generates Ky(Z) = Z/27Z:
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Theorem 1.3.10. For each n > 3 the group St,(Z) is a central extension
0—-Cnp— Sth(Z)—> Ey(Z) -1

where C,, is the cyclic group of order 2 generated by (xi(g)(i) xéf)(—i) xl(g)(i))l’.

A proof can be found in [Mil71, §10]. ®
Passing to the limit, we get Ko(Z) =~ Z/2Z, because of the universal central extension

0 - Ky(Z) - St(Z) - E(Z) -> 1

Remark 1.3.11. K-groups are extremely difficult to compute even for Z. Later on we will review definitions of
the higher K-groups Kz, K;, Ks, . .. For Z these are the following:

n: 0 1 2 3 Z 5
K. (Z): Z Z/2 Z)2 7]%8 0 Z
[Mil71, §10] [LS76] [Rog00] [EVGS02]

Note that all Ky(Z), K35(Z), K.(Z) are finite, and K5(Z) has rank one. We will not be able to explain the finite
part, but we will see that next in this series should go some other finite groups Ks(Z), K7(Z), Ks(Z), then a group
Ky(Z) of rank one, and so on. Ranks are always periodic, with period four.

For calculation of K,(Z) see a survey [Wei05].

In fact for any number field F the group Ky(Of) is finite. Originally this result is due to Garland
[Gar71]. We will see more generally finiteness of Ko(Or), K4(Or), K¢(OF), . . ., which follows from Borel’s
computation [Bor74].

A definition of K,, for n > 2 is the subject of the next chapter.
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Chapter 2

Higher algebraic K-theory of rings
(plus-construction)

In this chapter we review a definition of higher K-groups of a ring via the Quillen’s plus-construction.
It is worth noting that the first K-group functors Ky, K, Ky as described in chapter 1 are not

separate entities; they can be put together in various ways. For instance, for an ideal I < R one can

define relative K-groups K;(R,I) and Ko(R,I), in such a manner that there is an exact sequence

? 5 Ky(R) = Kyo(R/I) > Ky(R,I) > Ky(R) = Ki(R/T) = Ko(R, I) = Ko(R) — Ko(R/I)

—see [Mil71, § + §6] for this. Then it is natural to ask what would be “Ky(R, I)”, and how to continue
the sequence with terms K3, K,, Ks, ... The key insight is that such a long exact sequence reminds the
fibration long exact sequence in algebraic topology (proposition H.2.10), so one should somehow define
a functor

CRing — HCWiop,
R wo K(R).

from the category of (commutative) rings to the category of CW-complexes and homotopy classes of

maps. Then one defines the higher K-groups by K;(R) o 7 (K(R)).

Now for each ideal I € R the projection p: R — R/I induces a map p.: K(R) - K(R/I). We consider
the associated fibration (see definition H.2.8) and we force by definition homotopy fiber (its connected
component at the base point) of such a fibration to be K(R,I). Then we have the desired long exact
sequence

o5 Kn(R D) 25 Kn(R) 25 Kn(R/I) S Knot(RI) > -

A reasonable construction of K(R) must give K;(R) = 7r;(K(R)), where on the left hand side are the
K-groups Ky, K1, Ky discussed in chapter 1, and also the definition of this functor K on arrows should
give us the classic K;(f).

One of Quillen’s solutions is the following: K; is the composition of functors

Ki: R~ GL(R) ww» BGL(R) w» BGL(R)" o m(BGL(R) ).

Given a ring R, we consider the classifying space BGL(R) of the group GL(R) (cf. definition 1.2.1).
Then from this space we can build another space “BGL(R)"” and take its homotopy groups. Building a
space BGL(R)* from BGL(R) is called plus-construction and it is described in this chapter, together
with proofs that K;’s obtained this way agree with what we saw in chapter 1.
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References. A nice exposition of the plus-construction is [Ber82a], and our overview loosely follows its §§4-9.

2.1 Perfect subgroups of the fundamental group

We are going to use some basic definitions and results from algebraic topology. They are collected
in appendix H, and the least standard section there is § H.4 discussing acyclic maps. In what follows,
to make life easier, all spaces are tacitly assumed to have homotopy type of connected CW-complexes
with finitely many cells in any given dimension. The spaces are pointed, but the base points are dropped
from the notation, e.g. 71,(X) actually means (X, ), etc.

Recall that in § 1.3 we discussed perfect groups, i.e. those satisfying P/[P, P] = P?® = H'(P,Z) = 0.
In particular, a homomorphic image of a perfect group is again perfect.

Proposition 2.1.1. If f: X — VY is an acyclic map, then m(Y) = m(X)/P, where P is some perfect
normal subgroup of 7ty (X).

Proof. Let F be homotopy fiber of f. Consider the fibration long exact sequence
7(¥) = i (F) 5 1 (X) 2 (V) - 710(F)

The map f, is surjective since 7o(F) = 1 (because Hy(F) = 0). Since H; (F) = 71 (F)® = 0, the group
711 (F) is perfect. The image of iy (F) under a homomorphism i, is again a perfect group P def imi,.
Finally, by exactness ker f, = imi, we conclude m (V) = m (X)/P. ]

Now let us consider a pushout Yy ux V; in the category of topological spaces. The Seifert-van
Kampen theorem tells us how the fundamental group of Yy ux V¥; is made: it is given by the “free
product with amalgamation”

f f _
Vux Vi <— Y% 711 (Y0) #, (x) 711 (Y1) (Vo) ker f,
foT r Tfo T r Tfo*
1 X (Y1) e 1 (X) Jker fi

If we assume f; to be an acyclic cofibration, then by proposition H.4.6 its pushout fi: Yo— Youx ¥y
is also an acyclic cofibration. By the previous proposition (V) = 1 (X)/ ker f1,. and

m (Yo ux V1) = m(Yo)/kerfy,.
Here kerf,, is the normal closure of the perfect subgroup fo, ker fi.

We will use later on this observation:
Proposition 2.1.2. If f;: X — ¥y is an acyclic cofibration, then the pushout ]71: Yo —» Youx Y is also
an acyclic cofibration with ker f,, the normal closure of the perfect subgroup fo. ker f1,. of 711 (Yo).
2.2 Plus-construction for a space
Given a space X, we can consider some perfect normal subgroup P < i (X) of the fundamental group.

We would like to come up with another space X* such that this subgroup P is killed in 51y (X*). Namely,
we are looking for a map X — X* such that ker(m(X) — m(X')) = P. Moreover, we ask that the
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homology groups remain the same: H,(X) = H.,(X%). The solution of this problem is easy: just glue
in some 2-cells to Kkill the generators of P <2 m11(X), and then glue in some 3-cells to save the second
homology group untouched. This construction changes the higher homotopy groups i,(X) in some
very nontrivial way, and this will be the main story! Here is a precise statement:

Theorem 2.2.1 (Quillen). Let P be a perfect normal subgroup of sty (X). Then there exists an acyclic

cofibration f: X — Xt with ker(m (X) LR (X*)) = P. If f': X - (X)) is another acyclic cofibration
with the same property, then there is a homotopy equivalence h: X* — (X*)/, making the diagram

commute

Xt ———— (X"

Proof of existence. First assume that P = i; (X) is a perfect group. We are going to attach 2-cells to
X, producing a space X', and then attach 3-cells to X’, producing a space X with /i; (X*) = 0.

e For each generator [a] of 1 (X) we attach a 2-cell along a. The resulting space X’ has m (X') =

0 (by the van Kampen theorem), and there is a Hurewicz isomorphism my(X’) = Hy(X')—cf.
theorem H.1.1.

Now consider the pair long exact sequence

- — Hy(X) = Ho(X') = Ho(X', X) > Hy(X) —
Since m (X) is perfect, Hy (X) = m (X)®® = 0.

By excision theorem, the group Hy(X’, X) is generated by the added 2-cells:

Hy(X', X) = Hy(\/ B* \/ S') =
A A

e We chose maps by: S> — X’ such that they induce an isomorphism on homology

(\V S?) — Hy(X') — Hq(X', X)

\/

We attach 3-cells by \/bs: \/, S> — X’ to form another connected space X*. It still satisfies
J (X+) = 0.
We need to check that the inclusion X — X is acyclic. By proposition H.4.7, it is enough to establish
H,(X*,X)=0:
o — Hyp (X, X) - Hp(X) — Hp(XT) - Hp(XT, X) —
By 5-lemma and excision, the induced map of exact sequences of triples
(\/ B%\/ &% pt) — (X', X', X)
gives an isomorphism H,(\/ B®, pt) =~ H.(X*, X):
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++——> Hn(V $%,pt) — Ha(V/ B®, pt) —— Hn(\/ B,/ §*) — Hn_1(V $%, pt) — -+

s Hp (X, X) —— Ho (X", X) ——— Ho (X, X)) ———> Hp g (X, X) —— -+

So H.(X*,X) =0.
Now for the general case, let X — X be a covering with m; (X) = P. By the previous case, there is an

acyclic cofibration f: X — X with (X ") = 0. We consider the pushout of f along X — X:

X+<iX

i

We can. apply proposition 2.1.2: we know that f: X — X7 is also an acyclic cofibration, and
ker(mmy (X) 25 (X)) = D. n

Remark 2.2.2. The construction with attaching 2-cells and 3-cells goes back to Kervaire [Ker69].

The uniqueness up to homotopy is deduced from the following:

Lemma 2.2.3. Let f: X —» Y and g: X — Z be two maps with f being an acyclic cofibration. Let
kerf, < kerg,. Then there exists a map h: Y — Z making the diagram commute. Moreover, any
two such are homotopic.

X m(X)
Yo--r--2z  m(V)---5----m(2)

Proof. We can assume that g is also a cofibration by replacing it with the associated cofibration (defi-
nition H.2.8). Now consider a pushout

Z ux vl 7 T(Z) %52 (x) T4 ( )<77T1(Z
. o
Y X Y<—X

f
Here ker 7* is the normal closure of g, ker f, by proposition 2.1.2, which is trivial by the assump-
tion. So f is a homotopy equivalence by proposition H.4.8, and so homotopy equivalence under X

(proposition H.2.5). Let ]771 denote its homotopy inverse under X.
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The map h def ]7_1 o7 is the desired homotopy, and by the universality of pushouts any map h should
arise this way. [

The main application of the plus-construction is the following. Recall from proposition 1.3.4 that
any group G contains the maximal perfect subgroup 3G, which is automatically normal.

Definition 2.2.4 (Plus-construction). Let P = Rty (X) be the maximal perfect subgroup in 711 (X). Then
by virtue of theorem 2.2.1, there exists an acyclic cofibration, which we denote by qx: X — X, such

that ker(m (X) 2%y (X*)) = P.
The plus-construction is functorial in the following sense.
Proposition 2.2.5. Given a map f: X — Y, there is a unique homotopy class of maps f*: X* — v+

making the following diagram commute

X 1%

e

Proof.
m (X)
K
qxx 7_(1 (Y)
Qs
mX)-———-—-—-—-—-=——-—-—-—-—-—-- >m(YT)
hy
We have
fikerqxy = fPm (X) < Pm(Y) = kerqys,

hence ker gx. < ker(qy. o f.), and we apply lemma 2.2.3. [ |

Proposition 2.2.6. For a product of two spaces one has

(X x V)T =Xt x V' with qxxy = (qx, qv).

Proof. This follows from the properties of 33 and sy:

Py (X x V) = POm (X) x m(Y)) = P (X) x Py (Y).
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Proposition 2.2.7. Let fo ~ f1: X — Y be homotopy equivalent maps. Then f; ~ f;": X* — V* are
homotopy equivalent as well.

Proof. Consider a homotopy h: X x Y — Y. Applying proposition 2.2.6, we get

XxI—" sy

(QXrQI)i lfw

X+Xl+r>y+

Now consider a fibration F - E & B. One would like to find assumptions under which the plus-

construction gives again a fibration FT AN SN Y (i.e. so that F* is homotopy fiber of p™). In this
case one says that the fibration is plus-constructive. For a complete discussion of plus-constructive
fibrations see [Ber82b], [Ber83], and [Ber82a, Chapter 4, 6, 8]. But let us sweep under the rug these
technical results by citing a couple of facts to be used later.

Fact 2.2.8. Let F - E — B be a fibration of connected spaces. Assume that B (B) = 1. Then
F+ — ET — B* is also a fibration of connected spaces.

This is easy to show, see e.g. [Ber82a, 6.4 a)]. ®

Fact 2.2.9. Consider a central group extension 1 - C - E — G — 1 where E is a perfect group.
Then BC — BE* — BG™ is a homotopy fibration.

This is less easy; see for this [Ber82a, 8.4] or [Ger73b]. ®

2.3 Homotopy groups of X*

For a given space X, we would like to get information about homotopy groups 7;(X*). The idea due to
Dror [Dro72], is to consider a Postnikov-like tower of spaces

o X 2 Xp oo Xs o Xp o Xy =X
The construction is performed in such a way that each step kills more homology:
H;(Xp) =0fori<n

(here and below we omit the coefficient ring Z in “H,(X)” to simplify the notation).

Consequently, taking the limit AX = lim X, one gets an acyclic space. In fact AX is homotopy fiber
of the acyclic cofibration X — X* produced by the plus-construction. This is explained in [Ber82a, §7]
and [Ger73a] but we will not really need it.

Now we describe inductively what these spaces X,, are. The starting space X is the covering of X
having fundamental group 71 (Xo) = Py (X) = Hi(X):

X, —— PK(H(X),1)
.

X K(Hy(X),1)

Similarly, X,+1 — X, is the pullback of the path fibration over the Eilenberg—-Mac Lane space
K(Hn(Xyn), n):
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Xn-H I PK(HH (Xn)' n) (21)

L

Xn K(Hp(Xn),n)

n

The morphism 6,: X,, — K(H,(X,),n) is given as follows. Recall that for any free chain complex
C, over a principal ideal domain there is a natural split short exact sequence

0 — Exth(H, 1(C.), M) - H"(C.; M) — Hom(H,(C.), M) — 0

(this is the “universal coefficient theorem” [May99, §17.3]). For instance, if we take C, = C,(X,) the
singular complex for X,, and M = H,(X), then by our inductive assumption H,_1(X,) = 0 the Ext
vanishes, and remains an isomorphism

Hom(Hp(Xn), Hn(Xn)) = H"(Xn, Ha(X0)). (2.2)
Further, there is a natural isomorphism [May99, §22.2]

Hn(xn;Hn(Xn)) = [anK(Hn(Xn)'n)]' (2.3)

where [X,, K(Hn(Xn), n)] denotes the set of homotopy classes of maps X, —» K(H,(Xn), n). Now we
can take the composition of (2.2) and (2.3):

1Hn(Xn) Hom(Hp(Xn), Hn(Xn)) = H"(Xn; Hn(Xn))
\ " [;(:, K (Hy (Xn), )]

The image of 1y, (x,) under these maps is by definition 6,: X,, — K(Hn(Xy),n). It is defined up to
homotopy. However, since X, is, by definition, homotopy fiber of 6,,, changing 8, within its homotopy
class changes X, 1 within it fiber homotopy class over X,. Hence X, is unique up to fiber homotopy
equivalence over X, and the construction is functorial up to fiber homotopy.

The construction is inductive and uses at each step the fact that H; (Xn) =0 for i < n. We check it
inductively. At each step there is a homotopy fibration

K(Hn(Xn),n —1) = Xn41 — Xn
We apply the Hurewicz theorem (H.1.1). The space K(H,(X,),n —1) is (n — 2)-connected, so
Hy—1(K(Hn(Xn), n = 1)) = a1 (K(Hn(Xn), n = 1)) = Hp(Xn).
Further, 7, (K(Hp(Xn), n — 1)) surjects to Hy(K(Hn(Xn), n — 1)), thus the latter is 0.

Ho(Xn), i=n-—1

Hi(K(Hp(Xn),n — 1)) = { 0, otherwise.

Denote K(H,(X,),n —1) by K. We use the Serre exact sequence (proposition H.3.3). In this case
H;i(Xn) =0 for i < n by the induction hypothesis and H;(K) =0 for j < n — 1.

Hon_9(K) — +++ — Hy(K) = Hp(Xp41) = Hn(Xn) = Hn_1(K) — -+

The last arrow is an isomorphism, hence Hy (Xn41) = O. [ |
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We can apply fact 2.2.8 to homotopy fibrations X, 1 — X, 5, K(Hn(X5),n) to get new fibrations

XS — XT - K(m(XH),1),
X1 = Xt - K(Hn(Xn),n) forn > 2.

n

Let us look at the corresponding homotopy long exact sequences.

e For n =1 we have

ol o m(X)) S mXt) o1 m(X)) > m(XT) S m((Xt) -1

So we deduce m(Xy) = 1, and m (X, ) = m(X*) for i > 2. The Hurewicz theorem gives an
isomorphism 715(X; ) = Hy(X») and a surjection 7s(Xs) — Hz(X»).

e For n = 2 we have a short exact sequence

o - (X ) S (X ) = 1o m(XS) - m(XS) — Ha(Xe) —» (X5 » 1

Here 5(X, ) — Hy(X2) can be identified with the Hurewicz isomorphism as above, and we have
m(X5) = m(X5) = 1. Again by Hurewicz m3(X5) =~ Hz(X3) and 7, (X5) — Hi(X3).

For i >3 one has m;(X7) = m(Xp) = m(XH).
e And so on..

It is clear how one proceeds by induction in this manner to conclude that for n > 2

0 i<n
(YFY — , ,
7 (X7) { NI 24)
70 (X)) = Hp(X5),

71 (X ) = Hnpt(Xn).

2.4 Higher K-groups of a ring

Now we are going to apply the construction from the previous section to the classifying space X = BG
of a group G. In this case the calculation above gives

G/TG, i=1,

7i(BGY) = { H((BG)), i>2, (25)

Take G = GL(R). We have 8G = E(R), and hence m (BGL(R)") =~ L(R)/E(R) = Kj(R). Now
from the definition of X, we see that it is the space BBG, hence 7ty(BGL(R)") =~ Hy(E(R), Z). We know
that the latter is Ky(R). This motivates the following

Definition 2.4.1. For a ring R the higher K-groups are given by
def + .
Ki(R) = m(BGL(R)™) fori > 0.
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We would like to describe K3z(R), which was not defined before. Recall that we have a group
extension
0 - Ky(R) - St(R) - E(R) -1

This is a universal central extension, hence H;(St(R),Z) = Hy(St(R),Z) = 0. We apply fact 2.2.9 to
get a homotopy fibration
BKy(R) — BSt(R)" — E(R)™"

The fibration long exact sequence gives immediately 71;(BSt(R)*) =~ m(BE(R)Y) for i > 3. The
plus-construction on BSt(R) Kills its fundamental group since St(R) is perfect itself, so BSt(R)™ is a
1-connected space. The Hurewicz theorem gives an isomorphism st (BSt(R)") =~ Hy(BSt(R)"). The
latter is Hy(BSt(R)) = 0, since the plus-construction preserves homology. Again by Hurewicz we have

7t5(BE(R)") =~ 7t5(BSt(R)") =~ Hs5(St(R), Z).
Finally, 7ts(BE(R) ') = 7r35(BGL(R) ") by the following

Lemma 2.4.2. One has
i (BG") = m(BBGT) fori=2.

Proof. Recall that (BG), can be identified with BBG and then use (2.4). |

We conclude that
K3(R) = H3(St(R),Z).

Remark 2.4.3. For a topological approach to the theory of central extensions of a perfect group see [Ber82a,
Chapter 8] and [Woj85].

The plus-construction may seem strange: we took BGL(R), then modified it by gluing 2-cells and
3-cells to obtain something called BGL(R)™, calculated its homotopy groups, and st; (BGL(R) ™) happens
to be the same as K3 (R) while 7o(BGL(R) 1) is Ko(R) as defined before. So why we take this particular
extrapolation of lower K-groups? It all may seem puzzling at first.

From the isomorphism m,(BG") =~ H,((BG),) for n > 2 we get a recipe of computing K;(R).
e For i =1 we already saw that K;(R) =~ H;(BGL(R)).
e For i =2 let (BG)y be homotopy fiber of the map BGL(R) — K(K4(R),1):

(BG)s — PK(Ki(R),1)
T
BGL(R) — K(K1(R),1)
Then KQ(R) = HQ((BG)Q)

e For i = 3 consider homotopy fiber

(BG)s — PK(K2(R),2)
L
(BG)2 — K(K2(R),2)
And we have K3(R) = H3((BG)3).
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e And so on...

One can think of the description above as of an inductive definition of higher K-groups that does
not mention explicitly the plus-construction. This may look more natural than the plus-construction
itself.

2.5 Quillen’s results

Let us mention one complete calculation of higher K-groups (one of the few known!).

Example 2.5.1. Quillen introduced the plus-construction in order to calculate K;(F,) for finite fields Fq
(strictly speaking, before the higher K-groups were defined). These are the following cyclic groups:

i 0 1 2 3 4 5 6
Ki(Fq): zZ Z/(q —1) 0 Z/(@*~1) 0 Z/(@*~1) 0
K()(Fq) ~ 7,

Kyi(Fq) =0 fori>0,
Koi1(Fq) = Z/(q' —1)Z fori > 0.

Of course this is clear for Ky and K;. For K, of a field there is also a nice description, due to
Matsumoto (see e.g. [Ros94, Theorem 4.3.15]; the original paper is [Mat69]):

For any field F the group Ky (F) is the free abelian group (written multiplicatively) on symbols {u, v}
for u, v e F* modulo relations

a) {utug, v} = {uy, v} - {ug, v} and {u, vivo} = {u, v} - {u, vo}.

b) {u,1—u}=1foru+#0andu #1.

One sees that from these relations follow automatically

¢) {u,—u} = 1. Indeed, from a) and b)
{u,—u}={ul-u}-{ful-uy'={wit—-ut} =1

d) {u,v} = {v,u}"'. Indeed, from c)

{u,v}-{v,u} = {u,—u} - {u,v} - {v,u} - {v,—v} = {u,—uv} - {v,—uv} = {uv, —uv} = 1.

Remark 2.5.2. Observe that these are the relations that e.g. Hilbert symbols satisfy (see p. 11):

W (5) = () (5°) ama (%) = () ()
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Assuming the (difficult) Matsumoto’s theorem, we can calculate Ky(F,) for any finite field F,. Each
element of Ky(F) is represented by a symbol {x,y} for some x,y € F;. Let a be the generator of
the cyclic group Fy. Then {x,y} = {a™,a™} for some m and n. By bilinearity property a), the latter
equals to {a,a}™". By property d) one has {x,x}?> = 1 for any x. If m and n are not both odd, then
{a,a}™" = 1. Otherwise, we have

{a™,a"} ={a,a}™ = {a,a}.

If the characteristic is 2, then {a,a} = {a, —a} = 1 by property c).
If the characteristic is odd, by a simple counting argument there exists a pair of odd numbers m and
n such that a”™ =1 — a™. Indeed, consider two sets

x & {a" |nodd} and Y &f {1 —a™ | m odd}.

Observe that [X| = |Y| = q—gi. The set X contains all the non-squares in Fy. For the second set

1 ¢ Y, so it is not possible that in Y are only squares and X n Y # . This means {a,a} = {a,a}™" =
{a™,1 —a™} =1 by property b).
In either case, the symbols are trivial, and we conclude that Ky(F,) = 0.

The calculation of higher K-groups of I, is more difficult. The original Quillen’s paper is [Qui72],
and an exposition can be found in [Ben9s, vol. II, §2.9]. A

Now we state some important properties of K-groups K;(Or) for a number field F. The proofs are
very nice and interesting, but they use an alternative definition of higher K-groups via the so-called
Q-construction. Discussing this would lead us a bit too far from the main story. We just briefly mention
that, starting from the category R-Proj io of finitely generated projective R-modules, one can build from

it another category QR-Proj o then for the latter one can construct the classifying space BQ R-Proj fg
(this is similar to taking the classifying space BG of a group G).

Theorem 2.5.3. Let R-Proj fg the the category of finitely generated projective R-modules. There is a
homotopy equivalence (natural up to homotopy)

BGL(R)" — Q(BQR—fProjfg),
where Q denotes the loop space functor (taken at the point 0 € BQR-Proj io coming from the zero
object).

This means that BGL(R)* carries some extra structure: we can multiply loops, and this makes
BGL(R)*" into an H-group. It will be important in chapter 3. In fact, BGL(R)" is an infinite loop
space—see [Ada78, Chapter 3] and [Ber82a, Chapter 10].

This suggests an alternative definition

Ki(R) < 7.1 (BQR-Proj ),

which actually works for Ky—unlike the plus-construction that ignores Kj.
A brief discussion of the Q-construction is included in appendix Q. It will not be used in the main
text, but it may be interesting for understanding what it is all about.

Now we list some results that are proved using the Q-construction.

Theorem 2.5.4 (Localization exact sequence). Let 2l be a Dedekind domain with field of fractions F.
Then there is a long exact sequence

- = Kt (F) = [ [ Ki@/p) = Ki(®) = Ki(F) — -+
pcA

where p runs through all maximal ideals.

31



This is [Qui73b, Corollary p. 113]. ®
In particular, if 2l = Of is the ring of integers of a number field F, then Or/p are finite fields. Quillen’s

calculation (example 2.5.1) tells that K;(Or/p) are finite cyclic groups for i > 0. We can tensor the long
exact sequence with Q, resulting in a long exact sequence

= Kint(F)©@Q— [ ] Ki(Op/p) ®Q — Ki(Op) ®Q — Ki(F) @ Q — -
~—_—

pcOr -0

Hence we have
Corollary 2.5.5. Let F be a number field. Then fori > 2
Ki(Or) ®Q = K;(F) ® Q.
The following is is the main result of [Qui73a]:
Theorem 2.5.6. Let F be a number field. The groups K;(Or) are finitely generated for alli = 0,1,2, ...

Corollary 2.5.7. Let S be a finite set of prime ideals in Op. Then the groups K;(Or;s) are finitely
generated. Their ranks are given by

rk Ko(Or,s) =1,
rk K1(Ops) = |S|+r1 +ry —1,
rk Ki(Op,s) = rk Ki(Of). (i >2)

Here Ors is the ring of S-integers
Ops € {xeF | |x|, <0 forall p¢ S} 2 Of.

For i = 0 we know that the S-class group is finite; for i = 1 the structure of (9;3 is given by the
“Dirichlet S-unit theorem” (cf. theorem 1.2.14 and [Neu99, §I.11]):

X o p#S+ri4ro—1
Ops=7Z TR @ pp.

Proof. We have the following variation of the localization exact sequence:

5 Hp Ko(Op/p) —— Ko(Of) —— K2(Ofp,s) >

<—> Hp Ki(Op/p) —— Ki(Op) —— K4(Ops) —— - -~

We know that K;(Op/p) are finite cyclic groups for all i > 0 and zero for even i > 0 (example 2.5.1),
so the maps K;(Or) — K;(Ors) have finite kernel for i > 0 and also finite cokernel for i > 1. This
means that K;(Ors) are finitely generated. Moreover,

rk K;(Or) = rk K;(Op,s) fori > 1.
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We just describe in a couple of words how Quillen proves theorem 2.5.6.
Let V be a vector space of finite dimension n. Then its proper subspaces 0 ¢ W < V form a partially
ordered set by inclusion. Any partially ordered set can be viewed as a small category with arrows

!
Hom(W, W’) déf{ ;’ wé %,’

As explained in § Q.3, for a small category one can build its classifying space. In this case the
simplicial set structure is clear: the p-simpleces are the chains of proper subspaces

oeWoecW W, V.

Denote the geometric realization by . We assume = ¢ when n < 1. The following result is
stated in [Sol69] and explained also in [Qui73a, Theorem 2]:

Theorem 2.5.8 (Solomon-Tits). Let n > 2. The space has the homotopy type of a bouquet of
(n — 2)-spheres. In particular,

~ .~ . | afree Z-module, i=n -2,
H(v}z) = { 0, otherwise.

So the following definition makes sense

Definition 2.5.9. Let V be a vector space of dimension n. The Steinberg module st(V) of V is the
GL(V)-module given by the natural action of GL(V) on H,_s((V}Z). For n = 1 we let st(V) to be Z
with the trivial action of GL(V).

As we mentioned, K;(Of) can be defined as homotopy groups of the classifying space BQ Op-Proj i
For brevity let us denote the category QOp-Proj fo simply by Q. We can consider a filtration by subcat-
egories by the rank of projective modules

QOCQ1CQ2C"'CQ=UQn-

n=0
Here the category Q is trivial.

The following is [Qui73a, Theorem 3

Theorem 2.5.10. For n > 1 the inclusion Q ,_1 € Q , induces a long exact sequence

-+ ——> Hi1(BQn-1; Z) — Hi4+1(BQn; Z) — [ [ Hi+1-n(GL(Py), st(Va)) )

<—> Hi(BQn-1;7Z)
def

where P, represent the isomorphism classes of projective Op-modules of rank n, and V, = P, ®o, F.
(Note that rk P, = dimp V,.) In particular, the homology groups stabilize: the morphism

Hi(BQn;Z)

1o Hi—n(GL(Py), st(Va)) —— -

Hi(BQn-1;:Z) —» Hi(BQ n; 7Z)
is surjective for n > i and injective for n > i + 1.

Observe that a runs through a finite set—there are finitely many projective Or-modules of fixed
rank, essentially by finiteness of the class group CI(F).
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Now one is ready to prove that K;(Or) = m+1(BQ) are finitely generated. In fact, BQ is an an
H-space, in particular it is a nilpotent space, hence the condition that ;(BQ) is finitely generated is
equivalent to H;(BQ;Z) being finitely generated—see [MP12, Theorem 4.5.2]. It is enough to show that
H;(BQ n;Z) is finitely generated for all i and n, and then we are done since H;(BQ;Z) =~ H;(BQ n; Z)
for n big enough. The key fact is the following:

Claim. H;(GL(P),st(V)) is finitely generated for each finitely generated projective Op-module P and

V< Py, F.

This comes down to finiteness results for arithmetic groups that are proved in [Rag68]; namely, if
I' is an arithmetic group and M is a ['-module finitely generated over Z, then the group cohomology
H{(T', M) is finitely generated. We refer to [Qui73a] for details on reduction.

Finally, one uses induction on n. The basic case is the trivial category Q o:

Z, i=0,
Hi(BQO;Z):{ 0, i>0.

The induction step is provided by the long exact sequence from theorem 2.5.10.
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Chapter 3

Rational homotopy: from rk K.(Of) to
dim QH*(SL(Of),R)

This chapter is devoted to reducing our problem about the ranks of K;(Of) to calculation of cohomology
of SL(Of). Recall the definitions from § 1.2. For a ring R we can consider the group GL(R). We have
[GL(R), GL(R)] = E(R), and in case R = O by Bass—Milnor-Serre E(Or) = SL(Of) (theorem 1.2.5).
The plus-construction described in the previous chapter gives K-groups

Ki(Op) ' 7 (BGL(OF) ") = m(BSL(OF) ") fori>2
—the last isomorphism is because SL(Of) is the maximal perfect subgroup of GL(Or); cf. lemma 2.4.2.
It is always easier to deal with homology instead of homotopy groups. Hurewicz homomorphism

going from sr; to H; (cf. theorem H.1.1) yields

Ki(0r) & 7, (BGL(Or) ) ¥ H;(BGL(OF)*; Z)
Tt

K;i(Op) = m(BSL(Op)*) ™ H;(BSL(OF)™; Z)

=

H;(BGL(Of); Z)

H;i(GL(OF), Z)
H;(BSL(Or); Z) = H;

(SL(Of),Z)  fori=2.

e e
Wz e

Here on the right side “H;(GL(Or),Z)” denotes the group homology (with trivial action of GL(OF)
on Z). The groups K;(Of) are finitely generated (theorem 2.5.6) and we are interested in the ranks of
K;(OF), so we can look at the dimensions of Q-vector spaces 71;(BGL(Or)™)®z Q. A classical theorem by
Cartan and Serre says that if X is a homotopy associative H-space, then the Hurewicz homomorphism
induces an injection m,(X) ®z Q — H.(X;Q) whose image is the subspace PH,(X;Q) of primitive
elements in H,(X; Q). The rest of this chapter is devoted to explanation of this result. In our situation
this means that

Ki(Op) X7z Q Ele(GL(OF), Q),
Ki(OF) ®z Q %le(SL(OF),Q) fori > 2.

Example 3.0.11. For i = 1 we have the first homology group Hi(GL(Of), Z), which is isomorphic to
the abelianization

GL(OF)® = GL(Or)/[GL(OF), GL(OF)] = GL(Of)/SL(OF) = O

The primitive elements in H; is the whole H; because of the grading reasons. We know that
Ki(Or) = Of, and we know that the latter has rank rq + ro — 1. From now on we focus of K; with
i>2 A
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The point of passing from GL to SL is that it is (psychologically) easier to work with semisimple
groups instead of reductive. We also replace the coefficients with R, since in next chapter we will use
a geometric approach to the group (co)homology. We conclude that the ranks can be obtained as

rk K;(Or) = dimg PH;(SL(Or),R) fori > 2.
Dually, we can take the indecomposable elements in cohomology:
rk K;(Or) = dimg QH!(SL(Or),R)  fori > 2.

So the key to the computation is the real cohomology of SL(Of). All the hard work on this will
follow in the subsequent chapters.

References. All definitions and facts about Hopf algebras come from the seminal paper by Milnor and Moore
[MMG65b]; there is also an appendix to [Qui6t9] containing a nice summary. The Cartan-Serre theorem probably
appears first in [MMG65b, p. 263]. A modern exposition of this is [FHT01, Chapter 16]—with a simplifying hypothesis
that the space is simply connected—and [MP12, Chapter 9].

A discussion of the H-space structure on BGL(R)* can be found in [Lod76].

3.1 H-spaces

Definition 3.1.1. Let (X, e) be a pointed topological space. We say that X is an H-space if there is
a continuous map p: X x X — X (multiplication) such that the following diagram is homotopically
commutative:

1, A
xS x o x & x
s ~

S

X
po(lx,e) ~1x ~po(e 1x).

We say that H is homotopy associative if the following diagram is homotopically commutative:

XxXxXi%XxX

X x X ——>X

po(lx x p) = po(px1y).
(“H” commemorates Heinz Hopf.)

Example 3.1.2. Every topological group is an H-space. For instance, the circle S!, can be viewed as
the subset of complex numbers having norm 1:

S't={zeC | |z|=1}.

So S! comes with a natural multiplication, making it into a Lie group, and hence a homotopy
associative H-space. Similarly S° and S° arise the same way from real numbers R and quaternions
H. The sphere S” is made from octonions ©; the multiplication in © is non-associative, but S’ is still
an H-space. It is a famous result of Adams [Ada60] that S°, S, S%,S” are the only spheres carrying an
H-space structure (cf. [May99, §24.6]). A
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Example 3.1.3. A typical example of a homotopy associative H-space is the loop space Q(X, *) of a
pointed space (X, ). The multiplication is the natural multiplication of loops at the base point, and the
identity is the constant loop at the base point. We have mentioned in § 2.5 that BGL(R)™* is a loop space,
hence it is a homotopy associative H-space. A

One can give another description of an H-space structure on BGL(R)*, coming from an explicit
“direct sum” of matrices. The following “checkerboard map” is a homomorphism

@: GL(R) x GL(R) — GL(R),

Ay, 1=20—1orj=2m—1,

(A@B)ij=4 B, i=20orj=2m,
0, otherwise.
Schematically,
® 0 € 0 ©
e & o ® © © 0 ©® 0 © 0
e & o ® © 0 .|e 0 e 0 e
e 0 ¢ 0 o

Via the plus-construction this map GL(R) x GL(R) — GL(R) induces a map

BGL(R)* x BGL(R)* —— B(GL(R) x GL(R))* % BGL(R)*
Here the first map is some fixed homotopy equivalence, since we know that (cf. proposition 2.2.6)
B(GL(R) x GL(R))* ~ (BGL(R) x BGL(R))* ~ BGL(R)™ x BGL(R)™.

One can check that this operation makes BGL(R)™ into a homotopy associative and homotopy
commutative H-space. We refer to [Lod76, §1.2] for this verification.

3.2 Hopf algebras

We make a brief summary of needed theory of Hopf algebras. The main reference is a seminal paper
[MMG65b], and a modern and concise exposition is [MP12, Chapter 20, 21, 22]. The article by Milnor
and Moore is written very well, so we do not reproduce any proofs that can be found there.

From now on k denotes the ground field. By V, or simply V we denote a graded k-vector space

Ve = @ Vi

n=0

The induced grading on tensor products is given by (U ®; V), =Y, ti=n
There is a natural graded commutativity isomorphism (“twisting”)

Ui @ V.

T-U®,V — V& U,
URQV (_1)degu-degvv®u'

We denote by Vv the dual graded vector space with V def Homyg(V,, k). Graded k-vector spaces

form a “symmetric monoidal category” (cf. [ML98, Chapter XI]) in the obvious way.
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We will just identify in our diagrams

(U V)@ W=U (Ver W),

ERQpVV=V®Lk.

Definition 3.2.1. We have two dual notions of algebra and co-algebra over k.

An algebra is

a graded vector space A, coming with

a product p: A ®, A — A and
a unit n: k - A,

(Here and everywhere all tensor products are graded and everything is compatible with gradings.)

A coalgebra is

a graded vector space A, coming with

a coproduct A: A - A®, A and
a counit e: A — k.

We require that the following diagrams commute:

id®n n®id

A@kkHA@)kA%k@kA

N

Further,
it is called associative

if the following diagram commutes:

id®
ARAR A= A®LA
p®idl lll
AQrA—7 A
Moreover,

A is called commutative

if the following diagram commutes:

ARp A

ARk A0, A b, A

o

\ it is called coassociative

AR AR AR A, A
A@idT \LA
AR A X A

A is called cocommutative

AR A

T A

N
A

A®y A
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It is clear how to define the morphisms f: A — B in the category of algebras (coalgebras) by
requiring that they preserve the structure.

ApA— A E—2s A
f®fl \Lf fl lf
B@kB T B kT)B
A— o AR A AL g
fl lf@f fl lf
B ™ B® B B?k

For two algebras A and B the product A ®; B has A ®; B as the underlying graded vector space.
The unit is the obvious map Ny ® ng: k — A @ B. The product is defined by

A®r BRp A® B2, A @, A®, By B 22, A®, B

Dually, for coproducts in coalgebras

d®T®id
—_—

A®y B 2282, A, AQy BRy B A®rB®y AR B

Definition 3.2.2. We say that A is a Hopf algebra (bialgebra), if

1. (A, p, n) is an associative algebra.
2. (A, A, €) is a coassociative coalgebra.
3. A:A—> A®r A and €: A — k are morphisms of algebras.

4. pn: A®r A — A and n: k — A are morphisms of coalgebras.

We say that A is a quasi-Hopf algebra, if we drop the associativity and coassociativity condition. We
say that A is connected if n: K = Ay is an isomorphism (equivalently, if €: Ag = k is an isomorphism).

Remark 3.2.3. If we just assume that e: A — k is a morphism of algebras and n: k — A is a morphism of
coalgebras, then the fact that A: A - A®, A and p: A ®, A — A are morphisms of (co)algebras is expressed by
commutativity of the following diagram:

A®kA<&A®kA®kA®kA

e

A id @T®id

o

A®kAT®A>A®kA®kA®kA

Example 3.2.4 (The only we care about). Let X be a topological space. Then its homology has a natural
grading
Hy(X; k), Hi(X; k), Hy(X; k), . ..
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The diagonal map X — X x X induces a map H,(X; k) - H.(X x X; k), and then by the Kinneth
formula H,(X x X;k) =~ H.(X; k) ® H.(X; k), since we work over a field. It means that there is a
coproduct A: H(X; k) — H,(X; k) ®, H,(X; k).

If we further assume that (X, e) is a homotopy associative H-space, then there is also a product
n: Ho(X; k) ® Ho(X; k) — H.(X; k) induced by the multiplication X x X — X. The inclusion {e} — X
induces a unit n: k - H,(X; k) and the projection X — {e} induces a counit €: H,(X; k) — k.

With all this, for a homotopy associative H-space X the homology H,(X; k) carries a cocommutative
Hopf algebra structure. It is connected whenever X is connected. A

Assume a Hopf algebra A consists of finite dimensional spaces A, in each degree n (note this does
not mean that ®,.,A, is finite dimensional). Then A" is also a Hopf algebra in an obvious way
(u*: AY —> AY ®, A becomes a coproduct, n*: AY — k becomes a counit, etc.).

Example 3.2.5 (The only we co-care about). For H,(X; k) with each Hy(X; k) of finite dimension, the
dual algebra is the cohomology algebra H*(X; k) (where the multiplication is the usual cup-product).
Indeed, recall that the cup-product

—: HP(X; k) ® HI(X; k) — HPHI(X; k)

is induced by the diagonal map A: X — X x X.
If X has an H-space structure, then the multiplication p: X x X — X induces a co-multiplication in
cohomology p*: H*(X; k) - H*(X; k) ® H*(X; k). A

In what follows we will work with topological spaces with each H, (X; k) having finite dimension. It
is a very non-trivial fact mentioned in § 2.5 that BGL(Op)™ is such a space.

Definition 3.2.6. For the counit €: A — k the graded subspace IA f erc is called the augmentation
ideal of A.
0-IA—>ASEk

(Note that € o p = idg, hence A ~ JA® k.)
The space of indecomposable elements, denoted QA, is given by the exact sequence

IALIAL IA - QA -0
Definition 3.2.7. For the unit n: k - A we denote JA 4f coker n.
ELA-JAS0

(Note that € o = idg, hence A =~ JA@ k.)
The space of primitive elements PA is given by the exact sequence

0—>PA—JAS JA®JA
Observe that actually JA =~ IA.

From the definitions we see that if we have a Hopf algebra A, with each A, of finite dimension,
then
P(AY) =~ (QA)Y and Q(AY) = (PA)".

For the tensor product A ®, A we have a decomposition

AA = (R@JA) Rk (RDJA)
(kRrk)®(JARLEk) @ (k@ JA) ® (JAR®L JA).
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Further, the following diagram commutes:

N

(id®e€)oA(z) =z = (e ®id) o Az).

So for every element z € JA the coproduct is of the form

Alz)=z®1 +Zz(1) Rz?% 1@z,
———
EJAREJA

and if z is primitive, then we have
Alz) =z®1+1®z.

We could take this as the definition:

PAY (ze A|A(z) =z®1+1®z}.
Remark 3.2.8. Note that taking indecomposable or primitive elements is consistent with tensor products:

I(A®y B) = (IA® 1) ® (14 ®r IB),
P(A®y B) = (PA®y, 1) ® (14 @« PB).

Example 3.2.9. Consider an exterior algebra
A= A(xiuxiz'xis' . )

over a field k, freely generated by elements x;,, x;,, xi,, . . . of degrees iy, iy, i3, ... This is anticommutative
(ie. x Ay = —y A x), but if we assume that the degrees i, are odd, then it is graded commutative in the
above sense (i.e. x A y = (—1)d91deay y A x),

There are no relations between different x;,, hence the space of indecomposable elements QA in
degree i, is one-dimensional generated by x;,. If we take tensor products of such algebras, then the
dimensions of spaces Q*A sum up. For instance, consider

A = NA(x5,X9, -+, Xs4it1,-- .)®”1 ®r A(x3,X5, ..., X0i41, - - .)®”2.
Then we have
i 2 3 4 5 6 7 8 9
dim, Q'A: 0 ro 0 ri+ro 0 ro 0 ri+ro
This is a rather dull example, but it will be very important for us. A

Now we cite some results from [MMG65b] that hold for chark = 0. The point is that for a Hopf
algebra, being both algebra and co-algebra imposes severe restrictions on the structure.
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Theorem 3.2.10. Let A be a connected quasi-Hopf algebra over a field of characteristic zero. Con-
sider the composite morphism
PA > JA~IA - QA

Then

e PA — QA is a monomorphism if and only if A is associative and commutative.
e PA — QA is an epimorphism if and only if A is coassociative and cocommutative.

e PA — QA is an isomorphism if and only if A is a commutative and cocommutative Hopf
algebra.

This is [MM65b, Proposition 4.17] or [MP12, Corollary 22.3.3]. ®

For a graded vector space V we denote by A(V) the corresponding free commutative algebra
generated by V. One has
AV) =AMVT)@P(V7),

where A(V7) is the exterior algebra generated by the the subspace of V concentrated in odd degrees,
and P(V1) is the polynomial algebra generated by the subspace concentrated in even degrees.

Theorem 3.2.11 (Leray). Let A be a connected, commutative, and associative quasi-Hopf algebra
over a field of characteristic zero. Let 0: QA — IA be a morphism of graded vector spaces such that
the composition QA 5I1AS QA is the identity, where 7 is the quotient map. Then the morphism of
algebras f: A(QA) — A induced by o is an isomorphism.

This is [MMG65b, Theorem 7.5] or [MP12, Theorem 22.4.1]. ®

3.3 Rationalization of H-spaces

We are going to show the Cartan—-Serre theorem. Namely, for an H-space X it characterizes its homo-
topy groups 7, (X) up to rationalization, i.e. 7t.(X) ®z Q. This situation occurs very often in algebraic
topology when one is interested in passing from coefficients in Z to coefficients in Q, or in general to
some localization of Z—just because it is difficult to cope with the torsion part of homotopy groups.
The right way to do that is to modify the topological space X itself so that the homotopy groups change
from 71, (X) to 7, (Xg) = 7. (X) ®z Q. We quickly summarize the needed theory following [MP12].

Given an abelian group A, we can take its rationalization, which is simply the Q-vector space

Ag & a ®z Q. There is a canonical map A — Ag given by a — a ® 1. This satisfies the following

universal property: any morphism f: A — B to another Q-vector space B factors uniquely through Ag:

\ 7
s

/o~

o3

One would like to consider such a rationalization for nilpotent topological spaces.

B

Recall that there is a natural action of 71y (X) on the higher homotopy groups s, (X). Namely, if we
have a loop a: I — X representing an element [a] € 71(X) and a map f: (S", *) — (X, ) representing
an element [f] € 7, (X), then in the following diagram there exists a homotopy S" x I — X making it
commute:
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S"x {0} U (s} x T L% x
ey
STx[ s

That is, h(x,0) = f(x) and h(*, t) = a(t). The based homotopy class of hy: (S", ) — (X, *) depends

only on the classes [a] and [f], hence we can put [a] - [f] &« [h1]. This is the action of 1y (X) on 7, (X).

Definition 3.3.1. A space X is called nilpotent if the action of m(X) on 7,(X) is nilpotent. That is,
there is a finite chain of subgroups

{1} cGyc---cGyc Gy G =m(X),

where the quotient groups G;_1/G; are abelian and the action of m(X) on G;_1/G; is trivial.

Remark 3.3.2. Nilpotent spaces give the right setting for rationalization. To simplify things, some books just
assume that m; (X) = 0, however, this assumption is too severe for the applications we have in mind.

We will not need the theory of nilpotent spaces, since the only case that interests us is given by
H-spaces.
Example 3.3.3. If (X, e) is an H-space, then in the diagram above we can take homotopy
h(x, ) = p(a(t), f(x)).
We get

h(x,1)

I
=
°
=
ke
0
=
)

hence [a] - [f] = [f]. and the action of 711 (X) on homotopy groups 7,(X) is trivial for n > 1. Such a
space is called simple. In particular, any simple space is nilpotent. In particular, the action of 711 (X) on
itself is given by conjugation, so a simple space has abelian 7 (X). A

We assume from now on that all our spaces have abelian sry. This is harmless since we have in
mind only the H-space BGL(R)*.

Definition 3.3.4. We say that a nilpotent space Y is rational if the following equivalent conditions hold:
1. The homotopy groups m,(Y) are Q-vector spaces.
2. The homology groups ﬁn(Y; 7) are Q-vector spaces.

Assume that X is an H-space. Consider a map ¢: X — X to a rational space Xg, which satisfies the
following equivalent conditions:

1. The induced map on homotopy groups ¢.: 71, (X) — 7,(Xg) is a rationalization for n > 1.
2. The induced map on homology groups ¢, : IN{H(X; Z) - H, (Xq: Z) is a rationalization for n > 1.

3. The induced map on homology groups ¢, : ﬁn(X; Q) —» Hn (Xq:; Q) is an isomorphism.
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A map to a rational space ¢: X — Xp with these properties is unique up to homotopy and it is
called a rationalization of X. It satisfies the following universal property: for every map f: X — Y to
a rational space Y there is a unique (up to homotopy) arrow f making the diagram commute:

To justify this definition as it is stated here, we refer to [MP12, §6.1]. ®

Example 3.3.5. Consider the circle S'. We would like to describe the rationalization S},. First make a
trivial observation that Q is the following direct limit. Consider a sequence of multiplication by n maps

This obviously defines a directed system of abelian groups A, = Z with maps f, = n: A, — Ap1,
and it makes sense to consider the direct limit li_r)nAn, which is of course Q. Similarly we can consider
a sequence of maps S' — S! given by n: z — z" (viewing S' as a set of complex numbers z € C such
that |z| = 1):

sthstist St g,

On the fundamental group 1 (S!) = Z this induces multiplication by n maps
m(8') & m(sh) B m(s) B m(sh) S (st - -

So this is the same as the sequence of maps between Z considered above.

Recall the “telescoping” construction for direct limit of topological spaces [May99, §14.6]: for each
map fn: Xn — Xny1 we take the mapping cylinder My,, and we identify the copies of X, for My and
M;, _,. The result is a “telescope”

15

T

T3

1

XO X1 X2 XS X4

If X,, are CW-complexes, then it is an increasing sequence of CW-complexes
T1CT2CT3C---

(T, being the union of the first n mapping cylinders) which deformation retracts on X,. Hence the
direct limit is lim X, =1lim T,, = |J Th.
— —
In our case of S! this telescope | J T, gives some space S(b together with a map S' — Sé) (inclusion
of the base of the telescope). Now we have

Q i=1,

mi(lim S*) = lim 7;(S") = { 0, ix1
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We see that the map S! — S(é induces rationalization of sr;(S'). Similarly, one could check the
isomorphism H;(S!; Q) = Hi(S(l@; Q) using the fact that homology commutes with directed limits [May99,
§14.6]:

H;(lim S') = lim H;(S").
So the telescope gives the rationalization of S'. A

Observe that S! is an Eilenberg—Mac Lane space K(Z, 1), and its rationalization Sb is an Eilenberg—
Mac Lane space K(Q,1).

Theorem 3.3.6. For any abelian group A the rationalization of an Eilenberg-Mac Lane space K(A, n)

is given by the map
K(A,n) - K(A®; Q,n).

Observe that the crucial point in the construction of S@ was the multiplication by n map n: S! — S?,

i.e. the fact that S' is an H-space. Now let X be an arbitrary H-space with multiplication p1: X x X — X.
This gives a point-wise multiplication of maps f: S* — X, which is homotopic to the product induced
by the pinch map S" — §" v S™.

It follows that the product on an H-space induces addition in 77;(X):

[n(f.9)] = [f] + 9]
So the maps p,: X — X given by

a_n» def

x e x™ = ple, plx, p(x, -0 -))

n

induce multiplication [f] — n - [f] on m;(X). The multiplication u: X x X — X may not be associative,
but we just put brackets in the definition as we like.

X 1 X P2 X 1251 X 22 X

(X)) > m(X) 2 m(X) 2 m(X) S m(X) =

So we have the very same situation as with S', and we see the following

Proposition 3.3.7. For any H-space X the described telescoping construction gives the rationaliza-
tion ¢: X — Xg.

3.4 Cartan-Serre theorem

Now if X is a connected H-space, then the diagonal A: X — X x X induces a product on H*(X; Q), the
multiplication p: X x X — X induces a coproduct on H*(X;Q), and we have a commutative, associative,
connected quasi-Hopf algebra (it may be not co-associative and not co-commutative, depending on the
H-space).

From theorem 3.2.11 we know that A is isomorphic as an algebra to the tensor product of an
exterior algebra on odd degree generators and a polynomial algebra on even degree generators. The
cohomology of the Eilenberg—Mac Lane spaces K(Q, n) gives exactly exterior and polynomial algebras:
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Proposition 3.4.1. Let 1, € H*(K(Q, n); Q) denote the “fundamental class” represented by the identity
map K(Q,n) —» K(Q,n). The cohomology algebra H*(K(Q, n); Q) is

e the exterior algebra Q[i,]/12 on 1, if n is odd
(in particular, this shows that K(Q, n) = Sg),

e the polynomial algebra Q[i,] on t,, if n is even.

This is proved by induction on n using the path space fibration K(Q,n) - PK(Q,n+1) - K(Q,n +1).
See example H.3.4 or [tD0S, §20.7]. |

Assume now that X is a rational H-space such that its homology groups
Hi(X;Z) = Hi(X; Q)

are finite dimensional Q-vector spaces. The generators in each degree can be represented by maps
f: X - K(Q, n), and this gives

X_,HK(Q,n) X on xK(Q,nz,

K (X))

inducing an isomorphism on cohomology
H*(X;Q) S @ H*(K(7a(X), n); Q).
n

By our assumption that H;(X; Q) are finite dimensional, we can use the Kiinneth formula, and also
we can pass to an isomorphism of homology groups

H.(X;Q) 5 Q) H.(K(a(X), n); Q) = Ho(] [ K(a(X), n); Q).

Now observe that both spaces X and | [, K(512(X), n) are nilpotent and rational (cf. example 3.3.3),
and we should conclude that we have a homotopy equivalence

X~ [[K(m(X),n)

(e.g. from the universality of rationalization).

The rational homology H,(X;Q) is a cocommutative Hopf algebra, and we look at its space of
primitive elements PH, (X; Q). Since the primitive elements are defined by the comultiplication (coming
from A: X — X x X) and they do not depend on the multiplication (coming from the H-space structure),
we can replace X with the corresponding product of rational Eilenberg—Mac Lane spaces K(Q, n).

Observe that for products of spaces we have

lIe

7, (Y x Z) 7, (YYD, (Z),
PH.(VY x Z;Q) =~ PH.(Y;Q)® PH.(Z;Q).

Now for an Eilenberg-Mac Lane space K(Q, n) the Hurewicz homomorphism
h: 7,(K(Q,n)) - H,(K(Q,n); Q)

sends 11, (K(Q, n)) to the subspace of primitive elements (one checks this e.g. using the calculation
mentioned in proposition 3.4.1). Hence we have the following:
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Theorem 3.4.2 (Cartan-Serre). Let X be a homotopy associative H-space with finite dimensional
H,(X;Q). Then the Hurewicz homomorphism

h: m.(Xg) 2 1. (X) ®z Q - Ho(Xqg; Z) = Ho(X; Q)
is a monomorphism, and its image is the subspace of primitive elements.

Dually, if X is a homotopy associative and homotopy commutative H-space, then 7, (X) ®7 Q can be
identified with indecomposable elements in cohomology H*(X; Q) (see theorem 3.2.10).

With this we say goodbye to the homotopical methods, since now we know that all the remaining
difficulties are in computing real group cohomology H*(SL(Or), R).

A
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Chapter 4

Calculation of rk K;(Of) via the stable
cohomology of SLj,

Now we finally calculate the ranks rk K;(Or). In the previous chapter we established
rk K;(Or) = dimg QH'(SL(Of),R) (i > 2).

H*(SL(Or),R) is the cohomology ring of the infinite special linear group SL(Of) & lim SLn(OF).
Here R is viewed as an SL(Or)-module with the trivial action. “Q” means that we take indecomposable
elements. This suggests that one should look at cohomology for each SL,(Or) and then pass to the
limit. In fact cohomology of SL,(Of) is very difficult, but it stabilizes and becomes tractable as n — co.
This chapter is supposed to explain that. We take for granted certain property of stable cohomology
of arithmetic groups from [Bor74].

References. This chapter follows [Bor72] and [Bor74, §10-12].

4.1 The setting

Although SL, is the only thing we care about, let us fix slightly more general assumptions and notation.

e Let G be a semisimple linear algebraic group defined over Q. We will have in mind G = SL,/Q. In
general, if a group G’ defined over a number field F (e.g. G = SL,/F), then we take the restriction
of scalars G = Resp/g G'—see § A.2.

e The group of real points G(R) is a Lie group, and for our purposes we assume that G(R) is
non-compact and connected. For instance, this is the case for SL,,.

e Let I' © G(R) be an arithmetic subgroup inside G(R). We will have in mind I" = SL,(Z).

e Let K be a maximal compact subgroup of G(R)—cf. [Hel01, §VI.1, VI.2]. They are all conjugate.

For example, a maximal compact subgroup of SL,(R) can be identified with SO, (R), the subgroup
of matrices that preserve the standard bilinear form on R™:

and have determinant 1. In other words,

SOu(R) = {Ae SL,(R) |ATA=AAT =1}.
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For the complexification SL,(C), a maximal compact subgroup can be identified with the special
unitary group SU,, the subgroup of complex matrices that preserve the standard Hermitian form
on C™:

and have determinant 1. In other words,
SU, & {AeSL,(C) |ATA=AAT =1},
where { denotes the conjugate transpose. This group naturally contains SO, (R).

e The right cosets of K in G(R) form the symmetric space of maximal compact subgroups

x G(R)/K (recall that for any Lie group G(R) factor by a compact subgroup K c G(R) is
smooth). Endowed with a G(R)-invariant Riemannian metric, it is a complete symmetric Rieman-
nian manifold with negative curvature, diffeomorphic to Euclidean space.

e Let G(R), be a maximal compact subgroup of the complexification G(C) of G(R), such that

G(R), o K. Then X, def G(R)y/K is called the dual symmetric space to X, and it is compact.

The main example of this duality to keep in mind is the following:

G(R) X Xy
SLn(R)  SLn(R)/SOn(R)  SUn/SOn(R)
SL,(C) SL,(C)/SU, SU,

e We denote by g the Lie algebra of G(R) and by ¢ the Lie algebra of K.

SLg(R)z{(Z 2) |ad—bc=1}.

SLy(R) acts transitively on the upper half space o {ze C|imz > 0} by Mdbius transformations

Example 4.1.1. Look at a group

az+b
cz+d’

Z —

(This action is not faithful; usually one considers faithful action of PSLy(R) 51, (R)/{£I}.)
The stabilizer of i € ¥ is given by (‘Z Z) such that 4+% — i ie. ai + b = di —c, that is

ci+d

{(i Z) |a2+b2:1}:{<—cs(i)§£ 12‘2) |¢e[0,27r)}=SOQ(R).

This is the “circle group”, a maximal compact subgroup in SLy(R). It is not a normal subgroup, but
we still can consider the cosets X = SLy(R)/SO»(R). Since SOz(R) is the stabilizer of i and the action
is transitive, one has X = H.

Consider now the discrete subgroup I’ def SLy(Z) < SLy(R). It naturally acts on X, and we are
interested in the set I'\X. As we know [Ser73, §VII.1], a fundamental domain of the action of SLy(Z) on
¥ can be given by

{zeFC | |z| > 1, |Re(z)] < 1/2}.
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Imz

> Rez

Note that I'\X is not compact and it is neither a smooth manifold: the two points coming from i

and % + % are singular; in fact it is an orbifold (cf. [ALRO7]). The problem is that SLy(Z) has torsion;
we will go back to this in example 4.3.3. A

4.2 De Rham complex

Just to fix some notation which will be used in the subsequent chapters as well, we recall de Rham
cohomology of smooth manifolds.

Let M be a smooth manifold (of class 8*). We denote by Q4(M) the space of smooth real-valued
exterior differential g-forms on M. All these spaces form a graded R-algebra with respect to exterior
multiplication A:

(M) € P Qi (m).

q=0
We have de Rham differential (also called exterior derivative) d: Q*(M) — Q**+'(M):

df ' differential of f for f € QUM) = 8" (M),

d(anB) % (da) A B+ (—1)%a A (dB) for a e QI(M).
These differentials form de Rham cochain complex

0 QM) S QM) S QXM) — - --

that is, d od = 0. According to de Rham theorem, cohomology of the complex above is isomorphic to
the usual singular cohomology:

def closed g-forms ger ker(Q4(M 4, Qa+i(p
Hip (M) = tr Rer(©IM) = 21 (M) paas;w),
exact g-forms im(Qa-1(M) S Qa(M))

Remark 4.2.1. Let us recall the framework for de Rham theorem.
Assume that & is a sheaf on a smooth manifold M. An acyclic resolution of F is a long exact sequence of
sheaves

0F 5D 4t 4 2.

such that H(M, A!) = 0 for all g > 1.
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Then the abstract de Rham theorem states that if for such an acyclic resolution one takes the complex of
global sections

0 1
0 — F(M) 2 A%M) 245 gt M) 24 42M) - - -

then HY(M, &) = Hi(A*(M),dy,), where on the left hand side is the standard sheaf cohomology.
If & = R is the sheaf of locally constant functions, then de Rham complex gives an acyclic resolution

O—>R—>QO—)91—>QQ—>~~~
Similarly, singular cohomology corresponds to another acyclic resolution of R

O—)K—)SO—>51—>S2—)---

(84 is the sheafification of the presheaf of singular g-cochains U — S(U) o Hom(singular g-chains on U, R), and
the morphisms are induced by the usual simplicial differentials).
Putting together the two resolutions of R, we get

HY(M;R) € HY(S*(M)) = HY(M,R) = HY(Q*(M)) € Hg(M).
Details on this can be found e.g. in [Wel08, Chapter II] or [War83, Chapter 5].

We recall that a sheaf & on a manifold M is soft if for any closed subset S = M the restriction F(M) — F(S)
is surjective. Further, a sheaf & is fine if for any locally finite open cover {U;} of M there exists a subordinate
partition of unity, that is a family of sheaf morphisms n;: & — & such that

2. n:(Fx) = 0 for all x in some neighborhood of the complement of U;.

For instance, 29 are fine sheaves.
Any soft sheaf is fine [Wel08, Proposition 11.3.5], and for any fine sheaf one has HY(M,%F) = 0 for q > 1
[WelOS8, Theorem I1.3.11]. Hence resolution by soft or fine sheaves is acyclic.

To sum up all the above, in order to show that some cohomology theory agrees with the singular / de Rham
cohomology, it is enough to show that one has a resolution of R by fine sheaves.

Definition 4.2.2. We say that an R-linear map D: Q*(M) — Q*(M) is a derivation of degree ¢ if it
sends an element a € Q4(M) to an element D(a) € Q4+¢(M), and satisfies the graded Leibniz rule

D(a AB)=D(a) AB+(—1)%a A D(B) for ae Qi(M).
The usual de Rham differential d: Q*(M) — Q**'(M) is a derivation of degree 1.

Definition 4.2.3. A graded algebra coming with a derivation d of degree +1 such that dod = 0 is
called a differential graded algebra (or just DG-algebra).

So Q*(M) with de Rham differential is a DG-algebra.

If D, is a derivation of degree ¢; and D, is a derivation of degree ¥, then their graded commutator
is given by

[D1, Dy] € Dy 0 Dy + (—1)4¢+! Dy 0 Dy.
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Observe that [Dy, Dy] is a derivation of degree #; + fy:

[D1, Ds](a A B) = Di(Ds(a) A B+ (=1)% a A Dy(B))+
(=) Dy(Dy (@) A B+ (1) a A Di(B))
= Dy Dy(a) A B+ (—1)34+4e p T(B)+
(-1)%*D 5(B) + (—1)11478) a A DyDy(B)+
(—1)e* DyDy (@) A B+ (—1)9% Dy(a)y ~D3(B)+
(_1)q€1+l’1€2+1 D T + (_1)q (€1+€2)+l71l72+1 a A D2D1(B)
= (D1 Dy(a) + (—1)4%™ DyDy(a)) A B
+(—1)70FE) o A (DyDy(B) + (—1)42 Dy Dy (B))
= [Dy, Ds](a) A B+ (—1)*“+%) & A [Dy, Dy](B).

On Q°*(M) there is also a derivation of degree —1. For any vector field X € I'(TM) one has the
contraction operator 1y: Q*(M) — Q*~1(M):

1x0 € o(X) for e Q'(M),
ix(a A B) def (ixa) AB+(—1)Ta A (1xB) for ae QI(M).

Here 6(X) is a function given by x — 60,(X,), where by X, we denote the corresponding element
of TxM. So d is a derivation of degree +1 and tx is a derivation of degree —1, which means there is a
derivation of degree 0 given by the commutator:

Lx = [d,lx] =doty +1txod.

The operator on the left hand side is known as the Lie derivative (cf. [War83, 2.24-2.25] or [Spi99a,
Chapter 5 + Exercise 7.18]), and the identity above is known as Cartan’s magic formula (due to Elie
Cartan). In particular, for a function f € (M) its Lie derivative £xf is just the application of a vector
field X e I'(TM(M)) viewed as a first order differential operator:

X: 8% (M) — 8 (M),
f = X(f).

This satisfies the Leibniz rule
X(f-9) =X(f)-g+f-X(9)
For two vector fields X, Y € ['(TM) one can define the Lie derivative £x VY = [X, Y], which is known

as Lie bracket [War83, 2.24-2.25], and then one can work out a formula for the Lie derivative of a
differential form a € Q4(M):

Lxo(a(Xy A+ AXg)) = (Lx@) Xy A AXq) + Z a(Xy Ao A Xicr A [Xos Xi] A Xigr A A Xy).

1<i<q
For instance, if g = 1, then this formula reads
Lxo(a(X1)) = (Lx,) (X1) + a[Xo, X1].
One has £x,(a(X1)) = Xo - a(X1), and applying Cartan’s magic formula to the right hand side,
Xo-a(Xy) = da(Xo, X1) + X1 - a(Xo) + a[Xo, X1].
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This can be written as
da(X(),Xi) = XO . a(X1) — X1 . a(Xo) — (X[Xo,xi].

Proceeding similarly by induction with Cartan’s magic formula, we deduce a formula for differentials
that involves Lie brackets:

~ A~

da(Xon...AXy)= D (DT a([Xo XjIAXon ..o AXi A AXj AL A XY (4.1)
0<i<j<gq
+ Z (1) X alXo A ... A X Ao A Xq)-
0<i<q

4.3 Group cohomology

We recall briefly that in general for a group I' and a I'-module V the i-th cohomology is defined by

def

HYT, V) < Extd (2, V).

So one can start with a projective resolution of Z by ZI'-modules:
-—>Dy—>Dy >DPy—>7Z—>0

then apply to this the contravariant functor Homyr(—, V), and calculate HY(T', V) = HY(Homgr (P,, V)).
In practice one usually applies bar-resolution [Wei94, §6.5] that results in taking cochains

CI(T; V) € Homyp (0941, V),

which is a [-module by means of the action (x - f)(xo,...,xq) & f(xo-x,...,xq - x). The differentials

are given by

df(xo,. .., xq) Exo f(xt,...oxq) + 2. (1) * (%0, ..., Xixists .-, xg) + (=) f(xo, ..., 2xq1). (42)

0<i<q

(This is the so-called “non-homogeneous resolution”.)
One gets an augmented cochain complex

0-VSCUm;V)S el V) S (V) — -

where the augmentation € is given by sending v € V to the function x — x-v on I'.
Now HY(T[', V) = HY(C*([’; V),d).

Remark 4.3.1. We recalled the above also to make the following definition.

Assume that G is a topological group and V is a G-module with continuous action G — GL(V). Consider the
augmented cochain complex as above with cochains C%(G; V) replaced by continuous maps. Cohomology of the
resulting complex

H(G, V) € HI(CY(G; V),d)
is called continuous cohomology.

Similarly, let G be a Lie group and let V be a G-module with a smooth action G — GL(V). If we replace the
cochains with differentiable maps (of class ), then differentiable cohomology is given by

HY(G, V) ¥ HY(C3(G; V), d).

Since any differentiable cochain is continuous, one gets a map Hy (G, V) — HX(G, V), which is an isomorphism
if V is “quasi-complete”. For further discussion of continuous and differentiable cohomology we refer to [BWOO,
Chapter IX] and [Gui80]. We will not make use of it.
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Let us recall a couple of basic properties of group cohomology [Bro94, Proposition I1.10.2 and
I11.10.4]:

Proposition 4.3.2. Assume that V is a vector space over a field of characteristic zero. Then
(1) If T is a finite group, then HY(I", V) = 0 for q # 0.
(2) If " < T is a normal subgroup of finite index, then

HY(T, V) =~ HY(I', V)",

Working with explicit formulas like (4.2) is not very insightful, so let us take a geometric approach.

Recall that we have a Lie group G(R) and a symmetric space X def G(R)/K. The action of I on X
by left translations is proper (given a compact set C c X, the set {y e I' | Cn vy - C # ¢} is finite).
Suppose also that the action is free. Then I'\X is a smooth manifold, and it is the Eilenberg—Mac Lane
space K(I', 1), so that

H*(T,R) = H*(I\X, R), (4.3)

where on the right hand side is the usual singular, or de Rham cohomology. It is a standard topological
interpretation of group cohomology—-cf. e.g. [Bro94, §I1.4].

If ' has torsion, then the action of ' on X is not free, and we cannot use (4.3). But according to
Selberg’s lemma (proposition A.3.5), I’ contains a torsion free normal subgroup of finite index I’ < T,
which it is enough for our purposes.

Example 4.3.3. Consider I' = SLy(Z). There are two elements

0 —1 11
=(v 7o) =6 )
with S of order 4 and ST of order 6, so SLy(Z) has torsion. However, one can find a torsion free
subgroup of finite index inside SLy(Z). Observe that if a matrix x has finite order a, then it satisfies an
equation X® —1 = 0. The minimal polynomial P(X) € Q[X] for x has distinct roots (the eigenvalues),

and these are necessarily roots of unity. The trace of x is < 2.
Take any prime p > 2 and consider the reduction modulo p homomorphism

GLQ(Z) — GLQ(Z/[)Z).
Its kernel I'(p) < GLy(Z) has finite index; more precisely, we know that
#GLy(Z/pZ) = (p* —1) (P — p).

Now if x € I'(p) is an element of finite order, then we know that trx < 2 and trx =2 (mod p). But
since we took p > 2, this means trx = 2. Since x is a diagonalizable matrix (the minimal polynomial
1 0
0 1)

For SLy(Z) we take the subgroup SLy(Z) n'(p), i.e. the kernel of SLy(Z) — SLy(Z/pZ). 1t is torsion
free by what we just said and it has finite index (which equals p® — p). It is known as the principal
congruence subgroup of level p. A

has distinct roots), we must conclude x =

The argument in the example of SLy(Z) is actually quite general. We refer to § A.3 for a full proof.
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Using torsion free normal subgroups of finite index, we can deduce
Proposition 4.3.4. One has an isomorphism

HY(T,R) =~ HY(Q*(X)"), (4.4)

where Q*(X) is de Rham complex of X, and Q*(X)' is the subcomplex of I'-invariant differential
forms.

Proof. 1. If T is torsion-free, then we have (4.3). Using de Rham theorem (cf. remark 4.2.1) we
deduce that H1(Q*(X)') = HY(T'\X, R).

2. If ' has torsion, take a torsion free normal subgroup of finite index I’ < . The factor group
I'/T" acts on H4(I",R), and by the second part of proposition 4.3.2,

HY(T,R) = (HY(I"',R))" /",

We have Q*(X)' = (Q*(X)")I'/I". The group I'/T” is finite, so by the first part of proposition 4.3.2,
HI(Q(X)") = HI(Q*(X)")""
Hence all reduces to the torsion free case. |

In fact the problem is that when I' has torsion, the space I'\X is not a smooth manifold but an
orbifold. In this case we need a de Rham theorem for orbifolds. Cf. [ALR0O7, Chapter 2].

More generally, if I' — GL(V) is a finite dimensional real or complex representation of I, then
H*(T',V) = H* (X)) ® V).

For this see [BWO00, §VII.2]. Our representations are trivial.

4.4 Lie algebra cohomology

Let g be a real Lie algebra over k acting on a k-vector space V. We will have in mind k = R or C. One
can define cohomology H*(g; V).
More precisely, let V be a g-module, i.e. a k-vector space together with a morphism of Lie algebras
p: g — gl(V). Equivalently, a g-module can be viewed as a module over the ring U(g), the universal
enveloping algebra of g. The corresponding action of elements x € g on v € V will be denoted by x - v.
The situation is the same as for group cohomology: one has

H(g; V) € Ext!

(g (1 V)-

A particular projective resolution of k by U(g)-modules gives rise to the Chevalley-Eilenberg-Koszul
complex. It results in the following formulas. As cochains one takes

q q
C(g; V) = Homg(/\ 0. V) = \a" &V,

and the differentials d9: C9(g; V) — C9%!(g; V) are given by

dif(xo A=+ A Xq) ) Z (D)™ f([xi,xj] Ao A AZi A= ATj A AXg) (4.5)
0<i<j<q
+ Z (—1) i xi - f(xo A" AXi Ao AXg)-
0<i<q
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In particular, the zeroth differential for v e V is

d%v(xo) & o v

As always, X; means that x; is omitted. Then d od = 0 (simply because the fancy formula for d
comes from a resolution), so that we have a cochain complex

0 VL ClgV) S V) S Cog V) — -
And H9(g; V) = H1(C*(g; V),d). One can take this for a definition of cohomology.

Again, some geometric interpretation would be helpful. Observe that formula (4.5) is the same as
(4.1), so the complex for Lie algebra cohomology really originates from de Rham complex. Precisely,
recall that in our setting g is the Lie algebra of a connected real Lie group G(R). The group G(R) acts
on differential forms Q°*(G(R)) by multiplication on the left:

(9 - a)n < agn.
This action is compatible with wedge products:
g-(anB)=(g-a)r(g-B) foraeQUG(R), BeQ(G(R)):
The differential forms that are stable under this action are called left-invariant. They form a space
Q*(GR)® L' (3 e Q*(GMR)) | g-a =aforall g e G}.

Note that we have
g-da=d(g-a)=da, ifaeQ*(G(R))°®,

So Q°*(G(R))¢® is a subcomplex of the usual de Rham complex (Q*(G(R)),d*):
0—R S QGR)™ S Q(GR) T % Q(GR) T — -
more precisely, (Q°(G(R))¢®),d*) is a DG-subalgebra of de Rham DG-algebra (Q*(G(R)),d*).
Remark 4.4.1. If G(R) is compact, then by the “averaging trick” one can produce a map Q°*(G(R)) — Q*(G(R))¢®

which is homotopic to the identity. Thus one can use left-invariant differential forms to calculate cohomology of a
connected compact Lie group. However, our Lie groups are not compact.

Now the Lie algebra g can be identified with the tangent space at the identity T.G(R) (note that
any tangent vector v € T.G extends to a left invariant vector field g — Ljv where L;: G — G is the

multiplication on the left by g). Having a left invariant differential form a € QI(G(R))®®), we can
evaluate it at A? ToG(R). This gives an isomorphism of graded algebras

Q*(G(R))® — HomR(/\ aR),
a— 06|/\q ToG(R) *
Indeed, for an element f: A%g — R, we can define a g-form a € Q4(G(R)) by
ay(X)g - (Xo)g) = F(Lg-1u(X)g. -, Lyt (Xa)g),

where g € G(R) and Xj, ..., X  are vector fields on G(R).
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This « is actually left invariant:

(L;a)h((xl)hr- te (Xq)h) = agh(Lg*(Xl)hr R rLg*(Xq)h)
= f(Lp—1%(X1)n, .-+, Lp—14(Xq)n)
= ah((X1)h,...,(Xq)h).

To see that it is injective, assume that a € QI(G(R))®® is a left-invariant form such that at the
identity a| a1, gy = 0. Then at any other point g € G(R) we get

ag((Xt)g,--- (Xq)g) = (Lga)e(Lg-14(X1)g, - - - » Lg—14(Xq)g

*
g
= oce(Lg_i*()Q)g, ceey Lg—1*(Xq)g) =0.

Now recall the differential (4.1). If a is a left-invariant g-form and Xy, ..., X, are left-invariant vector
fields, then we have a formula

da(Xon...nXq) = Z (—1)i+j(x([Xi,Xj]/\Xo/\.../\j\ii/\.../\Xj/\.../\Xq).

O<i<j<q
Similarly, on the complex Homg(A°® g, R) with the trivial action of g on R, there is a differential

df(xo A...AXq) = Z () f([xxi, X ] AXO A e e AZi A e ADG A «ea A XY),
0<i<j<q

for f: A%g— Rand xp,...,xq € T.G(R) = g. We have obviously a commutative diagram

d

QI(G(R))*® QIFY(G(R))*®
Homg (A% g, R) —> Homg(A""" g, R)
And this leads to an isomorphism
H*(2'(G(R))°™) = H* (g, R),
where on the right hand side is the Lie algebra isomorphism as defined above.
Remark 4.4.2. If G(R) is compact, then we get H*(G(R),R) =~ H*(g,R).
As a banal example, let G(R) = S' x --- x S! be a torus. Then the Lie algebra g of G(R) can be identified with
[ ER——
R™ with the zero bracket. Hence the complex Homg(A? g, R) has zero differentials, and we obtain

q
HY(S' x --- x SL,R) = /\ R™.
(S x X )_/\

n

dimg HY(S! x --- x S, R) = (")
H_J q

n

(The same can be deduced by induction from the Kinneth formula.)
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2

Ly(C)

). All

Example 4.4.3. Consider the group SU,. By definition, it consists of all matrices A = (g Z) €

Q o

such that ATA = A AT = I. In particular, one sees that the matrices must be of the shape (_ab

such matrices form an algebra H which is spanned over R by four matrices

=0 7) 1= (0 5) o= ( o) (7o)

H = R[1] @ R[i] ® R[j] ® R[Kk].

In fact H is the algebra of quaternions with the usual relations
iP==K>=-1, ij=k, jk=1i, ki=j.
Under this identification, we see that an element z =a1 +bi+cj+dk e H lies in SU; whenever
a’?+b*+c?+d*=1.

That is, SU, can be identified with the group of quaternions of norm 1, which is topologically the
sphere S3. From this it is clear that the cohomology algebra H*(SUy;R) is spanned by elements
1 € H°(S%R) and x3 € H3(S% R), with obvious cup-products

1—1=1, 1VX‘3=I3v1=1, X3vx3=0.
That is, we get the free exterior algebra over R generated by one element x3 of degree 3:
H*(SUy R) = A(xs3).

Of course in what follows we are not going to calculate any Lie algebra cohomology from explicit
cochains and cocycles, but let us do that just once in the easiest example of suy. The algebra suy consists
of matrices A € M,(C) such that trA = 0 and AT = —A:

A= (_g _Z).

Under this identification, the Lie bracket [, -] on suy is the usual commutator.
A convenient basis of suy over R is given by three matrices u = —5 0y, v = —5 0y, t = —5 0, where

def (0 1 def (0 —i det (1 0
w1 0) (0 o) o )

The bracket in this basis is determined by

[u,vl=t, [ut]=-v, [v,t]=u. (4.6)

Now let us look at the complex

0-R% Homg (g, R) LiN Homg(g A g, R) LiA Homg(gArgAag R)—>0

d’%(x) =0,
d'f(x Ay) = —f[x,¥],
d’f(x Ay A z) = —f([x, 9] A z) + f([x, 2] A¥) —f([¥, 2] A x).
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Note that H%(g, R) = kerd® = R. In general, if we have an action of g on V, then H® is given by
Hog, V) =Vs ¥ {veV|x-v=0forall x € g}

Next observe that H'(g, R) = kerd! = 0.

e From the relations (4.6) we deduce that d?> = 0, and so H%(g, R) = kerd® ~ R.
Finally, dimkerd? = dimimd' = 3, so H?(g,R) = 0.

So the complex gives us indeed the expected cohomology H* (sug, R) = H*(SUy; R). A

4.5 Relative Lie algebra cohomology

We are interested not in the Lie group G(R) itself, but in the symmetric space X = G(R)/K, where K
is a maximal compact subgroup in G(R). Let ¢ be the Lie algebra of K. We want to define the relative
cohomology HY9(g, & V). It is also possible to do using Ext functors of certain modules (see [BWOO,
Chapter I]), but for us a down to earth definition will do; we will not go into details. In addition to
the differentials d: C9(g; V) — C97!(g; V), for each x € g one has maps £,: Ci(g; V) — C9(g; V) and
le: CI(g; V) — CI71(g; V) given by

(L)1 A AXq) = Z fler An--Afxi,x] A AXg) Fx-forr A= - AXg),

1<i<q

(ef) (1 A AXga) = F(X AX A A Xgat).

The three maps are related by Cartan’s magic formula
Lr=doiy +10d.

Now take C9(g, ¢ V) to be the subspace of C9(g; V) given by the elements annihilated by t, and £,
forall x € &

Clg, V) € {f e CUg; V) | tef =0 and L£of =0 for all x € £} = Homg(/q\g/{’, V).
This gives a cochain complex
0->RLClg V) S C2e,6V) D Cig, V) > - -
And H(g, & V) & Ha(C*(g,8 V), d).
The geometric meaning of this is the following:

H*(Q*(X)°®) ~ H*(g,&R), (4.7)

i.e. this computes cohomology of the complex of G(R)-invariant differential forms on X.
The complex Q'(X)G(R) is very important, so we introduce a special notation:

3 def .
I5r) = Q°(0)°®.
We are going to admit the following classical result.

Fact 4.5.1. The differential forms in Ig(R) def Qq(X)G(R) are closed (i.e. da =0 for all a € Ié(R)).
Moreover, they are also co-closed (6a = 0), and thus harmonic (Aa = 0).
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This goes back to Elie Cartan, and a modern exposition can be found in [BWO00, §IL3]. ®
(The notions of co-closed and harmonic forms will be explained and applied in the next chapter.)

Since differential forms in Ié(R) are closed, (4.7) can be written simply as

Iy = H*(g, & R). (4.8)
We note that taking the space Ié(R) is functorial. An injective R-morphism
f: G1 — GQ.

induces a morphism

5 18,y = 1)
One of many ways to construct this is the following. In Gy(R) we may take a maximal compact subgroup
Ky such that Ky o f(Kj). Then there is an inclusion

Gi1(R)/Ky — Gao(R)/Ky,
—_—— —_——
X1 XQ

and f* may be viewed as the restriction of differential forms from X, to X;. This construction does not
depend on the choice of Kj, since any two maximal compact subgroups in Gy(R) are conjugate by an
inner automorphism leaving their intersection pointwise fixed.

In general, if we have a subgroup I' € G(R), then
H*(2°(X)") = H* (9,5 6(I\G(R)))
—this is proved in [MMG65a, §3]; in particular (4.7) is a special case. Then by (4.4),
H*(I',R) = H*(g, & 6™ (I'"\G(R))).
Now let us recall some theory for Lie algebras which will be useful also in the next chapter. For a
thorough treatment we refer to the book [Hel01], or to Bourbaki [Bou60, Bou72, Bou68, Bou75].

For a Lie algebra g one can consider the adjoint representation g — gl(g) given by x — ady, where

ade:g— g,
v [x,y]

The Killing form on a finite dimensional Lie algebra g is the symmetric bilinear form given by
By(x,y) o tr(ady o ady).

It is obvious that this is bilinear and symmetric, since we take a trace. Further, this form is invariant,
in the sense that
By([x,¥].z) = Bg(x, [y, z])

Indeed,

tr(ady,y) o ad,) = tr(ady o ady o ad,) — tr(ady o ad, cad,)
= tr(ad, o ady o ad,) — tr(ady o ad, o ady)
= tr(ad, cad[y,).
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Fact 4.5.2. If g is a simple Lie algebra, then any invariant symmetric bilinear form on g is a scalar
multiple of the Killing form.

Example 4.5.3. If g is a subalgebra of gl,(R), then we see that the symmetric bilinear form given by
(X, Y) =tr(XY) is invariant. The only problem is to find the scalar multiplier.

For instance, in s, (R) we can take a matrix X def o)) — egs. Then X2 = eqy + €99 and tr(X?) = 2. Now
look at the adjoint action ady. It is given by

[X, eij] = [e11, ey] — [eas, €ij] = 2ey).

Hence the Killing form is
Bg (X, X) = H’(adx o adx) = 4n.

So the scalar multiple is 2n, and By(X, ¥) = 2n tr(X V). One can work out the other examples similarly
[Hel01, §IIL8].

algebra : 50, (R) s0n(R) sp,(R)
Killing form: 2ntr(XV) (n—2)tr(XVY) (2n+2)tr(XVY)

Fact 4.5.4. A Lie algebra g is semisimple if and only if the Killing form is nondegenerate.

Example 4.5.5. Consider the algebra sl,(R) < gl,(R) given by the n x n matrices of trace zero. It has
dimension n? — 1 with a standard basis consisting of elementary matrices e;; for i # j, together with
matrices e;; — €j1+1,:+1 for 1 <i < n — 1. In particular, for sly(R) a basis is given by

= (B) (3 8) we(d 2)

We calculate [x,y] = h, [x,h] = —2x, [y, h] = 2y, and the Killing form is

We see that this is non-degenerate. A

Example 4.5.6. Consider the Lie algebra so,(R) < gl,(R) consisting of the skew-symmetric square
matrices n x n, such that MT = —M. It has dimension (3) = % The basis consists of matrices
eji — ejj for 1 <i < j < n. For instance, so3(R) has a basis

0 +1 0 0 0 +1 0 0 O

u=| -1 00|, v= 00 0], w=[0 0 +1

0 00 -1 0 O 0 -1 0

We have [u,v] = —w, [u,w] = v, [v,w] = —u, and the Killing form is given by
Be() | u v w
ul-2 0 0
vi 0 -2 0
w| 0 0 -2

Observe that this is nondegenerate and negative definite. A

Fact 4.5.7. If G(R) is a semisimple compact Lie group and g its Lie algebra, then the Killing form
By (-, ) is negative definite.
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An involution of a semisimple real Lie algebra g is an endomorphism 6: g — g such that 6% = id.
It is called a Cartan involution on g if the bilinear form

Bo(x,y) € —By(x, 0())

is symmetric and positive definite. Since 0 is an involution, it has eigenvalues +1. We let £ to be the
eigenspace corresponding to the eigenvalue +1:

e {xeg|O(x)=x},

and let p be the eigenspace corresponding to the eigenvalue —1:

pE {xeg|b(x)=—x}.

We have the eigenspace decomposition
g=tdyp.

Observe that if x € £ and y € p, then [x,y] € p:
Olx,y] = [0(x),0(y)] = [x,—y] = —[x, 9]

Similarly we see that
[t.e]ce, [tplcSp, [pp]cSt.

Example 4.5.8. If g is a subalgebra of matrices inside gl,,(R) and g is closed under matrix transpose
x +— x ', then it is easy to check that 8: x — —x' is a Cartan involution. It is indeed a Lie algebra
morphism, since

Olx,y] = —[x,5]" = ~[y",x"] = [-xT,~y"] = [6(x), 6(y)].

Observe that 8 leaves the Killing form invariant:
B,(0(x), 0(¥)) = tr(ad(x) o adg(y)) = tr(0oady 00 ' oBoady o 07') = tr(ad, o ady) = By(x, ),
hence the form By(-, -) is symmetric:
Bo(x,) = ~By(x,0(3)) = —By(8(x), 6°(v)) = —By(y, 6(x)) = Ba(y, x)-
By(:, ) is positive definite:
Bg(x,x) = —tr(ad, oad_,v) = tr(ad, o (ady) "),

and the latter is positive for x # 0 (we assume that the algebra is semisimple).
So the Cartan decomposition boils down to the well-known fact that any matrix can be written as a
sum of a skew-symmetric matrix x € £ and a symmetric matrix y € p. A

Example 4.5.9. More concretely, take g = s[,(R) and a Cartan involution 0: x — —x . The matrices
fixed by 6 form a subalgebra of traceless skew-symmetric matrices, which is s0,(R). The complemen-
tary subspace p is formed by the traceless symmetric matrices. A

Example 4.5.10. For instance, for sly(R) one has
0:x+— -y, y—-—-x, hw— —h.

And we calculate




Note that f(x —y) = x —y, O(x +y) = —(x + y), and O(h) = —h. We have a decomposition of

slp(R) into a subalgebra of skew symmetric traceless matrices ¢ generated by x —y = _(1) (1) , and

a subspace of symmetric traceless matrices p generated by x + y = ( (1) (13 > and h = ( é _(1) >
Observe that on t the Killing form is negative definite:

By(x —y, x —y) = Bg(x,x) —2Bg(x,y) + B4(y,¥) = 8.
On p the Killing form is positive definite:
Bg(h,h) =8, Bg(x+y, x+y)=DBg(x,x)+2By(x,y) + By(y,y) = 8.
A

Now go back to the case when g is the Lie algebra of a semisimple Lie group G(R) and ¢ is the Lie
algebra of its maximal compact subgroup K.

Fact £.5.11. To each maximal compact subgroup K is associated a Cartan involution 0: g — g giving
the corresponding decomposition
g=t®Dp,

where
b={reg|x)=x}, p=E{reg|O(x)=-x}
[t.e]ce [tplcp [pplct
Further, if we assume that G(R) is non-compact, holds equality [p,p] = t.

As for the dual symmetric space X, = G(R), /K, the Cartan decomposition for g, is given by
u= t® lp C gc-
From this one can work out that
I3 = H* (3, ER) = H*(gu, & R) = H* (Q°(X,) ™).

But now the space X, is compact, hence in fact H*(Q*(X,)°®) =~ H*(X,,R). We record this

isomorphism:
IGr) = H* (Xu, R), (4.9)

i.e. the space Ié(R) is the usual de Rham cohomology of the compact dual symmetric space X,,.

Example 4.5.12. Consider the Lie algebra sly(C) and its subalgebra suy. One can calculate the relative
cohomology H*(sly(C), sug; R). Recall the basis of suy was given by matrices u = —5 0y, v = —5 0y,

t = —£ oy, where
def (O 1 def (O —i det (1 0
W (Y o) «=(7 %) a0 )

~

We can complete this to a basis of sly(C) by adding t = % Oy, V = %6‘,, t = %Ot. Then the brackets
are given by

[u,v] = +t, [u,t]= [v,t] = +u,
[&ﬂz—t[,ﬂz [¥,1] = —u,
[u, ] = +f, [uf]=-9, [v,{]=+1.
It is easy to see that the complex C*(sly(C), sug; R) gives the same cohomology as C*(sug, R). A
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Remark 4.5.13. There is an alternative interpretation, linking all to continuous cohomology already mentioned
in remark 4.3.1: let G(R) be a connected Lie group and let K be a maximal compact subgroup of G(R). One
has

H*(,6 V) = H}(G(R), V).
This is known as van Est isomorphism. For details we refer to [BWO00, §X1.5] and [Gui80, §II1.7]; the original paper
is [VEB5]. We will not make use of this.

4.6 Cohomology and homotopy of SU/SO(R) and SU

In the view of (4.9), we would like to know cohomology of compact symmetric spaces X,,.

For G(R) = SLn(R) this space is SU, /SO (R), and for SL,(C) this space is SU,. In fact this is a well-
known calculation. For example, in the case of SU, one argues by induction, starting from SU, ~ S3
and using the Leray-Serre spectral sequence for fibration (see example H.3.5)

SUp_1 — SU, — S ! (4.10)

The result is
H.(SUH,'R) = A(I3,X5, . ,Ign_1),

where by A(...,xy,...) we denote the symmetric R-algebra freely generated by elements x, of degree
¢ =3,5,...,2n — 1. In fact for any compact Lie group G(R) the algebra H*(G(R);R) is given by
A(x9i,+1, .-, Xoi,+1) for some iy,...,i,. This is a result of Hopf [MT91, Theorem IV.6.26].

As for homotopy groups, fibration (4.10) suggests that groups like i;(SU,) are related to the homo-
topy groups of spheres, so their calculation is hopeless. Here is an example of calculations taken from
[MT64):

i 3 A 5 6 7 8 9 10
7i(SUs): Z 0 Z 7J6 0 Z/12 ZJ3 7730
7 (SUL): Z 0 z 0 z 7./% 7,2 712087,/
i 11 12 13 1% 15 16 17 18
7i(SUs): ZJ% 7760 7/6 785D 72 7]36 725076 Zj30@ ]2 Z]30® Z/6
7i(SUL): Z/4 7,/60 7/4 ZN680®  ZJT2®Z/2  T/504® 740 ® 7,/2520 &
7/2 7)287,)20 7/2® 72D 7,2

2D Z2®T/2

So higher homotopy groups of SU, are as mysterious as those of S". However, we can pass to the
limit n — oo:

SU/SO(R) €' lim SU, /SO, (R),

SU €' lim SU.

n

Then there is a nice answer, which is a part of the classical Bott periodicity; cf. an expository article
[Bot70] by Bott himself and full proofs in Séminaire Henri Cartan, 12¥™¢ année [CDD*61]; another
nice reference is [MT91].

The homotopy groups of SU and SU/SO(R) can be obtained from the well-known calculations of
m;(O(R)) and 71;(BU) and the weak homotopy equivalences O(R) ~ Q?(SU/SO(R)) and BU ~ QSU—cf.
[MT91, §IV.6] for this.
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The answer is periodic, with period 8 (the periodic part is shaded in the table):

it 0 1 2 3 4 5 6 7 8 9
m(OM): | Z/2  Z/2 0 Z 0 0 0 Z
m(SU/SO(R)): 0 0 72 z7/2 0 Z 0 0 0 Z
m(BU): 0 0 Z 0 Z 0 Z 0 Z
m(SU): 0 0 0 z 0 zZ 0 z 0 Z

The cohomology rings are easier. Without Bott periodicity one obtains [MT91, §IV.3]

H*(SU/SO(R); R) = A(X5,X9, .+ s Xaitts )
H.(SU,R) = A(Ig,x5,...,12i+1,...).

In fact SU/SO(R) and SU are H-spaces, so the Cartan-Serre theorem (§ 3.4) explains the relation
between 71, (SU/SO(R)) ® R, 7, (SU) ® R and cohomology rings H*(SU/SO(R); R), H*(SU; R).
It is interesting to know that our arithmetic investigations are related to Bott periodicity.

4.7 The morphism ji: I3, — HY(T,R)

Since the forms I ) are closed, the inclusion I¢, &f Q*(X)%® <« Q*(X)' induces a homomorphism

in cohomology
5 Iy — HYQ(X)T) = HI(L R).

Remark 4.7.1. Alternatively, by van Est theorem (remark 4.5.13) we have
Iow = H* (g, R) = H} (G(R)).

The inclusion I' ¢ G(R) induces H*(G(R)) — H*(T'), and further there is a map Hj(G(R)) —» H*(G(R)) from
the differentiable cohomology to the usual group cohomology. In this view the morphism can be interpreted as
restriction j*: H3 (G(R)) — H*(T').

As we saw above, the spaces Ig(R) = H9(X,,R) are known by classical computations, thus the

question that interests us is for which q the morphism j9: Ig(R) — HY(T',R) is an isomorphism. The
following is [Bor74, §7.5], and it is the main point for all calculations.

Theorem 4.7.2. Let G be a semisimple linear algebraic group over Q and let ' ¢ G(R) be an
arithmetic subgroup. One can define constants m(G(R)) and c(G), such that the morphism

j: (Iwy)" — HI(TR)
is injective for q < ¢(G) and surjective for q < min{c(G), m(G(R))}.

Example 4.7.3. Let G = SL,,/Q be the special linear group. Then both constants m(G(R)) and c(G)
are arbitrarily large as n — oo, hence the theorem gives isomorphisms (Ig(R))F ~ HY(T';R) in the stable
case. A

We will examine the morphism j? in the subsequent chapters. Now we would like to apply the
theorem.
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4.8 Final results

Remark 4.8.1. Consider a sequence of graded R-algebras A, = G—)]. AJ with graded morphisms fn: 4,11 — A,.
For instance, here we work with cohomology H*(M; R) which naturally comes as a graded R-algebra.
We are interested in stability, hence in inverse limits like liLnAn. But of course we want to have this limit

degree-wise. Let us be pedantic and denote by Qr_n‘An the inverse limit in the graded category. It is given by a
n

graded R-module
lim*A, = @A, where A/ = l(iLn(A’;,,ffl),

n j n
which has the obvious graded R-algebra structure.
In our situation A, will be finite dimensional graded algebras over R or C.

From theorem 4.7.2 we easily deduce the following:

Theorem 4.8.2. Consider a sequence of semisimple algebraic groups G,/Q and their algebraic
subgroups I',:

fn: Gn = Gpi,
I'n—=Tny.

Here f, are injective morphisms over Q, such that I', ¢ G,(R) is mapped into I',11 € G411 (R).
Assume the following:

1) Given any dimension q, there exists N(q) such that

(Ign(R))F" =I5 ® foralnzN(q).

2) The constants m(G,(R)) and c¢(G,) tend to «o as n — oo.

Then
H'(li_r)n hR) = liLn'H'(Fn,R) ~ liLn'Ién(R).

Remark 4.8.3. If ', ¢ G,(R)°—in particular, if G,(R) is connected—then the condition 1) is satisfied.
The only case that interests us is G}, = SL,/F and G, = Resg/g G},. The group G,(R) is connected. In this case
2) is satisfied as well.

Proof. The first isomorphism
H*(lim I'p, R) = lim*H*(I'n, R)

is just because I',, are arithmetic groups, and thus H*(I',,R) are finite dimensional R-vector spaces;
cf. theorem A.3.4. By theorem 4.7.2 and assumptions 1) and 2), we get isomorphisms

jai I8, — H' (Tn,R).
Inclusions G, — G, induce the following commutative diagrams:

.
Gn+1

J',T+1l~ ~l

H*(Tnst, R) —= H* (T, R)

® — LG.®)
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Passing to the limit n — o0, we get

lim* H* (T, B) = im*I5, z).

n n

Example 4.8.4. Consider G, = SL,/Q and I', = SL,(Z). Then
H*(lim SLn(Z), R) = lim*H*(SLn(Z), R) = Im®Ig ) = H*(SU/SO(R); R) = A(x5,%X9, - -+, X4it1,---)-

n n
We consider the indecomposable elements in the latter algebra and conclude that for i > 2

. . o 1, i=1 d 4),
dimg K;(Z) ®@ R = dimg QH* (lim SLy(Z); R) = { 0 :)therwi(;lo )

The following table is taken from [Wei05].

n: 2 3 A 5 6 7 8 9
Kn(Z): 7,2 7/48 0 Z 0 7,/240 (0?) ZDZ/2

n: 10 11 12 13 14 15 16 17
K, (Z): 7,2 7,/1008 (0?) Z 0 7,480 (0?) ZDZ/2

n: 18 19 20 21 22 23 2% 25
Kn(Z) 7,2 7,/528 (0?) Z 7/691  7,/65520 (0?) VASY AP

(0?) — finite groups that are conjecturally zero

So we understand at least the periodicity of ranks! A

Now we turn to the general situation. Let F be a number field of degree d = ry + 2ry, where ry is
the number of real places on F and ry is the number of complex places on F. One has

F@@R ~ R @ Cr.
We denote by M the set of all archimedian places. Consider algebraic groups G, = SL,/F and their
arithmetic subgroups I', = SL,(Or). There are natural injective morphisms over F:
f1/1: G;l s G;l Iy
F; — F;z -
To work with algebraic groups over Q, we take restrictions of scalars:
Gn déf ResF/@ G:N fn déf ReSF/Q f;
For each place v e M we denote by F, the completion of F at v:

F - R, wvisreal,
V71 C, viscomplex.

Let G, , def (G))r, be the extension of scalars to F,. We have

Ga(R) = [] Giu(Fv)

veMg®
— cf. § A.2 for extension and restriction of scalars.

68



The symmetric space X, = G,(R)/K, corresponding to G,(R) is the product of such symmetric
spaces for each Gj, ,(F,), and the maps f,: Gn(R) — Gp1(R) are compatible with such decomposition.
Therefore we get

Im*IG, @ = & L
veMg®
where
I; € im* 15, (F).
Precisely, in case of SL,,

, | SLy(R), v isreal,
(Gn,v)(FV) = { SLn(C), v is complex.

Gn(R) = SLo(F®gR) = §Ln(R) X +ee X SLn(Rl x

-
~ ~
ry

Gp(C) = SL,(C) x - -+ x SLn((Cz.

(.

d
The maximal compact subgroup in G,(R) is

Kn = SOn(R) x -+ x SOp(R) x SUp x - -+ x SUy

ro

The dual group is
Gpy =SUy x--- x SU,.

—

d
The corresponding symmetric space is

Xn = SLn(R)/SOn(R) x ---

 SLn(R)/SOn(R) x SLn(C)/SUn x -+ X SLa(C)/SUs

~
rq ry

and the dual symmetric space is

Xpu = SUn/SOp(R) % -+ x SUp/SOp(R) x SUp x - -

x SU,, .
r v
Xn Xn,u H* (h_r)n Xﬂ,u)
SLH(R) SLn(R)/SOn(R) SUH/SOH(R) A(I5,I9,...,I4i+1,...)
SLH(C) SLH(C)/SUH SUn A(Ig,l’5,...,f2i+1,...)

The conditions of theorem 4.8.2 are satisfied, and we get

H*(lim T; R) = im*H* (T} R) = im*Ig, ) = X L.
veM

I~ { A(xs,x9, ..., X4i41,-..), Visreal,

V=1 A(xsz,x5,...,%X0i11,...), Vv iscomplex.
So the result is

H* (h_r)n SLH(OF), R) = A(x5, Xog, -

R /A .)®r1 ® A(xs, x5,

ooy, X214, .)®r2.
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We look at the dimension of the space of indecomposable elements QHi(li_r)n SLn(OF); R):

i: 2 3 4 5 6 7 8 9
dimg QH!{(SL(OF),R): 0 ro 0 ri+ry 0 ro 0 ri+ry

Since rk K;(Of) = dimg QH!(SL(OF), R), we are done. This is worth repeating:
Theorem 4.8.5. Let F be a number field and O be its ring of integers. Let ry be the number of real

places on F and let ry be the number of complex places on F. The ranks of K-groups K;(Or) depend
only on ry and ry. One has

rk KO(OF) =1, rk K1((9p) =r+ry—1,

and for i > 2 the ranks are periodic, with period 4:

i (mod 4): 0 1
rk Ki(@p)t 0 r1+ro 0 ro

\}
[GN

The rest of this text aimed towards theorem 4.7.2.
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Chapter 5

A theorem of Matsushima

Here we review a result due to Matsushima involving the Matsushima’s constant m(G(R)) for a
semisimple Lie group G(R). It applies to the case of a discrete subgroup I' € G(R) such that ['\G(R)
is compact. The proof in fact relies on Hodge theory for compact manifolds, which is of course a very
standard material, but this chapter starts with a detailed overview, since later on we will need to adjust
it to certain non-compact cases.

References. The main content of this chapter corresponds to [Bor74, §3]. For a systematic treatment we drew
upon the monograph [BWO00].

5.1 Harmonic forms on a compact manifold (théorie de Hodge
pour les nuls)

From now on M denotes a connected, smooth (of class %), oriented manifold. Recall from § 4.2
de Rham complex Q°*(M). We need some extra structure, so further we assume that a Riemannian
metric is defined on M. That is, at each point x € M there is an inner product (= a symmetric, bilinear,
positive definite map)

()t TeM x T:M — R,

depending smoothly on x, which means that for all vector fields X, ¥ € I'(TM) the map x — (X, Yx),
is smooth. Of course any smooth manifold admits a Riemannian structure, but later on its particular
choice will be important.

Let us recall the definition of Laplace-Beltrami operator [Spi99c, Chapter 7, Addendum 2].

Remark 5.1.1. We begin with some linear algebra. Let V be a real vector space of dimension n coming with an
inner product and orientation. By orientation we mean a choice of one of the two connected components of the
space A"(V)\{0}. The product extends to A9(V) by

(Wi, v1)  (wi, ) e (W, vg)

(wo,vi) (wo,vp) - (W, vg)
(W1 A<= AWq, V1 A--- A Vg) = det . . . . (5.1)

(Wq, v1) (Wq,va) -+ (Wgq, V)
and bilinearity. Then (-, -) extends to the whole exterior algebra A (V) by letting the product of elements of different
degrees to be zero. Let ey, ..., e, be an orthonormal basis for V. Then an orthonormal basis of A(V) is given by

ey A--ne, withl<ip<---<i,<n.
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Now Hodge star is a linear map *: AY(V) —» A" 9(V) that can be written in this basis as

*(1)

+ei A Aep,
*(e1 A Aey) ,

+1

*(e1 A Aeq)=teqi1 Ao Aen.

Here the sign “+” is determined by the orientation—one takes “+” whenever e; A --- A e, lies in the positive
component of A"(V)\{0}. One easily checks that this does not depend on the choice of an orthonormal basis of
V. With this definition we see

* ok = (—1)1=D . id: AU(V) - AL(V).

The inner product of two elements v, w € A9(V) can be expressed as
(v,w) = %(W A %kVv) =%(VA*kw).

To wash away the sin of defining something using a particular basis, we recall an invariant definition of *:

there is a bilinear map
{-,-}: AI(V) x A"9(V) 5 AN(V) SR,
where the second arrow is the isomorphism defined by the inner product and orientation on V. Then one can
define a map
A: AU(V) - (A™9(V))”
by
A(a)(n) ={a,n} for ae AYV), ne A"~4(V).

Now we have

where the second isomorphism is induced by the inner product on V.

For smooth manifolds the Hodge star is used as follows. The Riemannian scalar product defines
dually a product on 1-forms (on the cotangent space T* M), and hence by virtue of (5.1) an inner product
() : QIUM) x QI(M) — QO(M).

So there is a Hodge star operator x: Q4(M) — Q" 9(M), which satisfies

* ok = (—1)10=D . id: QIM) — QI(M). (5.2)

It is defined to be compatible with the inner product of differential forms coming from the Rieman-
nian structure:

(a,B) = *(an *B) =*(B A a).

The volume form w is by definition the unique positively oriented n-form having unit length, i.e.
(w, w) = 1. One also sees that w is % 1, the Hodge star of the constant map 1. In what follows w denotes
the volume form (one should bear in mind that in the notation “x” and “w”, and for other things below,
a choice of some Riemannian structure is implicit).

So we have an identity

an*xf={(ap)w,

which actually can be treated as the definition of Hodge star.
Using Hodge star, we can define an operator

& E (L) @D 46 g oK QM) — QI~L(M), (53)

which lowers the degree of a differential form. For O-forms one has just 6f = 0.
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A form « such that 6a = 0 is called co-closed.
From identity (5.2) and definition (5.3) we deduce

§06=0, *xo05=(-1)do*, Sox= (1) %od. (5.4)
QIUM) —2> Qa1 (M) —2> Qn-a+1(\]) *x08 =
QM) —> QU4 (M) —> Q=0+ (M) (~1)7do*
QM) — > Qn-a(M) —2s Qn-a-t(pg) Sok =
QI(M) —L> Qu+t (M) —5= Qn-a-1(M) (—1)7+! %od

E.g. for the first one,

* 6B = (—1)"E@HDH J g% B
_ (_1)n(q+1)+1 (_1)(n7q+1) (q—1) d *B
=(-1)TdxB.
Finally, Laplace-Beltrami operator (also called Laplacian) is defined by
A Sod +dos: QIUM) — QI(M).

Example 5.1.2. If M = R", then on the space Q°(R") of smooth functions R" — R the Laplace-Beltrami
operator is the usual

0°f
Af =— —
1£n ax?

(normally it is taken with the plus sign). For instance, in R3

Af =d of +odf
=0

_ of of of
= *d*(axdx+0ydy+6zdz>

=—*d<afdy/\dz—afdx/\dz—i—afdx/\dy)

ox oy 0z
2 2 2
= —% ﬂdx/\d;y/\dz—i—a—fdxAdyAdz+a—fdx/\dy/\dz
o0x? oy? 0z2

*f Pf
__<6x2+6512+0z2> -*(dx/\dy/\dzz

"

*f  0*f  0%f
__<6x2+6y2+6z2>'

One checks easily using (5.4) that the operators d, §, * commute with A:

doA=Aod, 60A=A0S *oA=Aox.
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Definition 5.1.3. For two g-forms a, € Q4(M) their Hodge inner product (symmetric, positive
definite)

()t QY(M) xQ* (M) >R
is given by

(a, By def JMa Ak = fM*(a AXB) x1l= JM(ax,ﬁx)x w.

We extend this on Q°(M) simply requiring that different Q9(M) are orthogonal. The corresponding
norm of a differential form is given by

def
el =4 /(e )y

Definition 5.1.4. A form a € Q4(M) is called square integrable if

(a, a)y :,[ oc/\*azf o] w < oo.
M M

Similarly, a € Q9(M) is called absolutely integrable if

f e[ @ < .
M

In particular, when M is compact, all forms are integrable.

Remark 5.1.5. Observe that if we write « locally in an orthonormal basis, then |a, |2 is the sum of squares of
the coefficients. If we have two g-forms a and S, then the coefficients a A 8 are products of coefficients of o and
B. Hence the Cauchy-Schwarz identity gives

lae A Bellx < llocelx - 1Bl

Let now a € QI~1(M) and B € Q4(M). The Leibniz rule together with d x 8 = (—1) % & B gives
dlar*B)=dar*xB+ (-1 TardxB=darkxB—anr%xspB.

Integrating this over M, we obtain

| atanxp) = taa,p)y— @ s (55)

Remark 5.1.6. Let us recall the Stokes’ formula ([War83, Theorem 4.9] or [Spi99a, Chapter 8]).
A subset D ¢ M of a smooth oriented n-manifold is called a regular domain if for each point x € M either

(a) Some open neighborhood of x is contained in M or M\D.
(b) There is a coordinate chart (U, ¢) centered in x such that ¢(U n D) = ¢(U) n FC", where

T L {(x,...,x0) €R" |, =0}

The points of type (b) comprise the boundary oD.
Now if D is a regular domain and o is an (n — 1)-form with compact support, then

Jd(i:f o.
D éD
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In particular, if M is compact then for an (n — 1)-form o

f do=0.
M

The key words here are “form with compact support”. A non-compact case will be investigated in the next
chapter.

Now a A % B has compact support if either a or 8 has compact support. In this case the Stokes’
formula can be applied, and it gives §,,d(a A *B) = 0. So (5.5) implies

(da,B)y; = (@, 6B),, if one of a, B has compact support. (5.6)

In particular, if M is a compact manifold, then this means that & is adjoint to d with respect to the
inner product on Q*(M). Since (-,-),, is a positive definite bilinear form, the operator & is uniquely
defined by (5.6). From this adjunction one easily sees that

Aa =0 < da=0and 6a =0 if a has compact support. (5.7)

Definition 5.1.7. A differential form a € Q2°*(M) such that Aa = 0 is called harmonic.

In words: a form with compact support is harmonic if and only if it is closed and co-closed.
Indeed, this follows from

((6d +d6) a, a)y,
(6da, a)y, + (dSa, a)y,
(da,da)y, + (6a, ba)y,

(Aa, a)y =
= |da

&+ 15als-

Example 5.1.8. Recall that a function f: R"™ — R is called harmonic if it satisfies the Laplace equation

0°f 0*f
gy =0.
ox? o ox?
Our definition generalizes this to differential forms on smooth manifolds. A

We denote the space of harmonic g-forms on M by
FCUM) € {a e QIM) | Aa = 0}.

The Hodge decomposition theorem [War83, 6.8] tells that there is an orthogonal direct sum

QM) = AQIM) @ FCI(M) if M is compact
=d6QI(M) @ SdRI(M) @ HI(M)
= dQT (M) ® 8QT (M) @ (I (M).
Recall how the Hodge decomposition implies that for compact M each de Rham cohomology class
[a] € Hjn (M;R) is represented uniquely by a harmonic form 9((a) € 9C9(M).
For a form a € Q9(M) with corresponding orthogonal decomposition a« = AG(«a) + F(a) with
F(a) € F(9(M) and AG(a) € AQI(M) = ($(9(M))* the form G(a) is called the Green operator of a.

So any g-form decomposes as
a =déG(a) + 6dG(a) + F((a).
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Further G commutes with d. If « is a closed form (i.e. da = 0), we thus get
a =dsG(a) + F(a),

and so a and ((a) represent the same class in de Rham cohomology Hg, (M;R). Now assume that
ay, ap € $C9(M) are two harmonic forms representing the same class in Hjy (M;R), i.e.

0=dp+ (a1 —ag)
for some B € Q471 (M). The forms df and (a; — ay) are orthogonal thanks to (5.7):

(dB, a1 — ag)y = (B, 6ay — Sag)y = (B,0)p =0,
so we must have df = 0 and a; = as.

Further note that since x* commutes with A, it maps harmonic forms to harmonic forms. Having a
harmonic form a € $(9(M) representing a nonzero cohomology class [a] € Hip (M), we get a harmonic
form * a € "~ 9(M). Using ko x = (—1)7 ("1, we see

(@, k) = J a A (% a) = ]al% # 0.
M

So for each nonzero cohomology class [a] € HgR(M) we have canonically a nonzero cohomology
class [* a] € Hgy '(M) such that (a, % a),, # 0. Since (-,-),, is a nondegenerate pairing, this gives an
isomorphism

Hip (M) = Hgp (M),

the Poincaré duality. Again, this works only if M is compact.

Remark 5.1.9. The most difficult thing to prove, which we left out, is the Hodge decomposition theorem. For a
thorough treatment see [War83, Chapter 6].

In short, Hodge theory gives very nice results for cohomology of a compact manifold. To get some
theory work in a non-compact situation, one needs an identity analogous to (5.6). This will be discussed
in the next chapter.

5.2 Matsushima’s constant
We go back to the particular situation of the previous chapter.

e G(R) is a semisimple Lie group, for our purposes we can assume it is non-compact and connected.
In particular, we have in mind algebraic group G = SL,/Q and its group of real points SL,(R).
More generally, we take G’ = SL,,/F defined over a number field F and then take its restriction
G= RGSF/Q G'.

Since in this chapter everything concerns Lie groups, we will write simply “G” instead of “G(R)”.

e [ is a discrete subgroup in G. The main example to have in mind is that of SL,(Z), or more
generally SL,(Of).

e We denote by K a maximal compact subgroup of G.

def

e X = G/K is the symmetric space of maximal compact subgroups.
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e By(-,-) denotes the Killing form of g. Since G (and hence g) is semisimple, we have a positive
definite symmetric bilinear form on g given by

Bo(x, ) € —By(x, 0(y)).

This gives a right invariant Riemannian metric on G, and hence a metric on I'\G.

e In everything that follows we denote m 2f 3im G and n & dim X.

e Let g and ¢ be Lie algebras of G and K respectively.

e Let 0: g — g be the Cartan involution corresponding to K. Consider the respective Cartan

decomposition
g=t®yp,
where
t={reg|O(x)=x}, pE{reg|ox)=—x}.
One has

[e.e]ct [ep]cp [pp]ct

The composition is orthogonal with respect to the Killing form: Bg(¢,p) = 0. Further, since we
assume that G is non-compact, holds equality [p, p] = ¢.

Let L(-,-): ¢ x £ > R be the symmetric bilinear form defined by the adjoint action of ¢ on p:

L(xl y) dgf tr(adp'x [e] adp,y):

where ad, .: p — p is the linear map on p given by z — [x,z]. This definition makes sense because
[£,p] < p. One has

By(x,y) = Be(x,y) + L(x,y) forx,yet.

Note that K is compact, hence the Killing form B,(-,-) is negative definite. The eigenvalues of ad,
for x € ¢ are purely imaginary, and ¢ acts faithfully on p via the adjoint representation, hence L(,) is
negative nondegenerate, and we put

A% min{—L(x,x) | x € &, By(x,x) = —1}.

We have 0 < A < 1. Let xy,...,x be an orthonormal basis for p with respect to the Killing form
Bgy(+,-). For indices 1 < i,j,k, £ < m we consider

Rijre ' By([xe, xi], [xj, 1)) = By([[xe, 2], 7], %) (5.8)

It is the curvature tensor on X, with the invariant Riemannian metric given by the restriction of the
Killing form on p = Te(X). In particular, it satisfies the identities (cf. [Spi99b, §4.D])

Rijre = —Rjire,  Rijee = —Rijer,
Rijke = Rrvir,
Rijke + Rirej + Rigir = 0 (“the first Bianchi identity”).

Of course these identities are immediate from the definition (5.8), and the geometric interpretation
of Rijr¢ will not be needed in what follows.
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Definition 5.2.1. For q =1,2,3,... consider a symmetric bilinear form on p ® p given by

def A
F(&,m) = 2q D& mj+ ) Rijee Eie M-
0 ijkl

The Matsushima’s constant is defined as

def def
m(G) = m(g) = max{0} u {q | FJ(£,£) >0 on p@p\{0®0}}.

This makes sense because the form Ziw Rijre &0 mjr s not positive definite for a trivial reason: there
is some coefficient R;jpy < 0, so we can set £ = £ = Ny = M = 1, and the rest to zero, making sure
the value Rijke &i¢ ik + Rjiek ik Nie = 2 Rijre is negative. However, if we add to this a positive definite
form % Zi’j &;j mij, then for q small enough the sum may become positive definite.

Remark 5.2.2. The definition of m(G) does look strange, and one probably can understand it only reading the
proof of theorem 5.3.1.

The constant A is relatively easy to calculate. The problem is to estimate the eigenvalues of the
bilinear form Ziik[ Rijre & Mje. The constants m(G) were determined case by case in [Mat62a] and
[KN62].

Example 5.2.3. Consider g = sly(R) with Cartan involution 8: x + —xT. In the decomposition g = ¢@p
the space t is given by the traceless antisymmetric matrices, and p by the traceless symmetric matrices.

A basis for t gives u def ( 0 1 ) and a basis for p give a def (é O) and b & (0 ! )

-1 0 -1 1 0
We see that [u,a] = —2b, [u,b] = 2a, [a,b] = 2u, hence ad,,, = < _g g ), and

L(u,u) = By(u,u) = tr(adyy, o ady,) = 8.
Trivially A = 1. Next we calculate the curvature tensor Rjjr; = Bg([x¢, xi], [x}, xi]). The values are
Ruaua = 32, Rubub = 32, Rabab = -32

(and the rest are deduced from these). The quadratic form Fg (&, £) is

1
F(&,8) = 5 (Ehu + Eia + £y + Edu + Eda + Eab + Ebu + Eba + Eb0)+
64 (_Suu gaa - guu sbb + gua gau + sbu gub + gaa Sbb - gab Sba)-

This form is never positive definite. For instance, take £,, = —1, &, = 1, and the rest = 0. We have
1/r — 64 < 0. So in this case m(g) = 0. A

Example 5.2.4. To see something less trivial, take g = sl3(R). Now the dimension is 8, a base for £ and
p is given by

01 0 0 0 1 0 00
g: u=| -1 0 0], v= 00 0)],w=1]20 0 1],
0 0O -1 0 O 0 -1 0
1 00 00 O 01 0 0 0 1 0 0 O
p: a=|(0 -1 0 ),b=]0 1 0Ol,c=11 0 0])],d=[0 0 0])],e=]10 01
0O 00 00 —1 0 0O 1 0 0 01 0
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The Killing form on sl3(R) is By(x,y) = 6 tr(x - y), and we calculate

Bg(-,-)| a b ¢ d e u v w

al12 -6 0 0 O 0 0 0

b -6 12 0 0 0 0 0 0

c| 0 012 0 O 0 0 0

d| 0 0 0 12 O 0 0 0

el 0 0 O 0 12 0 0 0

ul 0 0 O O 0]-12 0 0

vl 0O 0 0 0 O 0 —12 0

wi 0 0 O O0 O 0 0 —12

Further, we calculate the Killing form of £ and the linear form L(-,"):

Be() | u voow L( )| wu v oow
ul-2 0 0 u | —10 0 0
vi 0 -2 0 v 0 —10 0
w| 0 0 -2 w 0 0 -10

We see easily that A = 5/6. Since now p has dimension 5, we are not going to write down explicitly
the quadratic form Fg (&, £). Calculations show that m(g) = 1. A

Example 5.2.5. The general formula for A obtained by Matsushima in [Mat62b, §7] is the following.
Assume that g and £ are simple Lie algebras. Then

_ dimp  dimg-—dimt¢
~ 2dimé 2 dim¢

In particular, for sl,(R) we have

dim g = dimsl,(R) = n? — 1,

dim¢ = dimso,(R) = <;) = #

And we calculate

n+2
A= .
2n
This agrees with the value 5/6 above for sl3(R). Other values of A for classical cases can be found in
[KN62, p. 245]. In notation of Kaneyuki and Nagano, A = 2b g ). A

It is more difficult to see in general when the quadratic form Fg(£&,£) is positive definite. Such
calculations also can be found in [KN62].

Example 5.2.6. The Matsushima constant for SL,(R) is

M(SLa(R)) = H” - QJJ ,

by which we denote the biggest integer strictly smaller than (n + 2)/4
For SL,(C) the constant is

st = 3]
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Example 5.2.7. In the case that interests us, we take G’ = SL,/F over a number field F, and then the
restriction G = Resp,g G'. After we take real points, we obtain an identification

G(R) = SLn(R) x -+ x SLn(R) x SLn(C) x -+ x SLn(C).

_

ry ry
The only thing we care about is that m(G(R)) === oo. A

5.3 Matsushima’'s theorem

Recall from § 4.7 that we have a morphism

j: 13 € Q1(X)¢ — HIQ(X)") ~ HY(T\X,R) ~ HY(T,R).
—_—
closed forms

A theorem of Matsushima [Mat62b, Mat62a] tells that for co-compact I' this is an isomorphism up to
degree m(G):

Theorem 5.3.1. Let I' be a discrete subgroup of G and assume that I'\G is compact. Then the
morphism jit is

e injective for all q,

e surjective for g < m(G).

Of course this makes sense only if the constant m(G) is known. It turns out to be a relatively small
number; e.g. as we mentioned above, m(SL,(R)) = H"T*QJJ But if we are interested in the case n — oo,
we are in business—see the previous chapter for this.

The forms I¢} are harmonic (cf. [BWO00, §I1.3]), so ji' is injective by Hodge theory, under the assump-
tion that I'\G, and hence I'\X, is compact. (The manifold I'\X is not necessarily smooth, but we can
do the same thing that we did in the previous chapter: pick a torsion free normal subgroup of finite
index I < T and then H*(T',R) = H*(I",R)™/", (I&)" = ((I&)"")™", Q(X)F = (QX)™)/)

The nontrivial part is surjectivity, and all amounts to the following: if one has a I'-invariant form

ne (9(X)":
77=meld§f Z Niy,..., iqwi/\"'/\wq,

|Il=q 1<iy<-<ig<n

then it is G-invariant, provided g < m(G):
yv-n=0 forallyeg.
Since g = t @ p with [p,p] = ¢, it is enough to show the above for y € p, i.e. that
xi-m=0 foralll<i<m, I={i,....ig} < {1,...,m}

(recall that by x1,...,x, we denote an orthonormal basis for p).
The proof goes as follows. The form Fg on p ® p from the definition of the Matsushima’s constant

can be defined on p ® p ® 8 (I'\X) by tensoring with the scalar product (f, g)r\x = Sr\x f-gw. Then

we consider an element of p ® 6*(I"\X) given in the basis xi,...,xn by
(X1 =MLy Xy M)
Using certain manipulations, one can show that
Fl(xy-m, ..., xm-m) <0,

which means x; - n; = 0 since F{ is positive definite for ¢ < m(G).

80



Proof. We are going to use some explicit computations with the structure constants of g.

Recall that we have the Cartan decomposition g = ¢®p. We can fix a basis (x;)1<i<m of p, which is or-
thonormal with respect to the Killing form, and a basis (x4 )m+1<a<n of & which is “pseudo-orthonormal”’,
i.e. with the Kronecker 6 notation,

Bg(ri’xj) = Gijs Bg(xarxb) = —Ogb-

Now we are going to write some cumbersome formulas in the fixed bases, and in what follows the
indices i, j, k, ¢ always range from 1 to m and a, b, c,d range from m + 1 to n.
Let cf; be the structure constants of g. Since [p,p] = £, we get

[, x] Z CiiXa,  [Xa,Xi] anlx, (5.9)

m<a<n

For a form n e Q9(X)" we consider an expression

def q
o = DS ) mif
i,j,I
where
def def
et & g (@Bl | (b, w
I\X
Here and below I runs through the q element subsets of {1,...,m}.

Now using (5.9) we write
— 1
CI)( = ZCU Cij xa N, Xp - nI>F\X
i1

For the bilinear form L(-,-) on ¢ (defined in the previous section) we have
xa'xb an] Cpi = ZCU Cji = ZCU Cij-

Further note that x, and x},, are orthogonal, and L(x4,xp) = 0 unless a # b.
Hence

(q—

D!
7) Z L(xq,xp) {(xq - N1, Xb - 771>r\x =
a,b,l

q-— 1!
®(n) = — S Lt %) [ oy
a,l

Now by the definition of the constant A (see the previous section) we have an inequality

A(g—1!
a(m > 2 S (5.10)
a,l

If instead of taking I running through the indices 1 < j; < -+ < j; < m we take all the indices
1 <ji,....jq < m, then we have

1
CI’(’I):% Z |[xi x5] - m,.., 1q||r\x

Using again (5.9), we write
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(the latter since cj; = —cf; and [xi, 7] = x; - X7 — X - Xi).
Up to this point we just did some formal manipulations in fixed bases. Now we use the assumption
that 1 is a ['-invariant form, i.e. n e Q4(X)' =~ CI(g,&B*(I'\G)). The action of £ on the latter is given
by
Xa  Mjy,..jo = M([Xar Xy ], Xy -+ 2 ) + Mg, [Xas X ], o 2G,) + - 4 (LG, X -+ [0 X ])-
We write this as

1 ~
X My = Z(—l)” n([xa, 3,1, X - o0, Ty - -5 XG,)-
u

Now we have from (5.9) an expression [x,,x;,] = Y, ¢& Xk, 50

Xa * Mjpnjy = Z(—i)”_1 Co i Mk Xjys ey Ty e X5,)

We put this into (5.11) to obtain

a®(m = (-1 (ZC?}CEJJ <nk,]‘1 ..... foresda? XX M, iq>F\X'
a

i,jku

By assumption I'\X is compact, hence we can use the Stokes’ formula

(- f, gy +{frx-grx=0

Hence
q®(n) =- Z (-1 (20?1'02,15) <xi “Mejireeuria? X7 Wit fq>r <
i,j,ku a \
Jroenrfa
Now observe that from the definition of Rjje (formula (5.8)) follows Rijre = — Y, Cfi Cy» SO

q®(n) = 2 (—=1)"~" Rijei, <xi Mejurerfura” X Tlh,....iq>
ik
Jreees, ]q

Z Rijri, <xi-nk,,-1 ..... Jureeoda” X it jq>F\X'
i,j.ku

r\X

The last sum can be written as

q®(m) =q Y. Rie (X My X5 - Moy )\ x

ij.k,0
Joreees jq
Since Rjjre = —Rjjer, we have
®(n) =~ Z Rijee (Xt Nejoroopr Xj* Mo, jq>F\X-
Y
jQ ----- jq

Now going back to the inequality (5.10),

A
D <2q Dilxa - mlfv + D) Rike (i ey X+ M, ]'q>F\X> <O0.
2 a

Joreenfq i,jk,¢
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Finally observe that in the brackets we have a form on (p ® p) ® 8*(I'\X), given by tensoring Fg

with the scalar product (-, -)p\x on 8*(I'\X). For ¢ < m(G) the form F 4 is positive definite, hence our
form is positive definite as well, and we conclude

Xi " Nejy,..jy =0 forall1 <i,€,jp,...,Jq < m.
This is what we wanted to show. |

Hopefully, after reading this proof, the definition of Matsushima’s constant becomes a bit more clear.
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Chapter 6

A theorem of Garland

In this chapter we consider a theorem due to Garland [Gar71] regarding the injectivity of morphism
jo: I — H*(',R).

We already reviewed in § 5.1 the classic Hodge theory. If the manifold is not compact, then it does
not work, but one can still show some facts if M is a complete Riemannian manifold.

References. The discussion of square integrable forms follows [Bor74, §1-2]. The Garland’s theorem is taken
from [Bor74, §3].

6.1 Complete Riemannian manifolds

Let M be a smooth, oriented, connected Riemannian manifold. M has a natural metric: for two points
x,y € M one puts

d(x,y) def inf(length of a piecewise smooth path joining x and y).

A Riemannian manifold M is said to be complete if the corresponding metric space (M, d) is com-
plete (i.e. every Cauchy sequence in (M,d) converges). A characterization of complete Riemannian
manifolds is given by Hopf-Rinow theorem [dC92, Chapter 7]. The following are equivalent:

1. M is complete as a metric space.
2. The closed and bounded sets in M are compact.

3. M is geodesically complete, meaning that any geodesic y(t) starting from a point x € M is
defined for all values of the parameter t € R.

Recall that a continuous function f: M — R is called proper if for every compact subset K c R its
preimage f~!(K) € M is compact. The following is a useful completeness criterion [Gor73, Gor74].

Theorem 6.1.1. A Riemannian manifold (M,g) is complete if and only if there exists a proper
B*-function p: M — [0, ) such that d p(x) has bounded length, i.e. for some constant ¢ > 0,

[dp(x)||x < c for all x € M.

Example 6.1.2. The Euclidean space R" with the canonical Riemannian structure is of course complete.
For a point x = (x1,...,x,) € R" it is natural to consider its distance to 0 = (0, ...,0):

Il = /2t + - + x5
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This function is not smooth at 0. To fix this, for some € > 0 we replace it with

u(£)=\/xf+---+x,%+62.

We compute
dp(x) =

1
) (xq1dxg + -+ + xpdxy).

Now

x| x|

A = 555 < Tx+e

For a general proof of the theorem, we fix a point xo € M and consider

rrM — R,
x +— d(xp,x).

This is a continuous function, and by the triangle inequality it satisfies
Ir(y) —r(x)| <d(x,y),
i.e. it is Lipschitz (with Lipschitz constant 1). This function is proper: indeed, for each R > 0 the set
{xeM |d(xg,x) <R}
is closed and bounded, hence compact (by Hopf-Rinow theorem). The function is not 8, but for every
€ > 0 there exists a B*-approximation r.: M — R such that

Ire(x) — r(x)] < e, (6.1)

and

ldre(x)]|x <1+e€ (6.2)

—for this see e.g. [Gaf59, §3] or [dR84, §15]. Now (6.1) means that r. is also a proper function, and (6.2)
is the bound that we need.

Conversely, suppose that on M there exists a proper function g with |dp(x)|, < c. We would like to
show that M is complete. Let y: t — y(t) be a geodesic segment with t € I for some bounded interval
I c R. Assume that 7 is parametrized so that |dy/dt| = 1. Suppose the length of 7 is finite. Then since
|dy/dt| = 1, the variation of oy on I is bounded, and so im 7 is contained in a bounded set (because
p is a proper map). But then im 7 can be extended (at both ends) to a longer geodesic segment. Hence
M is complete. |
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Lemma 6.1.3. Let M be a complete Riemannian manifold. Then there exist

e a family of compact sets C,. c D, for r > 0 such that C, contains the interior of C,. if r > r’
and M is the union of the C,,

e a family of smooth functions 0,: M — R for r > 0 with values 0 < 0,(x) < 1, such that

1, xeC,,
%(X)=1 0 x¢D,

e a constant c,

such that
|doy (x)|« <cr ' forall x € M.

First let us explain why it is useful. We have the great Stokes’ formula (5.6), which works for
differential forms with compact support. If some form « fails to have compact support, then we can
replace it with o, - a, apply Stokes to it, and then look what happens as r — oco. To analyze the case
r — o, we need the bound on |do,(x)]x.

Proof. To prove the lemma we recall that one can define a smooth function m: [0,00) — [0,1] such
that m(x) = 0 for x € [0,1] and f(x) =1 for x € [2, ).
Indeed, one takes

det | O, x <0,
o(x) = { e 1% x>0.
And
m(x) d;f 9(2 — I)

O(x—1)+6(2—x)

(Cf. the construction of “bump functions” for partitions of unity.)

m(z)
{L
N >
0 1 2

We take 0,(x) o m(p(x)/r), where p is given by the previous theorem, and it is clear that

|do(x)[x < c'rtdpu(x)le <cr .
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6.2 Adjunction («a, 68),, = (da, ), on complete manifolds

Proposition 6.2.1. As before, let M be a connected complete Riemannian manifold. Let a € QI(M)
and B € QI+'(M). Assume that the functions

= (da)x, Br)yr X (0x, (6B)x )

x = o]l (Bl

are absolutely integrable on M. Then

(da, By = (@, 6B)y

Proof. If one of a and B has compact support, then this is the usual Stokes’ formula (5.6). If not, we
replace a with o, - a where 0, is taken as in the lemma 6.1.3. Then o, - a has compact support, and

(Or -, 6B)py = (d(0r - @), B)y -

By the Leibniz rule,
d(o,-a) =do, A a+ o, -da.

We take the limit r — oo:

hrr} (op -, 8B)yy = llm (doy A a,B)y + lir‘r;(or -da, By

— —
=(a,6B) =(da,B)y

Since (0, - a, 6B),, tends to (a, 6B),, and (o, - da, 8),, tends to (da, B),,, it remains to show that

hm (doy A a, B)M ©f Jim (dop(x) A ax, Br) w=0.
M

r—oC r—o

We apply the Cauchy-Schwarz inequality for inner products and an inequality for wedge products
(remark 5.1.5):

|{dop(x) A ax,Br)y | < [dop(x) A axlx - [1Bellx < [[dor(x)]lx - la]x - 1Bx]x < cr! lacellx - 1B |-

Thus
|(dop A a.B)|m <cr™ J’M llote [+ 1Br [«

which tends to 0 as r — 0. [ |

In particular, we have the Cauchy-Schwarz inequality

[{a. B)ne | < llafnr - [[Bllw-

‘ [ o, j ol | 1Bl @

With this the proposition immediately implies
Corollary 6.2.2. As before, let M be a connected complete Riemannian manifold.

Let a € Q4(M) and B € Q4+1(M) be differential forms such that a, da, B, 58 are square integrable
on M. Then

(da, By = (@, 6B)y

Using the same kind of arguments as in the proof of proposition 6.2.1, one deduces the following
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Proposition 6.2.3. If a is a form on a complete Riemannian manifold, then
Aa =0 < da=0and Sa =0 if a is square integrable.

This is originally due to Andreotti and Vesentini [AV65]; we follow [dR84, §35].

def

Proof. We use again lemma 6.1.5 and replace a with a, = o7 - a. Now a, has compact support, and

(da,day), = (6da, ay), - (6.3)
By the Leibniz rule,
da, =do? A a + 0?7 -da =20, -do, A a + 07 -da.
Hence
(da,da,), = (da, 20, - do, A @), + (da, 0f - da) . (6.4)
Now we have (da, o7 -da) = (0, -da, o, - da), and (da, 20, - do, A a), = (0, -da, 2do, A a),, SO
putting together (6.3) and (6.4),
(op -da, 0, -da), = (&da, a, ), — (0 -da, 2d0y A @), . (6.5)

Similarly, we have

(6a, Say), = (dba, ay), .

We again apply the Leibniz rule, keeping in mind the definition of operator &:

Sa, = tkodoka,
=+ %od(07 *a)
=+ %(do? A ka+ 02 -dxa)
=+ %(20, -do, A xa) + 07 - Sa.

(8a, 6a), = (6, (20, - doy A * @), + (Sa, 0 - Sa) .
So

(o - Sa, 0, - b)), = (dba, ), £ (0p - S, *(2d0, A k@), - (6.6)

Now summing (6.5) and (6.6),

|oy - da|? + ||oy - S| = (Aa, &), — {0y - da, 2d0, A @), +(0) - Sa, *(2d0, A k@), - (6.7)

If Aa = 0, then (Aq, &), = 0, and we will show that da = éa = 0 if we show that |0, -da|2 + |0, -Sa|?
tends to zero as r — . We use the Cauchy-Schwarz inequality combined with the inequality of
arithmetic and geometric means:

1

(< (G0 < 5, + 5 (60,

| (0, -da, 2doy A a), | < = - |0 -dal? +2-|do. A a2,

| (0 - Sat, ¥(2d0p A k@), | < = - |0n - Sa|2 +2- |doy A * a2

NO| = DO =~
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We put these inequalities together with (6.7) and get
|ow - de|2 + [0y - Sa||2 < 4+ |dop A al? +4 - |dow A % al?.

Now it remains to note that ||do, A a|? and ||do, A % a|? are bounded by |do; |2 - |a|? (cf. remark 5.1.5).

Since |do,|? < cr~? for some constant ¢ not depending on r, we conclude that |0, - da|? + |0, - Sa?

tends to zero as r — . |

6.3 Square integrable forms

We consider the following spaces:

° Q?Q)(M ) is the space of square integrable g-forms.
. %qQ (M) c Q((IQ)(M ) is subspace of square integrable harmonic g-forms.

e HY R, (2)(M) c H{y (M) is the space of g-dimensional cohomology classes represented by square

integrable forms.

Remark 6.3.1. Naturally, one has a cochain complex
d d
0 — Qo) (M) S Q) (M) S Q) (M) —

and its cohomology is called L>-cohomology of M. For this see a survey [Dail1].
The space HgR'(z) (M) should not be confused with L2-cohomology. For instance, in the easiest example M = R!

it is not difficult to see that
. 9 1y _ o0, q = 1,
dimg (g-th L*-cohomology of R*) = { 0, q#£t,

which differs radically from de Rham cohomology.
Indeed, Q%Q)( 1) is a huge space, containing all 1-forms with compact support. Among them in the image

of 9(2)( H - Q%Q) (R!) lie just differential forms %fdx with ¥(x) a square integrable function, and for them
necessarily SR1 = Y dx = 0. So we see that

Q) (R

O (@0 (®Y) — 2y (RD)

= Q0.

There are natural maps
Jii
FCoy (M) —— Hp o) (M) H{ (M)

The second map v is just the inclusion. The first map p is induced by the natural surjection
Q?Q)(M ) — HffR,(Q)(M ), and actually p itself is a surjection by a theorem of Kodaira [Kod49, §4], which
says there is an orthogonal decomposition

Q) (M) = 9, (M) @2, (M) @ 6% (M).

Here “cpt” means “with compact support”, and = denotes the closure. It follows from the Kodaira
decomposition that if a € Q?Q)(M) is a closed form, i.e. da = 0, then a = H(a) + do for some
F(a) € F({y) (M) and o € Q17 (M).

If M is compact, then Hodge theory tells us that g and v are bijective; in general it is not true: pu is
not necessarily injective (different harmonic forms may represent the same cohomology class) and v is
not necessarily surjective (not any cohomology class can be represented by a square integrable form).
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Here is a weak form of injectivity for v:

Proposition 6.3.2. As before, let M be a complete Riemannian manifold.
Let a € %2’2)(M) be an exact square integrable harmonic form such that a = do for some

o€ Q?Q_) 1(M ) (N.B. 0 being also square-integrable). Then a = 0.

In words: on a complete Riemannian manifold, a non-zero square integrable harmonic form is
not the differential of a square integrable form.

Proof. If a is harmonic and square integrable, then by proposition 6.2.3 one has also Sa = 0. So
0,do, a,do are all square integrable, and one has by corollary 6.2.2

Jal}s = (@ a)y = (do,do)y, = (0, 8a)y, = 0.
|

Remark 6.3.3. In the view of proposition 6.2.1, instead of o € Q‘gg)i(M) it is enough to assume that the function
X > [|ox|x - [|ax]x is integrable.

6.4 A Stokes’ formula for complete Riemannian manifolds

Proposition 6.4.1. Let M be a complete Riemannian manifold. Let X be a vector field on M such
that | X||x is bounded and Xx(w) = 0.
Let f: M — R be a 8'-function such that f and Xf are absolutely integrable. Then

fMXfwzo.

Proof. The Cartan’s magic formula gives
Lx(fw) =dix(f w) + ixd(f w).
—
=0
On the other hand, because of the assumption £x(w) = 0, we have
Lx(fw)= Lxf o+f Lx(w) =Xfw.
=Xf =0

Hence (X f) w = d 1x(f w). The idea is the same as already used before. If f has compact support, then
we can use the Stokes’ formula. Let D be a bounded open regular domain containing the support of f.
Then

[ cene= | desran = [ desro)= [ wro=o.

oD
Otherwise, we use lemma 6.1.3 and replace f with o, - f, which has compact support, hence

0= [ Komo=| r-X@wt [ ax(e
We need to show that

lim | o, - X(f)w = J Xfw and lim | f-X(op)w=0.
M

r—o M r—o M
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The first is clear. For the second one, observe that by the Cauchy-Schwarz inequality
|Xop(x)| = [ (Xx, dop(x0)), | < [ Xiclx - [dop(20)]x < [ X« er?,

so Xo, is bounded on M (we assume that | X, |, is bounded). Now by Cauchy-Schwarz

[ 1 xt00] < et ert [ ol
M xeM M
and the latter tends to 0 as r — 0. [ |

Corollary 6.4.2. With the same assumptions on M and X, let f,g: M — R be functions of class 3.
Assume that the functions

h:x - f(x)-g(x), x— Xf(x)-gx), x-f(x) Xg(x)
are absolutely integrable on M. Then

(Xf,g)p + (f, Xg)p = 0.

Proof. We have the Leibniz rule
X(f-g)=X(f) g+f-X(g).
Integrating this over M, we obtain

JM(X(f 9))(xX)w = JM((Xf)(x) g(x))w+ fM(f(x) - (Xg)(x)) w.
But the integral on the left hand side satisfies the previous proposition, hence it is 0. |

Note that in the case of compact support this follows immediately from the usual Stokes’ theorem,
so the formula (Xf, g),, + (f. Xg),; = 0 can be viewed as some analogue of Stokes.

In particular, we record a special case of corollary 6.4.2:

Proposition 6.4.3. Let M be a complete Riemannian manifold. Let X be a vector field on M such
that | Xy||x is bounded and £x(w) = 0. Let f,g: M — R be functions of class G'. Assume that
f,g,Xf, Xg are all square integrable on M. Then

(Xf. g + (f, Xg)y = 0.
(For this apply the Cauchy-Schwarz inequality | (f,g)y, | < |f|m - |g]m-)

6.5 Garland’s theorem

Now we are ready to go back to Matsushima’s theorem 5.3.1. It was proved under assumption that I'\X
is compact. Note that most of the proof consists of formal manipulations with formulas; one important
point is the use of Stokes’ formula

<x 'f'g>I‘\X +<f,I 'g>[‘\x = 0.

As we just saw above, this can be recovered if we work with square integrable forms (the other as-
sumptions are satisfied if we take X = G/K and the vector fields as in Matsushima’s theorem proof).

In the proof of Matsushima’s theorem we made use of Lie derivatives “x; - n;”. This is problematic,
since if we assume that 7 is square-integrable, then x; - ny a priori is not square integrable anymore.
To overcome this, one can replace n with convolution

Na=nra™ Y (sa)w,
I

where a € C‘;;t(G) a smooth function on G with compact support, that is invariant under the action of
K (recall that we work with complex C9(g, £; 6™ (I'\G))).
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Definition 6.5.1. For two smooth functions f,g: G — R their convolution f « g: G — R is given by
(1)@ | sy g dy,
G

where dy is a Haar measure on G.

Now if f € L*(I'\G) and a € Cot(G), then f = a is a smooth square integrable function. Moreover, if
we act on this by elements D € U(g), then D - (f = a) is square integrable as well. It remains to find a
sequence {a;} such that n * a; — 1. This is done using “Dirac sequences” [Lan75, §1.1], [HC66, §2].

Definition 6.5.2. A Dirac sequence on a Lie group G is a sequence of smooth functions 6,: G - R
such that

1. 6, = 0 for all n.
2. §5 6n(x)dx =1 for all n.

3. For every neighborhood of identity V 3 e and for every € > 0 one has

6n(x)dx <€
G\V

for all n sufficiently large.

Example 6.5.3. For instance on G = R! one can take functions &,(x) - m

The first and third conditions are clear; the second condition is a calculus exercise:

6n(x)dx—;£%71+n2x2dx
. v = nx _1 JX 1
|dy=ndx | )  1+y2

[ve]

1
= arctany|y=_% =
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Dirac sequences exist, and one can replace the third condition with a stronger one:

3'. For every neighborhood of identity V 3 e the support of 6, is contained in V for all n sufficiently
large.

So one can make the Matsushima’s argument work for square integrable forms, and the result is
the following:

Theorem 6.5.4. Let ' ¢ G be a discrete torsion free subgroup. I'\X is not assumed to be compact
anymore. Let q < m(G) and suppose that every class of Hi(g,t 6*(I'\G)) is representable by a
square integrable form. Then j}: I} — HY(T,R) is surjective.

This is essentially due to Garland [Gar71, Theorem 3.5]. This result is crucial in Borel’s original
proof of theorem 4.7.2.
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Appendix A

Algebraic groups

Here we collect some rudiments of the theory of linear algebraic groups that are needed in the main
text. We also discuss very briefly arithmetic groups.

References. We relied mainly on the notes of J.S. Milne available at
http://jmilne.org/math/CourseNotes/ala.html

A nice survey for arithmetic groups is [Ser79].

A.1 Basic definitions

Let k be a commutative ring.

Definition A.1.1. An affine group G over k is a group object in the category of representable functors
k-Alg — Set. If G is represented by a finitely generated k-algebra, then it is called an affine algebraic

group.

This means that one has a functor G: k-4lg — Set which is isomorphic to the functor Hom(O(G), —)
for some finitely generated k-algebra O(G) which we call the coordinate ring of G. Further, there is
a natural transformation m: G x G = G, such that for any k-algebra R the multiplication morphism

m(R): G(R) x G(R) —» G(R)

gives a group structure on G(R). The latter is called the group of R-points.

Example A.1.2. Let G be an affine algebraic group over Q. Then G(R) is a Lie group. A

e A morphism of affine k-groups G — H is just a natural transformation of functors G = H.

e The product of affine k-groups G x H is defined as the functor R v G(R) x H(R). It is repre-
sentable, since

Homy, 44 (0(G), R) x Homy_ 44 (O(H), R) = Homy, 44 (0(G) @ O(H), R).
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Remark A.1.3. We recall that the Yoneda lemma tells us that the category of representable functors k-Aly — Set
is isomorphic to the opposite category k—ﬂl[gop. Recall that k—ﬂ[gop is isomorphic to the category of affine schemes
over k. So affine groups over k are the same as group objects in the category of affine schemes over k, i.e. affine
group schemes over k.

See [EHO00, Chapter VI].

Example A.1.4. Let GL, be the functor which sends a k-algebra R to the set of invertible n x n matrices
with elements in R. In other words, GL,(R) are the matrices with determinant # 0. We see that GL,,
is an affine algebraic group, since this functor is isomorphic to Hom(A, —) with A given by

det B[X11, Xa9, -+, Xon, V]
det(Xij) V-1

2

Here det(Xj;) is the polynomial in n” variables Xi1, Xi2, ..., Xnn given by

det(Xi,-) déf Z Sigl’l((f) X1,g(1) v ano‘(n).

0ES,

The group GL, is usually denoted by G, (multiplicative group), since G,,(R) can be identified with
the multiplicative group R*. A

Example A.1.5. Let SL, be the functor which sends a k-algebra R to the set matrices n x n with
elements in R having determinant 1. It is an affine algebraic group represented by

def k[ X11, X142, ..., Xnn]

A
det(Xij) -1

A

We say that H is an affine subgroup of G if H is a closed subfunctor of G such that H(R) is a
subgroup of G(R) for all k-algebras R. The fact that H is a closed subfunctor of G means that H is
representable by a quotient of O(G).

Example A.1.6. SL, is an affine subgroup of GL,. A

Definition A.1.7. An affine subgroup of GL,, is called a linear algebraic group.

A.2 Extension and restriction of scalars

Let L be an algebra over k. Then

e Starting from an affine algebraic group G over k, one can obtain an affine algebraic group Gy,
over L. This is called the extension of scalars.

Namely, for G = Homy_44(0(G), —) we define a functor Gi: L-Alg — Set by

GL(R) € Homy_a;,(0(G) ®k L, R) = Homy, 45(0(G), R).

e Starting from an affine algebraic group G over L, one can obtain an affine algebraic group Resy/, G
over k. This is called the restriction of scalars.

Namely, we define a functor Res, G: k—le[g — Set by

Res;x(R) &' G(R @ L).

If Resy/, G is representable and gives an affine group, we say that the restriction of scalars exists.

This was defined originally by André Weil in [Wei82, §1.3], and sometimes it is called Weil re-
striction.

96



Proposition A.2.1. Assume that L is finitely generated and projective as a k-module. Then for any
affine L-group G the restriction of scalars Resy, G exists.
The functors G v~ G, and G v Resy . G are adjoint; namely, there is a natural bijection

Homy,(Gy, H) = Homy (G, Resy, H).
(For this see e.g. [Mil12, §V.5].)

Proposition A.2.2. Let k'/k be a finite separable field extension and let K be a field containing all
k-conjugates of k'; i.e. such that |Homy(k', K)| = [k’ : k]. Then

(Respx Gk = [] aG,
a: k'—>K

where aG is the affine group over K obtained by extension of scalars with respect to a: k' — K.
(Again, we refer to [Mill12, §V.5].)

Example A.2.3. For instance, if we consider G’ = SL,/F over a number field F and then take its
restriction G = Resr/g G', then the real Lie group G(R) decomposes as

SLp(R) x -+ x SLy(R) x SLy(C) x - -+ x SL,(C),

-/

~ ~
ry ro

where ry is the number of real places on F and ry is the number of complex places on F. A

A.3 Arithmetic groups

Definition A.3.1. Let G be a linear algebraic group over a number field F, i.e. a subgroup of GL,/F.

Consider the group Gy, «f G(F) n GL,(Of). A subgroup I' ¢ G(F) is called arithmetic if T is

commensurable with Go,, that is, I' n Gp, has finite index both in [' and Gp,. In general, a group I' is
called arithmetic if it is an arithmetic subgroup in G(F) for some linear algebraic group G/F. Observe
that any subgroup of finite index in I' is also an arithmetic subgroup.

Example A.3.2. SL,(OF) is an arithmetic subgroup in SL,/F. A
Remark A.3.3. Let I be an arithmetic subgroup of a linear algebraic group G’/F < GL,/F. Take the restriction of
scalars G & Resp/q G'. Then it is naturally a subgroup of GL,q where d = [F : Q]. Note that under identification of
G(Q) with G'(F), the subgroup Gz = Gy, is of finite index. So one does not loose anything considering arithmetic
groups only for F = Q.

Arithmetic groups enjoy various nice finiteness properties.

Theorem A.3.4. Let I' be an arithmetic group. Then

1. T is finitely presented. That is, I' = (X | R), where X c I is a finite set of elements and R is
a finite set of relations.

2. Any '-module M that is finitely generated over Z, the cohomology groups H*(I', M) are finitely
generated.

This was proved in [Rag68].

97



Further, we have the following useful fact:

Proposition A.3.5 (Selberg’s lemma). Let k be a field of characteristic zero. Let I' be a finitely
generated subgroup of GL,(k) (in particular, arithmetic groups satisfy these requirements). Then
I' admits a torsion free normal subgroup I’ < T" of finite index [I" : I'].

This was proved by Selberg in [Sel60]. It follows immediately from the following:

Proposition A.3.6. Let A be a finitely generated integral domain of characteristic 0. Then the group
GL,(A) contains a torsion free normal subgroup of finite index.

The elementary argument below is taken from [Alp87]. In fact, in the case of GL,(Z) this was first
observed by Minkowski.

Proof. The fraction field K ©f Prac A is a finite algebraic extension of degree d of a purely transcen-

dental field & & Q(X1,...,Xm). We fix a basis of K over k. We can express the generators of A in

terms of this basis, and it is clear that the coefficients lie in a finitely generated ring

BdéfZH [Xl,...,xm,i]
s f

for some s € Z and f € Z[Xj,...,Xn] (this is exactly where we need to assume that A is finitely
generated).

A fixed basis of K over k gives an injective morphism p: GL,(K) — GLy4(k) which gives a repre-
sentation p: GL,(A) — GLpq(B).

Now let x € GLhq(B) be an element of finite order a. It satisfies the equation X¢ = 1. The minimal
polynomial of x has distinct roots that are some roots of unity. The coefficients of the characteristic
polynomial of x are the symmetric functions in roots of unity, hence these are algebraic integers in

kY Q(X4,...,Xm)- So the trace of an element of finite order in GL,4(B) is an integer with absolute
value < nd. This means there are finitely many possible traces for elements of finite order; we denote
the corresponding finite set by .

Now let p be a prime number such that

*pfs,
e p does not divide the coefficients of f,

e p does not divide the nonzero integers of the form t — nd for t e .

We take ay,...,ay € ?p so that f(ay,...,am) # 0. Consider a homomorphism
0:A— Fp
given by reduction of the coefficients modulo p and evaluation (Xj,...,Xn) — (ai,...,am)-
Now o(A) =F,(as,...,am) is a finite field, hence m ¢ ker o is a maximal ideal of finite index in A.

We consider the induced homomorphism
GLnd(A) — GLnd(A/‘m).

Let I'(m) denote its kernel and let I def GLpa(B) n I'(m). The latter has finite index in GLnq(B).
Every element of finite order x € I'g has trace trx € I and trx = nd (mod m), hence p | (trx —nd).
By our choice of p it implies tr x = nd. Since the minimal polynomial of x has distinct roots, this means
that x is diagonalizable. We must conclude that x = 1.
So Iy is a torsion free subgroup of finite index in GL,q(B). [ |
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Appendix H

Homotopy theory

Here we collect some facts from algebraic topology that are used in chapters 2 and 3. By default all
spaces are assumed to be pointed, having homotopy type of connected CW-complexes, with finitely
many cells in any given dimension. The base point is usually dropped from the notation.

References. For proofs of the basic facts we refer to the great J.P. May’s book [May99].
The book on spectral sequences is [McCO1].

H.1 Hurewicz theorem

Everyone knows the Hurewicz theorem, but it is so important that we state it for the record.

Theorem H.1.1 (Hurewicz). There is a well-defined natural homomorphism

h: m,(X) - Ho(X) (n=1),
[f] = f«[S"],

where f: S® — X is a map representing a class in i, (X), the map f.: ﬁn(Sn) — FIn (X) is the induced
homomorphism of homology groups, and [S"] is the generator of H,(S").

e If X is a connected space, then h: 7 (X) — Hy(X) is the abelianization homomorphism.

e If X is a (n — 1)-connected space for n > 2, then h: m,(X) = H,(X) is an isomorphism and
h: 7ty 1 (X) - Hp11(X) is an epimorphism.

See [May99, §15.1] for this.
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H.2 Fibrations and cofibrations

Definition H.2.1. A map i: A — X is called a cofibration, if given map f: X — V¥ (for any V) and
h: A x I — ¥ such that the following diagram commutes

io
AC———> Ax]I

then there exists a map h: X xI— V.

Definition H.2.2. A map p: E — B is called a fibration, if given amap f: Y - Eand h: Y xI — B
such that the following diagram commutes

lﬂ

><<—)o e
NI
\
\
Oo«Tm

=\
:l

then there exists a map h:YxI—E.
Having in mind the adjunction Hom(V x I, E) =~ Hom(Y, E'), we can draw a diagram

BI

B
p!
AN
\
E

% EI
which is dual to the definition of cofibration.
Proposition H.2.3. 1. Leti: A — X be a cofibration. Then its pushout is again a cofibration.

2. Let p: E — B be a fibration. Then its pullback is again a fibration.

BuaX<—X AxgE——E
R
i i p p
B A A———>B

(This is deduced from abstract nonsense.)
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Definition H.2.4. For a fixed topological space A, the category of spaces under A consists of maps
i: A — X, and the morphisms are commutative diagrams

N

Proposition H.2.5. If in the diagram above i and j are cofibrations and f is a homotopy equivalence,
then it is actually a cofiber homotopy equivalence, meaning that the homotopy is given by

X

h: X xI—-1,
h(i(a),t) =j(a) foraeA.

Definition H.2.6. For a fixed topological space B, the category of spaces over B consists of maps
p: X — B, and the morphisms are commutative diagrams

f
X—YVY
BN
B
Proposition H.2.7. If in the diagram above p and q are fibrations and f is a homotopy equivalence,
then it is actually a fiber homotopy equivalence.

Definition H.2.8. Recall that for any continuous map f: X — Y we can take the associated cofibration
or fibration as follows. Consider the mapping cylinder M; and mapping cocylinder N; given by

def

Mf lef def

YUf(XXI)%XXI NfZXXfPYHPY

I T T

Y<~——TX X—Y

f f

Here by PY we denote the path space Y/, and p: PY — V is the path space fibration w + w(0). Now
f can be factorized as

f f

M,«%y X4v>Nf

—_—
cofibration fibration

Here r and v are homotopy equivalences (with inverses given by i: ¥ — M; and p: Ny —» X
respectively).

r(y) ©yonvy,

r(x,s) Olgc]‘(Jc) on X x I.

v(x) = (2, Cpx))

where cy(y) is the constant path.
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j is a cofibration:
Loy def
j(x) = (x,1).

p is a fibration:

p(x, ) E w(1).

Definition H.2.9. Given a map of pointed spaces f: X — Y, its homotopy cofiber and homotopy fiber
are given by

def

CE vy CcX=—2CX F € X x, Py —> PV

I N |
VX X————>V
Here CX is the (reduced) cone over X:

def X x1I
X = {x}xTuXx {1}

The morphism p: PY — Y is again the path space fibration.

Proposition H.2.10. Let p: E — B be a fibration, let « € B be the base-point of B and let F def p~ (%)
be a fiber. Then one has a long exact sequence

e T (F) 25 710(E) 25 710(B) S 5104 (F) — -+ — 70(F) — 719(E) — 0

We refer to [May99, §9.3].

H.3 Leray-Serre spectral sequence

We make a brief summary of the needed facts about spectral sequences. The reference for everything
is [McCO1].

Recall that a (first quadrant) homological spectral sequence is a family of objects Erq (where
Ep o =0 unless p,q > 0), coming with differentials

dpq:Epg — Ep

I DI B D
R ISR P |
R U e T P

such that d” o d” = 0. The object E{,fai is given by the homology of E{, at E} ;:

dr dar
r r r
7 Eptrg-r+1 EIp,q - Epfr,q+r71 e

r
P4l kerd,
pa4 = ; r :
im dp+r’q_r+1
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Dually, a cohomological spectral sequence is a family of objects EX’? (where EX'? = 0 unless
p,q = 0), coming with differentials
df'q: Erl')'q — E114)+r.q7r+1.

—e—po—po . . . . . . .

— P Ppoe—po . . . . . .

—be— e
— e b e
— e

e be——pe

o—Ppo—Ppo—po . . . . . .
o— P Ppo—po .\.‘\.‘. . . .
E(;o El.. EQ“ E?:o

_ 1 d d _
.. — Epratr N EPa &, EPHra r+1 .

kerdb

. —r,q+r—1"
imdy "1

Eprq ~

r+1 =

Suppose F — E & B is a fibration, where B is path connected and F is connected.

Theorem H.3.1 (The homology Leray-Serre spectral sequence). Let G be an abelian group. There
is a first quadrant spectral sequence

Ez%,q = Hp(B; %q(F; G)) = Hp1q(E; G).

Theorem H.3.2 (The cohomology Leray-Serre spectral sequence). Let R be a commutative ring.
There is a first quadrant spectral sequence of algebras

ES'? = HP(B; 9C1(F; R)) = HPT9(E; R).
The differentials satisfy the Leibniz rule:
ugv=(—1)P%u—v forueEl9,veEl".
For both theorems see [McCO01, §5.1].

From the Serre spectral sequence one can deduce the following [McCO01, Example 5.D]:

Proposition H.3.3 (Serre exact sequence). Let F — E — B be a fibration with B simply connected.
Suppose that H;(B) =0 for 0 <i < p and H;(F) =0 for 0 < j < q. There is an exact sequence

Hp+q—1(F) - p+q—1(E) - p+q—1(B) - p+q—2(F) -+ > H(E)—>0
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Example H.3.4. Let 1, € H'(K(Q, n); Q) denote the “fundamental class” represented by the identity
map K(Q,n) — K(Q, n).

The cohomology algebra H*(K(Q, n); Q) is the exterior algebra on t, if n is odd, and the polyno-
mial algebra on 1, if n is even.

For n = 1 we have K(Z,1) = S!, and the statement is trivial.
For n = 2 a model for K(Z,2) is the infinite-dimensional complex projective space CP”*, and the
cohomology ring H*(CP*, Z) is known to be isomorphic to Z[iy] (see [Hat02, Theorem 3.19] and [May99,
Chapter 23]).

We proceed by induction on n using the Serre spectral sequence for the path space fibration

K(Q,n) - PK(Q,n +1) > K(Q,n +1).

Ey? = HP(K(Q,n +1); 59(K(Q, n); Q)) = HPTI(PK(Q,n +1); Q).

) 2.q-1 4q—2 2k,q—k
0— EN? - EPT971 L EPFRATE L L EPTRRATR L0

ln transgresses via dp 1 tO tpy1.
If n is odd, then the Leibniz rule implies that

q _ ,q+1
dn+1(‘n+1 tn) = My

and the spectral sequence is concentrated in O-th and n-th rows (the picture shows n = 3).
If n is even, then the Leibniz rule implies that

dny1(}) =qtnta lg_ir

and the spectral sequence is concentrated in O-th and (n + 1)-st columns (the picture shows n = 2).

.
.
.
.
.
E
.

Z

.
.
.
.
.
.

page 3 page 2

A

Example H.3.5. Let us compute the cohomology of SU,. It naturally acts on C". The action restricts
to a transitive action on the unit sphere S>"~! < C". The stabilizer of a point (0,...,0,1) € $>*~! can
be identified with SU, 1, hence SU,/SU, 1 = S, and this gives a fibration

SU,_4 — SU, — §*>1.

We know that SU, =~ S, hence the cohomology ring is H*(SU,; Q) = A(x3), the free exterior algebra
on one element of degree three. In general

H.(SUH) = A(I3,1’5, e ,xgn_1).

This is obtained by induction using the Leray-Serre spectral sequence—cf. [McCO01, Example 5.F].
A
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H.4 Acyclic maps

Recall that a space X is called acyclic if H. (X) = 0. One has the following result [Spa66, 7.5.5]:

Fact H.4.1 (Whitehead theorem). A space X is contractible if and only if X is acyclic and it has
trivial fundamental group 1 (X) = 0.

If we drop the assumption that 711 (X) = 0, then an acyclic space X is not necessarily contractible,
but we can extract some information about 1 (X).

Proposition H.4.2. Suppose X is acyclic. Let 1 < (X). Then Hy(rt,Z) = Hyp(r,Z) = 0.
Proof. Consider the classifying space Bsr and the fibration
X - X — B,

where X denotes the universal covering space of X.
We have the Leray-Serre spectral sequence

E2 . = Hy(Brt, Hy(X)) = Hpq(X).
There is a short exact sequence
0— Efy — Hi(X) = Efy — 0

Observe that Ef, = E},, since for r > 2 there are no nonzero differentials involving E7,.

The only nonzero differential involving Ejj, or E}  is the knight move d?: E} , — E3,.
We have a short exact sequence

oL d? e
0— Ejp— E%,o - E(%A — Egy =0
Putting all together, we have
0 — Hy(X) — Hy(Br, Hy(X)) — Ho(Br, Hy(X)) — Hi(X) — Hy (B, Hy(X)) — 0

Because of the assumption that X is acyclic, Hy(X) = Hy(X) = 0. Since X is contractible, H; (X) = 0.

Hy(71,Z) = Hy(Brt, Hy(X)),
H (1, Z) = Hy(Brt, Ho(X)).
So the last exact sequence implies Hy (1, Z) = Ho(m, Z) = 0.
We will be interested in acyclic maps.
Definition H.4.3. A map f: X — Y is called acyclic if its homotopy fiber F; is acyclic, i.e. ﬁ.(Ff) =0.

Proposition H.4.4. Consider a pullback

Xo xv Xy ho, Xo
- J
fol lfo
X1 1%

Assume f, or f1 is a fibration. Then f; is acyclic if and only if f; is acyclic.
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Proof. Consider a commutative cube

FP(f1)
Ff1 : Ffo
\ ) \
X() Xy X1 l XO
P(X1) s POY) o
7TX1 N
X4 1%

f1

7ty is a fibration. sy, is a fibration and fy is a fibration, hence f; o 7ty is a fibration as well. P(f;) is a
homotopy equivalence (hence a homotopy equivalence over V), and FP(f;) is a homotopy equivalence
as well. |

Corollary H.4.5. Consider a commutative diagram
E - E’

N

f is acyclic if and only if the induced map F(f): F, — Fy is acyclic.

Proof. Consider the cube

Fp P(B)
F

N
]
N \

Observe that the left side of the cube is a pullback square:

P(B)

F, € E xp P(B) = (P(B) xp E) x E = Fy xp E.

F, F(f) Fy

-

f

Now F(f) is acyclic if and only if f is acyclic. [ |
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The following is dual to proposition H.4.4:

Proposition H.4.6. Consider a pushout

YO ux Yi'LYO

g

Vi<——X
1

Assume fy is a cofibration. Then f; is acyclic if and only if f; is acyclic.
Here is a characterization of acyclic maps.
Proposition H.4.7. The following are equivalent.
(1) f: X - VY is acyclic.
(2) For V the universal covering space of Y the induced map f: X xy VoV

~ f
XxyYV——
_

<

X7

gives an isomorphism a N N
fo: Hi(X xy ¥) > H,(Y).

(3) There is an isomorphism between homology groups with local coefficients
fo: Ho(X 2 (Y)]) — Ho(YAZ[m (V)]
(4) For any local coefficient system G of abelian groups on Y
fr: H(X;f*G) > Ho(V; 9)
is an isomorphism.
Proof. For (1) = (2), let F¢ be the homotopy fiber of f: X — Y. Then we have a homotopy fibration
Fr - X xy vy
Applying the Serre spectral sequence
Hy(V; (q(Fy)) = Hpq(X xv V),
we see that if f is acyclic, then ¥(,(F¢) = 0, and we get an isomorphism
H.(X xy V) 5 H, (V).

Conversely, (2) = (1): if we have an isomorphism as above, then we can show that H,(Fs) = 0. Use
induction on q. Assume it is true for g < n for some n > 2. Then the spectral sequence gives an exact
sequence

Hn+1(X Xy Y)i n+1(Y)—>Hn(Ff)—>Hn(X Xy Y)iHn(Y)—>O
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so we should have H,(Fy) = 0.
Next to get (3) < (2), observe that we have a local coefficient system Z[s;(Y)] and
H.(Y) = H.(Y; Z[m(V)]).

Now N N
Ho(X xy ¥) = Ho(Z[X] @z x) ZIm(V)]) = Ho (X3 F*Z [ (V)]).

Hence f is acyclic if and only if it induces an isomorphism

Ho (X 2 (V)]) = Ha(Y3 ZIm (V).

We have trivially (4) = (3). We get the less trivial implication (1) = (4). For the fibration F LxLy
consider the Serre spectral sequence with local coefficients:

Hy (Y; Hy(Fp; i*f*G)) = Hpyq(X f*5).

But i*f*G is a trivial local coefficient system, so if we assume that ﬁ.(Ff) = 0, then the edge
homomorphism gives the desired isomorphism

H,(X;f*G) ~ H,(Y; G).
|

Proposition H.4.8. If f: X — Y is acyclic and f,: m(X) — m(Y) is an isomorphism, then f is a
homotopy equivalence.

Proof. Consider the fibration long exact sequence

= T (Ey) = 0 (X) 7 10 (V) = T (B) =+ = i (Fp) 2 m(X) = (V) = 0 (Fy)
We know that F; is acyclic, so ﬁ.(Ff) = 0. However, we should also have sy (Fy) = 0, so Fy is

contractible (by the Whitehead theorem), and we have isomorphisms f,: 7, (X) =N 7, (Y) for all n.
This means that f is a homotopy equivalence (Whitehead). |
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Appendix Q

Quillen’s Q-construction

Apart from the plus-construction (chapter 2), there is another definition of higher K-groups, which is
more natural and general, and often more useful for proofs. K-groups may be defined for a category
C, e.g. the category R-Proj ‘o of finitely generated projective R-modules. As in the plus-construction, the
idea is to take homotopy groups of the classifying space, this time of a category. To obtain something
interesting, instead of taking the initial category C, one uses a modified category QC—the same way as in
the plus-construction one takes BGL(R)™ instead of BGL(R). This is called Quillen’s Q-construction.

In order to define classifying spaces, first we review simplicial sets and their geometric realization.
Then we review some results from [Qui73b] and prove one of them, namely 71y (BQC,0) =~ Ko(C), just
to get some feeling of the Q-construction.

References. The review of simplicial sets and their geometric realization follows [May67] and [Wei94, Chapter §].
Definitions regarding classifying spaces of categories can be found in [Seg68]; what we call a “simplicial set” is a
“semi-simplicial set” in the old terminology.

The main reference for the Q-construction is Quillen’s paper [Qui73b]. The book [Sri96] has some details and
background which may be useful to understand original Quillen’s texts.

A definition of quotient category is from [Gab62], and a modern treatment can be found in [BK0O, Chapter 6].

Q.1 Ky of a category

In everything what follows, we will need to make sure that the classes under consideration form sets:

Definition Q.1.1. Let C be a category such that the isomorphism classes of its objects (the skeleton
of C) form a set. We say in this case that C is skeletally small.

Following Grothendieck (cf. [BS5S, §4]), Ko can be defined for any skeletally small category C in
which the notion of short exact sequence makes sense. For this it is enough to assume that C is an
additive category which lies in some ambient abelian category 4.

Definition Q.1.2. Let C be an additive category embedded as a full additive subcategory in some abelian
category A. Suppose that C is closed under extensions in 4. That is, whenever in A4 there is an exact
sequence

0-A-B->C-0

with A and C isomorphic to objects of C, then also B is isomorphic to an object of C. We say in this
case that C is an exact category.

A sequence 0 - A - B — C — 0in ( is called short exact if it is short exact in the ambient abelian
category A4.
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Example Q.1.3. Consider the category R-Proj io of finitely generated projective R-modules. It is a full

subcategory of the abelian category of R-modules R-Mod, closed under extensions.
The short exact sequences in R-Proj 1o Qe the sequences that are split in R-Mod:

0-P->PpQ—-0Q—-0

Now the general definition of Kj is the following:

Definition Q.1.4. Let C be a skeletally small exact category. The group Ky(C) is the abelian group
freely generated by isomorphism classes of objects in C modulo relations

[B] =[A] +[C] for any short exact sequence 0 > A —->B—->C—0

Example Q.1.5. For C = R-Proj [y ANV short exact sequence is split, so Ko(R-Proj fg) is the same as
Ko(R) defined in section 1.1. A

Example Q.1.6. Grothendieck had in mind a generalization of the Riemann-Roch theorem, and the
category C being VB(X), vector bundles on a scheme X (that is, locally free sheaves of Ox-modules of
finite rank). Since in this text we are interested only in Spec O, we do not deal with general K-theory
of schemes. A

Q.2 Simplicial sets and their geometric realization
Definition Q.2.1. The category of simpleces A is given by the following data.

e The objects are finite ordered sets n < {0<1<---<n}.

e The morphisms f: m — n are non-decreasing monotone maps; that is, f(i) < f(j) for i <j.

m+n+1

One counts that in category A there are ( et

) morphisms m — n.

Definition Q.2.2. Let C be a category. A simplicial object in C is a presheaf with values in C on the
category of simpleces. In other words, a simplicial object is a contravariant functor F: A°? — (C. A
morphism of simplicial objects is a natural transformation of functors. So the category of simplicial
objects in ( is the functor category C2”.

In particular, a simplicial set is a simplicial object in the category of sets. A simplicial space is a
simplicial object in the category of topological spaces.

Example Q.2.3. The standard n-simplex is a simplicial set A[n], which is defined as a contravariant
functor Homa(—, n): A% — Set:

£~ Homa (¢, n) = {non-decreasing maps ¢ — n}.

On an arrow £ — m the corresponding map of sets Homa(m, n) - Homa (¢, n) is defined as usual:

N .
N f
\

<

N\
—n

f

B

Note that by Yoneda lemma, for a simplicial set F: A°? — Set we have a natural isomorphism

F(n) 2 Hom a (A[n], F).
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There is also another description of simplicial sets by “generators and relations”. For each n one
can define the face maps

€i: n—1 — n = the injection missing i,
oy def |, ifj<i,

i) = { jal, Wi

and degeneracy maps

ni: n+1 — n = the projection mapping two elements to i,

Lo det [, if j <1,
mi) = { j—1, ifj>i.
One has the following “simplicial identities”:

€jO€ = € 0€j_1, ifi<j,

njon =mnomniw, i<y,
€ 0 Mj—1, ifi<f,

njoe€ = id, ifi=jori=j+1,
€i_10M;, ifi >j+1.

Example Q.2.4. The names “face map” and “degeneracy map” come from the usual simpleces in
geometry. The standard geometric n-simplex is the set

A”dif{(to,...,tn)eR"|Zti=1, 0<t; <1}

Then one has obvious maps of face inclusion, and degeneration sending the vertices to the vertices
an (n — 1)-simplex:




Where 1 and € are factorized uniquely as

n="mny-m, O
€=¢y--¢, 0

Indeed, let iy < - < i be the elements of m such that f(i) = f(i + 1) and let j; < --- < j; be the
elements in n that are not in the image of f. Then for p = m — s = n — t we have the factorization as
above.

It follows that for a simplicial object F: A°® — (, it is enough to give the values of F on the objects

0,1,2,... € Ob(A) and the values of F on arrows ¢€; and n;. If we denote 0; def F(e€) and o; def F(m),
then we get the following equivalent definition of a simplicial set.

Definition Q.2.5. A simplicial object F in a category (C is given by a sequence of objects
Fo, Fi, FQ, ... E Ob(C)

together with face operators ¢;: F,, — F,,_1 and degeneracy operators o;: F, — F,4 fori=1,...,n,
satisfying the following relations:

6ioﬁj=0j_106i Ifl<],
0j 0 0j = 0j11 0 O; lflg],
0j—1 0 0, ifi< 7,
6i06,-= id, lfl=]0[’l=]+1,
ojodi_q, ifi>j+1.
Now from a simplicial set X: A°? — Set one can build a CW-complex |X| as follows.

Definition Q.2.6. Let X be a simplicial set given by a sequence of sets Xy, X1, Xp, ... together with
operators 0;: X, — X,_1 and o;: X, — X, 41 as above.
The geometric realization of X is given by

x| %! (]_[xn xA">/~.
n=0

Here A" c R"*! is the geometric n-simplex, and X, x A" is the disjoint union of copies of Am
indexed by the elements of X,,.

The equivalence relation ~ is defined as follows. For any map f: m — n look at the induced maps
f*: Xp — X (keep in mind that the functor is contravariant). Further, there are continuous maps
fr: A™ — A" between geometric simpleces. We define them on vertices vy, ..., vin by v; = vf(;), and
then by linearity this can be defined on all the faces of A™. We identify for each x € X,, and s € A™

(F*(x),8) ~ (x,fu(s))-

Now |X| has a CW-complex structure, where the n-cells are given by elements x € X, that are
nondegenerate, i.e. not of the form o;(y) for some y € X;,_1.

Geometric realization enjoys certain properties one would expect from it:

e |- |is a functor Set™” — Top. A morphism of simplicial sets f: X — V induces a continuous map
|X| — |Y|. Indeed, f is a natural transformation of contravariant functors X = Y: A°? — Set:
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R ——1=
-
-

And we can define a map

Xp x A" = Y, x A",
(x,8) = (fn(x),s)-

e If X and Y are simplicial sets, then one can form a simplicial set X x ¥ with simpleces X, x ¥, and
the obvious maps. If |X x V| is a CW-complex, then the natural continuous map |X x V| — |X]| x|Y]
is a homeomorphism [May67, Theorem 14.3]. This happens e.g. when X and Y are countable, or
when either |X]| or |Y| is locally finite.

We refer to [May67, Chapter III] for proofs and further properties. Probably the most important
fact, explaining the point of geometric realization, is the following.

Fact Q.2.7. Let Y € Ob(Zop) be a topological space. The singular complex for Y is a simplicial set
SY: A°® — Set, given by

n v Homgy, (A", V) = {continuous maps from the standard geometric n-simplex fo Y}.

Then the geometric realization functor |- |: Set™™ - Top is left adjoint to the singular functor
S: Top — Set™”:
Hom%p(|X

,¥) = Hom 0 (X, SY).

The adjunction maps are the ones that come first to mind:

X SIX],
Xp 32 o (A" 220 AT 21X € SIX s

|SY|— Y,
SYn x A" 3 (y,s)— y(s)e Y.

Example Q.2.8. For a group G consider a simplicial set BG given by a sequence of sets BGy def 1,

BG; def G, BGy ef G« G, BG3 ©f GG x G, ... Define the face and degeneracy operators by

wr | (g2 gn) if i =0,
0i(gt, - gn) = 3 (91,---,GiGis1,---,gn), fO<i<n,
(g1, s Gn-1), ifi =n;

def
Gi(gin-ugn) ; (gi:~-~:gi:1:gi+1:~--;gn)-

The geometric realization |BG| is an Eilenberg-Mac Lane space K(G, 1). See e.g. [May99, §16.5]. A
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Q.3 Classifying space of a category

Similarly to the last example, one can start from a small category C and then build a CW-complex BC
which is called its classifying space. It enjoys some expected properties, e.g. equivalent categories
have homotopy equivalent classifying spaces.

Definition Q.3.1. Let C be a small category. The nerve of C, denoted by N, is a simplicial set
constructed as follows. Consider a sequence N(y, NGy, NG, . .., were N(, is the set of diagrams of n
consecutive morphisms

NG aga a5 In A, 1 A e Ob(0O)).
Face and degeneracy operators are given by composition and by insertion of the identity morphism:

def fir10fi

0i(Ag > A1 — > Ay) = Ao A > - > Ay Aiyr — - > An.

def

oAy > Ay - o A) A A s s A LA A I A A,

Now the classifying space of C is the geometric realization of the nerve:
BC €' |NC|.

It is clear that a functor between two small categories C — D induces a map between nerves
NC — ND, and hence a continuous map BC — BD.

For the product of categories C x D one has a homeomorphism B(C x D) =~ BC x BD under
assumption that B(C x D) is a CW-complex (cf. [May67, Theorem 14.3]).

Example Q.3.2. A group G can be viewed as a category G with one object « and all arrows Homg(x, *)
being isomorphisms. The arrows correspond to the elements of G and the composition corresponds
to multiplication. In this case definition Q.3.1 gives the same as example Q.2.8, i.e. BG = BG. A

An important property is the following.

Proposition Q.3.3. Let F,G: C — D be functors between small categories, such that there is a
natural transformation n: F = G. Then the induced maps BF, BG: BC — BD are homotopic.

Proof. A natural transformation corresponds to a functor H: C x I — D, where [ is the ordered set
{0 < 1} regarded as a category:
Co—1)

The correspondence is the following:

nF=G o H:CxI-9D,

F(X) = H(X,0),
G(X) = H(X.1),
nx = H(idx,o s 1).

Now H induces a continuous map BH: BC x BI — BD. The space BI = [0,1] is the unit interval,
hence BH gives a homotopy between BF and BG. ]

Corollary Q.3.4. Let F: C — D be a functor between small categories. If F has a left adjoint or
right adjoint, then BF is a homotopy equivalence.

In particular, if C and D are equivalent categories, then there is a homotopy equivalence of
spaces BC ~ BD.
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Example Q.3.5. Consider a small category C and the category » having one object » and one identity
morphism » — *. There exists a unique functor F: C — .

e If C has an initial object I € Ob((), then the functor * v I is left adjoint to F:

Hom(I, X) = Hom, (%, %).

e If C has a terminal object T € Ob((C), then the functor * v T is right adjoint to F:

Hom, (x,*) = Hom(X, T).

This means that a small category having either initial or terminal object is contractible, i.e. its
classifying space is homotopy equivalent to a point. A

Q.4 Coverings

We are going to look at the fundamental group 711 (BC) of the classifying space of a category C, and
to study it, we need a notion of covering in the simplicial setting. For the usual theory of coverings of
topological spaces and groupoids see [May99, Chapter 3.

Definition Q.4.1. A morphism of simplicial sets p: E — X is called a covering of X if for any commu-
tative diagram as below in the category of simplicial sets (where A[n] is the standard n-simplex) there
is a unique morphism A[n] — E making the diagram commute:

7
|k
A[H]/HX

All coverings of a simplicial set X form a category Cov/X, where the morphisms are given by
commutative diagrams

E

f
El
N
X
As one can guess, the main point of this definition is the following [GZ67, Appendix I, §3.2]:

Fact Q.4.2. The geometric realization p: |E| — |X| of a simplicial covering p: E — X is a usual
covering of a topological space.

The following characterization of coverings of BC will be useful [Qui73b, Proposition 1]:

Theorem Q.4.3. Let C be a small category. The category Cov/BC of coverings over the classifying
space of C is equivalent to the category of morphism-inverting functors F: C — Set, i.e. functors
taking each arrow A — A’ to a bijection of sets F(A) — F(A").

In one direction, if we have a covering p: E — B(, then for an object A € Ob((), which can be

viewed as a point in BC, we consider its fiber E(A) def p~(A). A morphism f: A — A’ in C determines
a path Bf: A — A’ in B(C.

Fix a point y € E(A). Then by the unique path lifting property (see e.g. [May99, §3.2]) we have a
corresponding path E‘ in E starting in y and ending at a point ' € E(A’). This gives a bijection
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Hence each covering p: E — B( defines a morphism-inverting functor F,: C — Set:

A v E(A),
AL A s E@A) s pan.

Now assume we are given a morphism-inverting functor F: C — Set. We need to construct a
covering from F. Let F\C denote the category of pairs (A,x) where A € Ob(() and x € F(A), and a
morphism (A,x) — (A’,x’) is an arrow f: A — A’ in C such that F(f) maps x to x'.

F(f): F(A) - F(A"),
x - x'.

The forgetful functor F\C — ( induces a map of classifying spaces p: B(F\C) — B(C. For A € Ob(()
the fiber of this map over A is F(A). We claim that p: B(F\C) — B( is a covering. For this recall that
this map comes from the corresponding morphism of nerves N(F\C) — N(C. In the view of fact Q.4.2,
it is enough to check that N(F\C) — N( is a simplicial covering in the sense of definition Q.4.1. Namely,
we should check that for each commutative diagram

A[0] —2= N(F\C)

there exists a unique arrow 6: A[n] — N(F\() making all commute.

This amounts to checking that if we are given an n-simplex o € N, C and 0y € No(F\C) is a simplex
lying over the i-th vertex of o, then there is a unique simplex ¢ € N,(F\(C) lying over ¢ and having oy
as its i-th vertex.
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0 € Ny C is given by a diagram in C
0:A0 > AL —--—> A > > A,
The i-th vertex of o is the object A; € Ob((). Over A; in No(F\C) lie all pairs (A;, x;) with x; € F(A;).

The functor F maps the diagram above to a chain of bijections (we assumed that F is morphism-
inverting)

F(Ap) & F(A1) & --- & F(4;) & --- & F(Ap).

Hence if we specify x; € F(4;), the bijections determine uniquely elements xy € F(Ao), x1 € F(A4),
..., xn € F(Ap), and the simplex o lifts uniquely to & given by

8: (AleO) g (Ailxi) — (A-ilxi) s (An:xn)'
This finishes our check that N(F\C) — C is a simplicial covering, hence B(F\(C) — B( is a covering.

It is immediate that the two constructions provide an equivalence of categories

Cov/BC =~ ’morphism—inverting functors F —» C ‘
p:E—- BC wv» Fp,
B(F\C) - BC <~ F.

Q.5 Exact categories

Let C be an exact category (definition Q.1.2). Let us write down some properties of C that also give an
axiomatic definition of “exactness”. Let £ denote the class of sequences in C

0-ALBRCSoO (Q.1)

which are exact in 4. If a morphism i: A — B in C occurs as a morphism in a short exact sequence
(Q.1), then we say that it is an admissible monomorphism. We write in this case “A — B". If a
morphism p: B — C in C occurs as a morphism in a short exact sequence (Q.1), then we say that it is

»”

an admissible epimorphism. We write in this case “B —» C”.
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The class E satisfies the following properties:

a) Any exact sequence in C which is isomorphic to a sequence in Z, is in ‘E.

For any A, C € Ob(() the “split exact” sequence

054 AgBPL B0

is in E. For any sequence (Q.1) in £ one has i = kerp and p = cokeri in the additive category C.

b) The class of admissible epimorphisms is closed under composition and pullbacks (base change)
and the class of admissible monomorphisms is closed under composition and pushouts (cobase
change):

B —— B B =— B
_I

nail

¢ —C A <— A

c) Let B — C be a map possessing a kernel in C. Suppose there exists a map B* — B in C such
that the composition B’ —» B — C is an admissible epimorphism. Then B — C is an admissible
epimorphism.

Let A — B be a map possessing a cokernel in C. Suppose there exists a map B — B’ in C such
that A —» B — B’ is an admissible monomorphism. Then A — B is an admissible monomorphism.

All these properties follow easily from our assumptions on C. For instance, for b) let B - C be
an admissible epimorphism. Let C' — C be any morphism. We can take the pullback of B — C over
C’ — C in the category 4.

0 A B C 0
[ ]
0 A B C’ 0

But C is closed under extensions, so B’ is isomorphic to an object of C. Hence B’ — C’ is an
admissible epimorphism.

Definition Q.5.1 (Quillen). An exact category ( is an additive category C with a family E of sequences
of the form (Q.1), called the short exact sequences in C, such that the properties a), b), ¢) hold.

A functor F: C — (' between exact categories is called exact if it carries each short exact sequence
in C to a short exact sequence in ("

0-A—-B—-C—-0 w» 0—->FA)—-FB)->F(C)-0
Remark Q.5.2. Just to prevent confusion, this is not the same as “exact categories” in the sense of Barr [Bar71].

Given any exact category C defined axiomatically as above, one can embed it in the category A4 of
additive left exact contravariant functors F: C°° — A4b. l.e. 4 consists of contravariant functors F that
take a short exact sequence 0 - A - B —- C — 0 in C to an exact sequence of abelian groups

0 - F(C) — F(B) - F(A)
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The category A4 is abelian, and C — A4 is given by Yoneda:

h:C— A4,
C v Homg(—, C).

This embeds C as a full abelian subcategory of A4 closed under extensions. A sequence
0-A-B—->C—->0

is in Z if and only if h carries it to an exact sequence in 4.

Q.6 The category QC

Now for an exact category C we define a category QC as follows.
The objects in QC are the same as in C, but a morphism X — V is a diagram of the form

1% 0=V = V==X —=0
e \
X 1% 0O = V— V=V =90

where V — X is an admissible epimorphism in C and V — VY is an admissible monomorphism in C.
Moreover, we take isomorphism classes of such diagrams: we identify two morphisms as above if
there is an isomorphism V = V'’ making the diagram commute:

We assume that such isomorphism classes of diagrams form a set, so that QC is a small category.
The composition of two such morphisms in Q( is defined by taking a bicartesian square

VXyW

1% w
X 1% Z
This indeed exists in C, since ( is closed under extensions, and we have a short exact sequence
0—kerp—» Vxy W V0
Observe now that ker(V xy W b, V) = ker(W & v).

The associativity of composition is verified by the universal property of pullbacks. Finally, one can
check that the composition depends only on isomorphism classes of diagrams.
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Definition Q.6.1. Leti: A — B be an admissible monomorphism in C. This gives a morphismi;: A — B
in QC represented by a diagram

SN
A B

All morphisms of the form i, are called injective. Similarly, if p: B — C is an admissible epimorphism
in C, then we define a morphism p': C — B in Q(:

B
P id
2N
C B
All morphisms of the form p' are called surjective.

Remark Q.6.2. To prevent confusion, the terms “injective” and “surjective” do not imply “monomorphism in QC”
and “epimorphism in Q(”.

By definition, every morphism f: X — ¥ in QC factors uniquely (up to a unique isomorphism) into
a surjection and injection i, o p':

ld/ \ld

vV
o\ N
X v v

On the other hand, there is also a unique factorization (up to a unique isomorphism) into an injection
and surjection p' o i; given by a bicartesian square

N

X_ . Y
N 2N

X Xy Y 1%

The operations i — i; and p — p' have the following properties:

a) If i and j are composable admissible monomorphisms, then
ALBLce

(oi) =jioi

4N

A B
v N N
A B C
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Dually, if p and q are composable admissible epimorphisms, then

!

(poq) =q'op.

Also one has
(ida); = (ida)' = ida.

b) Suppose one has a bicartesian square

7 <2y
iI r Ii
X v

where i and i are admissible monomorphisms, p and p are admissible epimorphisms. Then

1,

. ! —I s
Lop =p ot.

1%
N v N
VV . T 5 .
Nt Y N AN
X 1% 1% X VA 1%

This leads to a certain characterization of the category Q(:

Proposition Q.6.3. Let C be an exact category and let D be a category. Assume that the following
data is given:

e for each object A € Ob((), an object F(A) € Ob(D),
e for each admissible monomorphism i: A — B in C, a morphism iy: F(A) — F(B) in D,

e for each admissible epimorphism p: B — C in C, a morphism p": F(C) — F(B).

c - 9D,

A wv F(A),
(i:A— B) ww (iy: F(A) — F(B)),
(0:BC) wo (p": F(C) - F(B),

Further, require that properties a) and b) as above hold for the arrows iy and p" in D, that is,

a) for admissible monomorphisms (joi)y = juoiy and for admissible epimorphisms (poq)" = q'op",
whenever the compositions make sense.
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b) suppose one has a bicartesian square

7z <Ly
iI r Ii
X %

where i and i are admissible monomorphisms, p and p are admissible epimorphisms. Then

1,

. n_o=n 3
lyop” =p oly.
This data uniquely defines a functor F: QC — D.

Proof. The functor F on the arrows of Q( is given by

1%
% N o igop"
X 1%

We need to check that this depends only on the equivalence class of the diagram. Suppose we have
another diagram, which is equivalent to the above via an isomorphism ¢: V — V'

1%
VAN
X 6| =

e

A

1%
VI

We have p = p’ o ¢ and i = i’ o ¢. Since ¢ can be viewed as both admissible monomorphism and
admissible epimorphism, this gives

n I Nt o/
p-=¢ o(p), in=iyodu.
From a bicartesian square

Vl «id V/

I " I¢

V <— V

we deduce
(i)u ] (b” = ld;}/ o (idV/)” = idF(VI).
And therefore

if,0 (p')! = ify 0 du 0 ¢" o(p)" = iy o p'.
;_V__J

id
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Further, we need to check that the definition of functor respects composition in QC. A composition
is represented by a bicartesian square

E

V xy

f/

\

VA

From which - -
(joiuo(poq)' =jucinoq op" =(juoq")o(inop").

|
In particular, an exact functor F: C — (' between exact categories induces a functor
U -
A v F(A),
i v F(i),
p' w F(p).
Proposition Q.6.4. One has an isomorphism of categories
QC?) =,
such that injective arrows in QC correspond to surjective arrows in QC°® and vice versa.
Proof. If we have a bicartesian square in C, then we have a bicartesian square in C°P:
_ —op
7z <Ly 7=y
"
iop
r I 4
p p°P
Consider a functor which is identity on objects and defined on arrows by
ig Op! “ (ﬁop)! o ({op)!.
This is full and faithful:
Homge (X, ¥) = Homger (X, V).
|

Q.7 Higher K-groups via the Q-construction

The following is [Qui73b, Theorem 1, p. 102]:

Theorem Q.7.1. Let C be a skeletally small exact category. Let 0 be a zero object in C. Then there
is a natural isomorphism
1 (BQC,0) = Ko(C).
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This motivates the following definition [Qui73b, p. 103]:

Definition Q.7.2. For a skeletally small exact category C its K-groups are given by

def
Ki(C) = mi41(BQC,0),
where 0 refers to the point 0 € BQC corresponding to the zero object.
This is related to the K-groups of a ring defined by the plus-construction as follows.

Theorem Q.7.5. Let R-Proj io the the category of finitely generated projective R-modules. There is a
homotopy equivalence (natural up to homotopy)

BGL(R)* — Q(BQR-Proj, ,0),

where Q is the loop space functor (taken at the point 0).
Hence there is a natural isomorphism

Ki(R-Proj, ) = m(BGL(R)*), i>1.

Remark Q.7.4. It is important that we defined K;(C) for any skeletally small exact category C. E.g. for a scheme
X we can take C = ¥B(X), and this defines the K-groups K;(X). See [Qui73b, §7].

Discussing a proof of BGL(R)" ~ Q(BQR-Proj fg) would lead us a bit too far. It can be found in
[Ada78, Chapter 3] or [Sri96, Chapter 7]. We are going to see at least a proof of m(BQC) = Ko(C)
just to understand better the Q-construction. In fact, all the needed machinery was already introduced
above.

According to the theorem Q.4.3, the category of covering spaces of BQ( is equivalent to the category
of morphism-inverting functors F: QC — Set. Let us denote the latter by #. Similarly, the category of
covering spaces of BKy((C) is equivalent to the category of morphism-inverting functors Ko(C) — Set,
i.e. the category of Ky(C)-sets.

Recall that for a space X its fundamental group s (X) can be identified with the automorphism

group of the universal cover Aut(X). So 7 (BQC) = Ko(C) will follow once we show an equivalence of
categories F ~ Ky(()-Set.

e First observe that ¥ is equivalent to its full subcategory #’, which consists of morphism-inverting
functors F’: QC — Set such that

F'(B)= F'(0) and F'(ix) = idp( for all X € Ob(C),

where ix denotes the admissible monomorphism 0 — X.

Note that for an admissible monomorphism i: A ~— B holds i oiay = ip:

From this we deduce idp/o) = F'(ip) = F'(ij oiar) = F'(i1) o F'(ia1) = F'(iy). That is, for any
admissible monomorphism i: A — B we automatically have

F/(l.l) = idFI(O).
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If we have an arbitrary morphism inverting functor F: QC — Set, then we can define a functor
F’ in the category 7' by

1%
" N0 we Fliv) " o F(p) o Fix)
1%

NG v 0,
0 X X 1% 0 Vv
F(0) —s F(X) Fx) —® . Fv) Fv) 27 po)

Now consider a natural transformation of functors F’ = F given by X — F(ix;). Since F(ix) is the
bijection in the category Set, this gives an isomorphism F’ =~ F. Hence any object in the category
F is isomorphic to an object in the category F’.

o If S is a Kyo(()-set, we define a morphism inverting functor Fs: QC — Set which belongs to the
category F'. Using proposition Q.6.3, we see that it is enough to give the following data:

Fs(A) €'s
Fs(ir) € ids,

Fs(p') ! the action of [kerp] on S.

Here by [ker p] we denote the class of the object kerp in Ky(C).

e In the other direction, for any given morphism inverting functor F: QC — Set which belongs to
the category ', we describe a natural action of Ko(C) on F(0), i.e. a morphism Ky(C) — Aut(F(0)).
For [A] € Ko(C) we take F(p') € Aut(F(0)), where p, denotes the obvious admissible epimorphism
A — 0. We have to check that this is indeed a homomorphism on Ky(C). For a short exact
sequence in C

0-A—-B—-»C—-0

we should have
I I I 1 I
F(pa) o F(pc) = F(pe) o F(pa) = F(pp)-

For this look at the bicartesian square

C B
0 A

. I I .
liopy =p olcr-

p
-~
-

-
-~
Pa

From this we deduce

Since F(i;) = F(ic1) = idp(o), we conclude that F(p}y) = F(p').
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Further, pg = pc o p:

So we have

F(py) = F((pcop)') = F(p' o pc) = F(p') o F(pc) = F(ph) o F(pe)-
We claim that also F(p}) o F(pt) = F(p(:) o F(pY). For this in the argument above we replace B
with A @ C and consider split exact sequences

0 — C>— A®pC — A — 0

From the trivial fact ker pa = A, one readily sees that the constructions S — Fs and F — Kj-set F(0)
are mutually inverse. This finally shows that ;1 (BQC,0) =~ Ko(C). [ |

Q.8 Quotient categories

We recall what a quotient category of an abelian category is. The reference for this is [Gab62, Chapitre III].
Let us ignore set theoretical issues and from now on we denote by 4 and B abelian categories whose
objects lie in some “universe” il. We have in mind only one particular example, when the categories
are skeletally small.

Remark Q.8.1. Although for us it is enough to work with concrete categories, recall how in general one can use
the notion of subobjects. For any object A € Ob(A) its subobjects are isomorphism classes of monomorphisms
B — A. The isomorphism of subobjects is given by a diagram

B

.
7

B/

112

A

For two subobjects i;: Ay — A and iy: Ay — A we say that iy c iy if there is a commutative diagram of
monomorphisms

Ay

Ay

This is a partial order on the set of subobjects of A.

Definition Q.8.2. Let 4 be an abelian category and let B ¢ A4 be a full additive subcategory of 4
(so that the abelian group structure on Hom-sets is the same). We say that B is a Serre subcategory
(sometimes called catégorie épaisse) if the following holds
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1. Any object of 4 isomorphic to an object of B lies in B.

2. B is closed under taking subobjects, quotients and extensions in 4. That is, if one has a short
exact sequence in 4
0-A->B—->C—-0

then B € Ob(B) if and only if A, C € Ob(B).

Example Q.8.3. Let R be a Noetherian commutative ring and let S ¢ R be a multiplicative subset.
Let 4 = R-Mod s, be the category of finitely generated R-modules and let B = S-Torss; be the full
subcategory of S-torsion modules. In other words, R-modules M such that s - M = 0 for some s € S.
Then S-Torss, is a Serre subcategory of R-Mod s,. A

Definition Q.8.4. If B — A4 is a Serre subcategory, then one can construct the quotient category
(sometimes called localization) 4/B as follows. The objects of 4/B coincide with the objects of 4. If
A, B are two objects, then consider their subobjects A’ — A and B’ — B. The morphisms i: A’ — A
and p: B — B/B’ induce Z-linear maps

Homg(A, B) - Homg4(A’, B/B').

Assume now A/A’ € Ob(‘B) and B’ € Ob(‘B). The abelian groups Hom4(A’, B/B’) form a directed system
with obvious maps

A” c A" and B” ¢ B’ = Homy(A”, B/B") - Homg(A’, B/B’).

Then one puts
Homas(A,B) &  lim  Homa(A',B/B).
(A"B')
A/A’, B'cOb(‘B)

One checks that this gives a Z-bilinear composition
Homg,3(A, B) x Homg,3(B, C) — Homg,3(A, C).

Then A4/B is again an additive category, and the canonical functor T: 4 — 4/B is exact. For details
and proofs we refer to [Gab62, Chapitre III]. In particular, one has the following: for a morphism
f € Homg4(A, B) the corresponding morphism T(f) € Homg,g is an isomorphism if and only if ker f
and cokerf lie in Ob(B).
Example Q.8.5. Consider as above 4 < R-Mod rg and B def S-Torssg. We claim that the quotient
category A/B is equivalent to the category of finitely generated S~'R-modules.

We have the localization functor

L: 4 =R-Mod; — S™'R-Mod s,

and the quotient functor
T:4—-> 4/B.

We claim that there is an equivalence of categories U: 4/B — S~'R-Mod rg such that Uo T and L are
isomorphic functors.

For any R-Mod ;;-module M, the set Homp 4,4, (R, M) carries structure of a module over the ring
Homp 44,4, (R, R) = R (where multiplication is given by composition), and it is naturally isomorphic to
M. One has a homomorphism of commutative rings

- T
R —— Homp.apy,, (R R) —2% Homa3(T(R), T(R))
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Now let ¢ define a map R — Homp g4, (R, R) that takes an element r € R to a multiplication by r
map x — rx. For any s € S the map ¢(s): R — R has its kernel and cokernel in B, hence T, o ¢(s) is
an isomorphism (invertible element in Homg4,3(T(R), T(R))). Therefore by the universal property of
localization, the map T, o ¢ factors uniquely through S™'R:

Tyo0d
R * Homg,3(T(R), T(R))
_ 7
\ . /HI/
SR

One checks that this is a ring isomorphism S™!'R =~ Homg,s(T(R), T(R)).

Now for any module M e Ob(R-Mod4) we get a module Homyg,3(T(R), T(M)) over the ring
Homg,5(T(R), T(R)) = S~'R. There is an R-module homomorphism

~ T
M — Homp gz, (R, M) — Hom g3(T(R), T(M))

By the universal property of localization, the map above factors uniquely through S—'M:

M Homg,3(T(R), T(M))

Ed

\ vy -
-
- Ta

S'M=S"'"R@rM

One can check that 1, is an isomorphism of S~!R-modules.
Now the desired functor U is given by
U: 4/B — S'R-Mod s,
T(M) — Homg;3(T(R), T(M)).

On arrows U is given by the composition of arrows in 4/3B.
The morphism ¥, gives a natural transformation of functors ¥: L = UoT which is an isomorphism.

M S'M “bTM> Hom ,4(T(R), T(M))
(I |
N §~'N —, > Hom5(T(R), T(N))

Remark Q.8.6. One can show that taking the quotient category satisfies a universal property similar to the
universal property of localization and work out the last example using this. See [BK00, §6.3.8 + exercise 6.3.2].

128



Q.9 Quillen’s results

Now we mention some important results of [Qui73b]; proofs can be found in the original paper, or in
[Sri96, Chapter 6]. The following is [Qui73b, §4, p. 108]:

Theorem Q.9.1 (Resolution theorem). Let M be an exact category and let P c M be a full additive
subcategory which is closed under extensions in M, such that P is an exact category and P — M
is an exact functor.

1. Assume that if

0O-M->-M->M -0

is exact in M and M’, M"” € Ob(?P), then M € Ob(?P).

2. Assume that for each object M € Ob(M) there is a finite length resolution in M

0—-P,—>Pp4—>:+—>Ph->M->0
with P; € Ob(P) (where the resolution length n may depend on M).

Then BQP — BQM is a homotopy equivalence, hence K;(P) =~ K;(M).

Example Q.9.2. Let 2 be a Dedekind domain. Then any finitely generated 2-module M € Ob(2A-Mod ;)
has projective dimension < 1 over 2 (cf. e.g. [Wei94, Chapter 4]), and so by the resolution theorem

Ki(Q[-MOL{fg) = Ki(Ql-iProjfg) = Kl(ﬂ)
A
The following is a corollary from the so-called “dévissage theorem” [Qui73b, Corollary 1, p. 112]:

Theorem Q.9.3. Let B be a (skeletally small) abelian category such that every object B € Ob(‘B) has
a finite filtration by subobjects
0=BOCB1C---CBn=B.

Let {Xq} be the set of representatives of the isomorphism classes of simple objects of ‘B. Then

Ki(B) = H Ki(Dy), where Dy &« End(Xq)°P.

Example Q.9.4. Let 2l be a Dedekind domain and let B be the category of finitely generated torsion
2A-modules (modules M such that M ®g k =~ 0). Such modules are of the form

@ W

1<j<n

for some ideals I; € 2 (see e.g. [IR05, §8.8]), so we deduce

Ki(B) = U Ki(/p),

pcA

where p runs through the maximal ideals. A
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The following is [Qui73b, Theorem 5, p. 113]:

Theorem Q.9.5 (Localization theorem). Let 4 be a (skeletally small) abelian category and let ‘B be
its Serre subcategory. Then the natural exact functors

B—>Aa4—->A4/B
induce a homotopy fibration
BQB — BQA — BQ(A4/B),

and hence a long exact sequence
5 K1 (A/B) S Ki(B) 25 Ki(4) 25 Ki(4)B) > -+ — Ko(B) > Ko(A) - Ko(4/B) — 0

Let's deduce from the cited theorems the following result [Qui73b, Corollary p. 113]:

Proposition Q.9.6. Let 2 be a Dedekind domain with field of fractions F. Then there is a long exact

sequence
- = K (F) = [ [ K(@/p) > Ki(®) > Ki(F) - -+
pcA

where p runs through maximal ideals.

Proof. We apply the localization theorem to the category 4 A Mod rg of finitely generated 2-modules

and B Y A-Torssg its full subcategory of finitely generated torsion 2-modules. As we observed in exam-
ple Q.9.2, one has K;(A-Mod 14) =~ K;(A). By example Q.85 the localization 4/B can be identified with
the category of finite dimensional F-vector spaces, hence K;(A4/B) =~ K;(F). Finally, by example Q.9.4
we identify K;(B) with [ [,co Ki(2/p). ]
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