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Preface

Никто не обнимет необъятного.— Козьма Прутков
(One can’t embrace the unembraceable.— Kozma Prutkov)

One of the central topics in number theory is the study of L-functions. Probably the most well-knownof these is the Riemann zeta function, which is defined by the series
ζpsq � ¸

n¥1n�s �
¹

p prime
11� p�s .

This is convergent for Re s ¡ 1, and it has analytic continuation to C which is holomorphic, except fora simple pole at s � 1. We denote the analytic continuation also by ζ. Its values at s and 1 � s arerelated by a functional equation

ζp1� sq � cos �πs2 	 2 p2πq�s Γpsq ζpsq,
where Γpsq is the gamma function (which is Γpnq � pn � 1q! for positive integers).

One may ask what are the values of ζpnq at n P Z. For instance, one special value is
ζp0q � �12 .If n � 3, 5, 7, 9, . . . are positive odd numbers, then the values ζpnq are rather mysterious; the func-tional equation is supposed to relate them to the values at negative even numbers n � �2,�4,�6,�8, . . .,but it just tells us that ζp�nq � 0 is a simple zero for n ¥ 2 even.Less mysterious are the values at n � 2, 4, 6, 8, . . . They were discovered already by Euler about1749 (see [Ayo74] for a historical overview):

ζp2q � 1� 122 � 132 � 142 � � � � � π26 ,
ζp4q � 1� 124 � 134 � 144 � � � � � π490 ,ζp6q � 1� 126 � 136 � 146 � � � � � π6945 ,ζp8q � 1� 128 � 138 � 148 � � � � � π89 450 ,...
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The pattern is more clear if we consider the corresponding values ζp�1q, ζp�3q, ζp�5q, ζp�7q, . . .These are some rational numbers. To explain them, introduce the Bernoulli numbers Bn by agenerating function
TeT � 1 def� ¸

n¥0Bn T
nn! � 1� 12 T � 16 T22! � 130 T44! � 142 T66! � 130 T88! � 566 T1010! � 6912 730 T1212! � � � �

Then the values of ζ are related to these numbers as follows:
ζp�nq � � Bn�1n � 1 for n ¥ 1 odd.

This is essentially the Euler’s calculation. In particular,
ζp�1q � � 112 , ζp�3q � 1120 , ζp�5q � � 1252 , ζp�7q � 1240 , ζp�9q � � 1132 , ζp�11q � 69132 760 , . . .

ζ(s)

s

− 1
12

−1
−3

−5
−7

−9

We refer to [Neu99, Theorem VII.1.8] for a proof. Just to spice up this introduction, recall a proofof ζp�1q � � 112 that one would suggest in the 18th century. If we formally differentiate the geometricseries formula 1� x � x2 � x3 � � � � � 11� x ,then we get
1� 2x � 3x2 � 4x3 � � � � � 1

p1� xq2 . (*)
Now consider the sums (literally meaningless without the functional equation)

ζp�1q “� ” 1� 2� 3� 4� � � �4 ζp�1q “� ” 4� 8 � 12� 16� � � �
ζp�1q � 4 ζp�1q “� ” �3 ζp�1q “� ” 1� p2� 4q � 3� p4� 8q � � � �

“� ” 1� 2� 3� 4� � � � “� ” 14 ,where the last equality is thanks to the formula (*) with x � �1 (which may be considered wrong, butwas used by Euler in his 1760 paper “De seriebus divergentibus”—cf. [BL76]). Therefore
ζp�1q “� ” 1� 2� 3� 4� � � � “� ” � 112 .
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The corresponding values at the positive even integers are
ζpnq � p�1qn{2�1 Bn p2πqn2n! for n ¥ 2 even.

Now we want to generalize the situation and consider a number field F , i.e. a finite algebraicextension of the field of rational numbers Q. In F we have its ring of integers OF , which is a free
Z-module of rank d � rF : Qs.

F
d

OF
d

? _oo

Q Z? _oo

By definition, the Dedekind zeta function of F is given by a series
ζFpsq � LpSpec OF , sq �¸

a

pNaq�s �¹
p

11� pNpq�s ,
where a runs through all nonzero ideals of OF , and p runs through all prime ideals of OF . By Na wedenote the norm of ideal. In particular, if F � Q, then this is the same as the Riemann zeta seriesζpsq as above. Again, this is convergent for Re s ¡ 1, and has an analytic continuation to C which isholomorphic, except for a simple pole at s � 1. The functional equation is

ζFp1� sq � |∆F |s�1{2 �cos πs2 	r1�r2 �sin πs2 	r2 �2 p2πq�s Γpsq�d ζFpsq,
where

• r1 is the number of real places, i.e. embeddings F ãÑ R.
• r2 is the number of complex places, i.e. conjugate pairs of embeddings F ãÑ C.
• d def� rF : Qs � r1 � 2 r2 is the degree of F .
• ∆F is the discriminant of F .

(If F � Q, then one has r1 � 1, r2 � 0, d � 1, ∆F � 1.)
For basic facts about Dedekind zeta functions we refer to [Neu99, §VII.5].
We again want to investigate the values ζFpsq at points s � �n with n � 0, 1, 2, . . . Looking at thefunctional equation, we note that these are zeros, unless r2 � 0 (when the number field is totally real).In the latter case if n � 0 or n ¥ 1 is odd, values ζFp�nq are non-zero, actually some rational numbers.The fact that ζFp�nq P Q is known as Siegel–Klingen theorem ([Kli62]; cf. [Neu99, VII.9.9]). There arecertain ways to relate these values to some fundamental rational numbers, just as Euler related ζFp�nqto Bernoulli numbers. For instance, a formula of Harder [Har71, §2.2] connects the values of ζF , fortotally real F to Euler–Poincaré characteristic of arithmetic groups. In case of symplectic groupsSp2npOFq the formula reads

χpSp2npOFqq � 12n pd�nq ¹
1¤i¤n ζFp1� 2 iq.

Here χpSp2npOFqq is a rational number. So by induction on i, the last formula implies that ζFp1�nqare rational for even n. We will not get into details and refer to [Ser71, §3.7] and [Bro74].
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This may be seen as a manifestation of a general philosophical principle:special values of L-functions are captured by cohomological invariants.In this text we will not be too ambitious and we will look at the zeros ζFpsq at s � �n. This may seemtrivial, but such zeros have multiplicities, depending on r1 and r2. Let us denote by µn the multiplicityof zero at s � �n (if there is no zero, then µn � 0). The functional equation, together with the fact thatζFpsq has no zeros for Re s ¡ 1 and a simple pole at s � 1, shows readily
µn �

$&% r1 � r2 � 1, n � 0,r2, n ¥ 1 odd,r1 � r2, n ¥ 2 even.Here is an example of zeta function for F � Qpiq. In this case r1 � 0 and r2 � 1, hence all negativeintegers are simple zeros:
ζQ(i)(s)

s
−1

−2
−3

−4
−5−6

If we take F � Qpαq where α is a root of polynomial X3 �X � 1, then r1 � r2 � 1, and simple zerosof ζQpαq alternate with zeros of multiplicity two:
ζQ(α)(s)

s
−1

−2
−3

−4

We are going to see some cohomological account of these multiplicities of zeros!Recall that for a number field F one can define its ideal class group ClpFq [Neu99, I.3]. This wasstudied already by Gauss, Kummer, Dedekind, and other 19th century mathematicians. It is someabelian group which vanishes if and only if OF is a principal ideal domain. Moreover,ClpFq is finite.
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Another basic invariant is the group of units O�F —the multiplicative group of invertible elements inOF . A remarkable theorem of Dirichlet tells that O�F is finitely generated, it has rank exactly r1� r2� 1,and its torsion part is µF , the group of roots of unity in F :
O�F � Zr1�r2�1 ` µF .

We will review briefly ClpFq and O�F in chapter 1.
Now the main objects of our study come into play. For any ring R (and actually any scheme, if youlike) one can define a whole series of intricate algebraic invariants, named algebraic K-groups:

K0pRq, K1pRq, K2pRq, K3pRq, K4pRq, . . .
These are some abelian groups. The first invariants in this list were introduced in the 50s and 60s byGrothendieck (K0); Hyman Bass, Stephen Schanuel (K1); and John Milnor (K2). A brief review that fitsour needs constitutes chapter 1. The general definition of KipRq for i ¥ 2 (both pretty technical andconceptual) is due to Quillen and it is the subject of chapter 2 and also appendix Q.The only ring that interests us is R � OF , and in this case

K0pOFq � ClpFq ` Z and K1pOFq � O�F .
So Gauss, Dirichlet, Kummer, and Dedekind were all actually studying algebraic K-theory of numberfields! We note that the isomorphism K0pOFq � ClpFq `Z is pretty obvious (see § 1.1) since K0 is reallya kind of generalization of the class group. On the other hand, K1pOFq � O�F is a nontrivial theoremdue to Bass, Milnor, and Serre (see § 1.2).As for the higher K-groups K2pOFq, K3pOFq, K4pOFq, . . . for OF , one can think of them as of someanalogues of the two basic invariants ClpFq and O�F . The first important result about higher K-groupsof OF , due to Quillen [Qui73a], is that all KnpOFq are finitely generated abelian groups. Next it isnatural to ask about their ranks. Of course rkK0pOFq � 1 (by finiteness of the class group) andrkK1pOFq � r1� r2� 1 (by Dirichlet). The other ranks are much harder to get. It is a result of Garland[Gar71] that K2pOFq is a finite group, i.e. rkK2pOFq � 0. This was generalized by Armand Borel [Bor74]whose intricate calculation tells that the ranks of rkKnpOFq are periodic, depending only on r1 and r2.Putting together the results of Dirichlet, Garland, and Borel, we have

rkKnpOFq �
$''''&''''%

1, n � 0,r1 � r2 � 1, n � 1,0, n � 2 i, i ¡ 0r1 � r2, n � 4 i � 1, i ¡ 0,r2, n � 4 i � 1, i ¡ 0.
If we recall the Dirichlet’s theorem proof [Neu99, §I.7], for K1pOFq � O�F it is not very difficult to seethat O�F is finitely generated, but getting the exact rank r1 � r2 � 1 requires more work. For higherK-groups this is similar: it is a very nice result that KnpOFq are finitely generated, but calculating theranks is much harder. A detailed exposition of this is the main point of this mémoire.
As we promised, this is related to the zeta function of F ; we note that these ranks are exactly themultiplicities of zeros ζFp�nq:

n : 0 1 2 3 4 5 6 7 8 9 � � �rkKnpOFq : 1 r1 � r2 � 1 0 r2 0 r1 � r2 0 r2 0 r1 � r2 � � �
� µ0 � µ1 � µ2 � µ3 � µ4
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To introduce more intriguing numerology, we recall that Bott periodicity gives us homotopy groupsof the infinite orthogonal group OpRq def� limÝÑOnpRq (cf. [Bot70]). They are periodic with period eight:
n : 0 1 2 3 4 5 6 7πnpOpRqq : Z{2 Z{2 0 Z 0 0 0 Z

If we are interested only in rational homotopy, then πnpOpRqq bQ is periodic with period four. Thesame period in K-groups of OF has the same nature. This will pop up during the calculation (§ 4.6).
Often one is interested in the ring of S-integers OF,S for S a finite set of primes in OF . In this caseK-groups have the same rank, and they are finitely generated as well:

rkK0pOF,Sq � 1,rkK1pOF,Sq � rk O�F,S � |S| � r1 � r2 � 1,rkKnpOF,Sq � rkKnpOFq. pn ¥ 2q
—this is an easy consequence of the so-called “localization exact sequence”, as will be explained incorollary 2.5.7. It was also established by Borel in [Bor81] using different arguments.Similarly, if we take the algebraic number field F itself, then

K0pFq � Z,K1pFq � F�,KnpFq bZ Q � KnpOFq bZ Q. pn ¥ 2q
In this case, however, the groups are not finitely generated: while KnpFqbZ Q � KnpOFqbZ Q, theremay be infinite torsion in KnpFq. E.g. this is obvious already for K1pQq, and the infinite torsion

K2pQq � Z{2` pZ{3Zq� ` pZ{5Zq� ` pZ{7Zq� ` pZ{11Zq� ` � � �
has interesting arithmetic meaning, cf. [Mil71, §11] and [BT73].The torsion in K-groups of OF or F is very important for arithmetic, but it will not be dealt here. Werefer to surveys [Wei05], [Kah05], and [Gon05] for the general picture. The rest of this text examinesjust ranks of KnpOFq. Here is a brief outline of the text.

• Chapter 1 introduces the groups K0pRq, K1pRq, and K2pRq.• Chapter 2 defines higher K-groups of rings via the so-called plus-construction. We also collectsome facts from Quillen’s papers [Qui73b] and [Qui73a].• Chapter 3 reviews some rational homotopy theory and shows that in order to calculate ranks ofKnpOFq, it is enough to know the cohomology ring HpSLpOFq,Rq.• Chapter 4 finally gets the ranks of KnpOFq, assuming certain difficult and technical result aboutstable cohomology of arithmetic groups.
The rest is devoted to certain steps in the direction of that “technical result”. One who is interestedonly in the general strategy of computing rkKnpOFq may content themselves with chapters 1–4.
• Chapter 5 examines a theorem of Matsushima that involves the so-called Matsushima’s constantmpGpRqq that is very important for stable cohomology.• Chapter 6 proves certain variation of Matsushima’s result, due to Garland.
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I tried to make the exposition as much coherent and self-contained as possible. I did my best togive motivation and explain used facts, reviewing the proofs—when they are instructive and not tootechnical—or providing the references. Certain constructions are both very interesting and hard totake on hearsay, so I included a long discussion of them. The tools that one would consider standardare included in the appendices. They serve to fix definitions and notation, and summarize some basicfacts to be used in the main text. The additional appendix Q outlines Quillen’s Q -construction, whichis not crucial for the main text, although at some point we should assume results that are normallyproved using that.
Some notation
Let us fix some notation for all the subsequent chapters:

• F is a number field.
• OF is the ring of integers in F .
• µF denotes the group of roots of unity in F .
• r1 is the number of real places.
• r2 is the number of complex places.
• d def� rF : Qs � r1 � 2 r2 is the degree of F .
• ∆F is the discriminant of F .
Letters like G,H,K will often denote Lie groups, and the corresponding Lie algebras are written inthe Fraktur script like g, h, k.As usual, the end of a proof is denoted by a tombstone sign �; when there is no proof, I mark itwith / (unless it is something really well-known). End of an example is marked with N.

References
The primary sources that I used writing this text worth a separate mention: the original Borel’s articleis [Bor74], and there are also some surveys written by Borel himself, notably [Bor06], [Bor95], and amonograph [BW00] by Borel and Wallach.I hope this text will be useful for someone who wants to learn about algebraic K-theory of numberfields.
A note about this version
My intention was to cover all the details and preliminaries needed to calculate rkKnpOFq. At some pointthe text became quite long, so I took decision to explain only first steps towards the technical result(theorem 4.7.2), to avoid making all fifty pages longer. Understanding nuts and bolts of Borel’s proofsis a starting point of my future PhD project suggested by Boas Erez, so I will soon post online a moredetailed and lengthy version of these notes (it more resembles a book than a mémoire!).Please send all your comments to alexey.beshenov@math.u-bordeaux.fr.
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Chapter 1

Classic algebraic K-theory: K0, K1, K2
In this chapter we will review briefly the definitions of groups K0, K1, and K2 of a ring. We areinterested in KipOFq for a number field F , so the main point is the following.

• K0pOFq � Z`ClpFq, where ClpFq is the class group of F , giving the finite torsion part of K0pOFq.• K1pOFq � O�F is the group of units of OF , which is isomorphic to Zr1�r2�1 ` µF , according toDirichlet’s unit theorem.
It is very standard yet provides an important motivation for the rest of this text: it shows that K-groups of OF are related to the arithmetic of F . Moreover, this suggests some properties of the higherK-groups, e.g. one expects KipOFq to be finitely generated, with ranks depending on r1 and r2, andtorsion related to the values of ζFpsq.Finally, we briefly review K2, even though we will not get into details about its importance in arith-metic.

References. The classic reference for K0, K1, K2 is the Milnor’s book [Mil71]. A good modern textbook onalgebraic K-theory is [Ros94].

1.1 K0 of a ring
Let R be a ring. For our purposes, just to simplify things, we assume from now on that R is commutative.Recall that an R-module P is projective if one of the following equivalent properties holds [Wei94, §2.2]:

1. Any surjective R-module morphism p : M � P has a section s : P ÑM such that p � s � 1P :
M p // // P //

see o_O 0
2. Any short exact sequence of R-modules

0 ÑM ãÑ N � P Ñ 0
actually splits.

3. There is an R-module M such that the direct sum P `M is a free R-module.
1



Now consider the isomorphism classes of finitely generated projective R-modules. They form a setProjfgpRq, which can be made into a commutative monoid with addition rPs � rQs def� rP `Qs and the0-module as the identity element. It is not a group and not even a monoid with cancellation, since ingeneral P1 `Q � P2 `Q ÷ P1 � P2.
Proposition-definition 1.1.1. Let M be a commutative monoid. Then there exists the Grothendieck
group associated to M , which is an abelian group M� together with a monoid morphism M ÑM�such that for any group G and a monoid morphism M Ñ G there is a unique group morphismM� Ñ G making the following diagram commute:

M //

��

M�

D!}}z
z

z
z

GThe construction of M� is clear: we take the free abelian group on generators rxs for all x P Mmodulo relations
rxs � rys � rx � ys for all x, y PM.The morphism M ÑM� is given by x ÞÑ rxs. We see that each element of M� can be expressed asa difference rxs � rys of two generators. By the universal property, M� is unique up to isomorphism,and moreover, Mù M� is a functor Mon Ñ Grp, since for any monoid morphism f : M1 Ñ M2 onegets canonically M1 f //

��

M2
��M�1 f� //___ M�2

This functor � : Mon Ñ Grp is left adjoint to the forgetful functor Grp Ñ Mon :
HomGrppM�, Gq � HomMon pM,Gq.

Now we are ready to define the 0-th K-group.
Definition 1.1.2. Let R be a ring. The group K0pRq is the Grothendieck group ProjfgpRq� associatedto the monoid ProjfgpRq of the isomorphism classes of finitely generated projective R-modules.So the elements of K0pRq are rPs for finitely generated projective R-modules P, with addition givenby rPs � rQs def� rP ` Qs and formal subtraction. We can also make K0pRq into a ring by putting
rPs � rQs def� rP bR Qs. The identity in this ring is the class rR1s of the free module R1.K0pRq is a functor, since a morphism of rings φ : R1 Ñ R2 functorially induces a morphism ofmonoids ProjfgpR1q Ñ ProjfgpR2q given by

rPs ÞÑ rP bφ R2s.
This is well-defined: if P is a finitely generated projective R1-module, then P bφ R2 is a finitelygenerated projective R2-module. It is a homomorphism since b commutes with `.

Example 1.1.3. If R is a principal ideal domain, then every finitely generated projective R-module Pis isomorphic to Rn for some n (as a consequence of the fact that over a principal ideal domain asubmodule of a free module is free). So to each rPs P K0pRq one can associate its rank rkrPs def� n.This is well-defined and gives a group homomorphism
2



rk: K0pRq Ñ Z,
rPs ÞÑ rkP.

This is an isomorphism K0pRq � Z. N

Definition 1.1.4. For any ring R there is a canonical morphism i : ZÑ R which induces a morphismof K0-groups i� : K0pZq Ñ K0pRq. The reduced K0-group of R is given by
rK0pRq def� K0pRq{i�pK0pZqq.

In a sense, rK0pRq measures how R is far from being a principal ideal domain. Intuitively thissuggests that for a Dedekind domain A the group rK0pRq should coincide with the class group ClpAq.Establishing this is our next goal.
K0 of a Dedekind domainWe want to show that for a number field F the group rK0pOFq is exactly the class group ClpOFq. In fact,for any Dedekind domain A one has rK0pAq � ClpAq. Let us briefly recall some facts about Dedekinddomains [IR05, Chapter 8].A Dedekind domain can be defined by various equivalent conditions, e.g.:

• In A every nonzero ideal I � R factors uniquely into a product of maximal ideals
I � me11 � � �menn .

• A is regular of dimension ¤ 1, i.e. A is Noetherian and for every maximal ideal m � A thelocalization Am is a principal ideal domain.
Every prime ideal in A is automatically maximal.
In order to identify the group K0pAq, we need to know what are the finitely generated projectivemodules over A.

Lemma 1.1.5. Every finitely generated projective A-moduleM is isomorphic to a direct sum I1`� � �`Inof ideals of A.
Proof. By assumption M is a direct summand of An.If n � 0, then we are done.Assume now the lemma holds for 0, 1, . . . , n � 1. Consider the projection to the last coordinatep : An Ñ A. If ppMq � 0, then M lies in a submodule kerp � An�1, and we are done by induction.Otherwise, I def� ppMq � A is a nonzero projective ideal

0 Ñ ker p|M ãÑM � ppMq Ñ 0
hence M � ker p|M ` I . Now by induction ker p|M � An�1 is a direct sum of ideals. �

We want to relate K0pAq to the class group ClpAq. Let us recall the definitions.
Definition 1.1.6. A nonzero A-submodule I � FracA is called a fractional ideal of A if aI � A forsome a P A.A principal fractional ideal is given by ab A for some ab P FracA. To underline that an ideal I isnot fractional, sometimes one says that it is an integral ideal.
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Fractional ideals of A form a group under multiplication with A being the unit and the inverse
I�1 � ta P FracA | aI � Au.

Definition 1.1.7. The class group of A is given by
ClpAq def� fractional idealsprincipal fractional ideals .

Observe that ClpAq is isomorphic to the group of isomorphism classes of integral ideals (as A-modules). Indeed, any fractional ideal I is isomorphic to an integral ideal a I for some a P A. Onthe other hand, if φ : I Ñ J is an isomorphism of A-modules, then we can pick x0 P Izt0u and sinceφpx0 xq � x0 φpxq � x φpx0q, we have J � φpx0qx0 I , meaning rIs � rJs in the class group as defined above.
Lemma 1.1.8. Any fractional ideal I � FracA is a finitely generated projective A-module.
Proof. If I is generated by px1, . . . , xnq and I�1 is generated by py1, . . . , ynq with °xiyi � 1, then wehave a splitting

An p // // Is
vv RV_h

// 0
pa1, . . . , anq � // °ai xiwhich is given by

s : I Ñ An,b ÞÑ pb y1, . . . , b ynq.
�

Lemma 1.1.9. For any two fractional ideals I, J � FracA one has an A-module isomorphism
I ` J � A` IJ.

If I and J are two relatively prime ideals, then this is easily to be seen. We consider a map px, yq ÞÑx � y. It has image A and kernel consisting of pairs px, xq with x P I X J � IJ , and then the followingshort exact sequence splits since A is projective:
0 Ñ I X J Ñ I ` J Ñ AÑ 0

In general, the lemma should somehow follow from the fact that any ideal factorizes uniquely intoprime ideals.
Proof. Pick a nonzero element b P J such that b J�1 is an integral ideal.
Claim. a I�1 � b J�1 � A for some a P I .We consider the factorization into prime ideals

b J�1 � pe11 � � � pekk .Now take ai P I p1 � � � ppi � � � pk (as usual, p� means that we omit the factor) such that ai R I p1 � � � pk.Then ai I�1 � pj for each j � i and ai I�1 � pi. If we take a def� °ai , then a I�1 � pi for any i, so it iscoprime with b J�1, as we claimed.
4



Thus we have c P I�1 and d P J�1 such that ac � bd � 1. This gives an invertible matrix� c �bd a 
 .We use it to define an isomorphism
I ` J Ñ A` IJ,
px, yq ÞÑ px, yq � � c �bd a 
 � pc x � d yloooomoooon

PA

, �b x � a ylooooomooooon
PIJ

q.
The inverse matrix gives the inverse map A` IJ Ñ I ` J . �Now we are ready to describe the finitely generated projective A-modules. Each of them is isomor-phic to I1`� � �`In by lemma 1.1.5. Applying inductively lemma 1.1.9, we get that the latter is isomorphicto An�1 ` I1 � � � In. So any projective A-module of rank n is isomorphic to An�1 ` I , and the ideal I isuniquely determined up to isomorphism.

Claim. An�1 ` I � An�1 ` I 1 implies I � I 1.This follows from isomorphisms �npAn�1 ` Iq � I :�npAn�1 ` Iq � //

�
��

�npAn�1 ` I 1q
�
��I //_________ I 1Putting all together, we have an isomorphism

K0pAq Ñ Z`ClpAq,
rAn�1 ` Is ÞÑ pn, rIsq.

This allows to conclude rK0pAq � ClpAq. �

Remark 1.1.10. Recall that K0pAq � Z`ClpAq is a ring with multiplication rPs � rQs def
� rP bA Qs.If we think of the elements of K0pAq as of formal differences rPs � rQs, then rK0pAq consists of the elements

rPs � rQs with rkP � rkQ � n. Over a Dedekind domain these are rAn�1 ` I1s � rAn�1 ` I2s � rI1s � rI2s. Wecalculate the product in rK0pAq:
prI1s � rI2sq � prJ1s � rJ2sq � rI1s � rJ1s � rI1s � rJ2s � rI2s � rJ1s � rI2s � rJ2s.

Now rIs � rJs def
� rI b Js � rIJs, and so

rI1 J1s � rI2 J2s � rI1 J2s � rI2 J1s � rI1 J1 ` I2 J2s � rI1 J2 ` I2 J1s.Since over Dedekind domains I ` J � A1 ` pI Jq, remains
rA1 ` I1 J1 I2 J2s � rA1 ` I1 J2 I2 J1s � 0.

Hence on rK0pAq � ClpAq the product is zero.
In particular, K0pOFq � Z ` ClpFq, so K0 is an important arithmetic invariant. Recall that the classgroup ClpFq of a number field is finite—this is usually shown by the celebrated Minkowski’s theory[Neu99, §I.6]. From this also follows
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Proposition 1.1.11. For any n there are finitely many isomorphism classes of projective OF -modulesof rank n.
1.2 K1 of a ring
Definition 1.2.1. Let R be a ring. Consider the group GLnpRq of invertible n � n matrices over R.Denote by epnqij pxq for x P R and 1 ¤ i, j ¤ n, i � j an n � n matrix having 1’s one the diagonal and0’s outside, except for the position pi, jq where it has x. We call such a matrix elementary.

1

1

1

1

xi

j

We observe that multiplying a matrix by an elementary matrix corresponds to adding to some row(or column) a multiple of another row (column).All such matrices generate the subgroup of elementary matrices EnpRq � GLnpRq. One hasembeddings
GLnpRq ãÑ GLn�1pRq,

M ÞÑ
�M 00 1
 ,and similarly EnpRq ãÑ En�1pRq. Under these embeddings one gets

GLpRq def� limÝÑn GLnpRq, EpRq def� limÝÑn EnpRq;
these are just groups of arbitrarily big matrices: to multiply matrices of different size, we use theembedding M ÞÑ

�M 00 1
.
For a moment it may seem like working with elementary matrices is too restrictive. However, theygenerate a big group. The following is basically a computation with matrices, but it is a very importantfact:

Claim (Whitehead’s lemma). For any matrix M P GLnpRq one has�M 00 M�1


P E2npRq.

Further, there are the following relations for elementary matrices:
epnqij paq epnqij pbq � epnqij pa � bq, (1.1)

repnqij paq, epnqjk pbqs � epnqik pabq for i � k, (1.2)
repnqij paq, epnqk` pbqs � 1 for j � k, i � `. (1.3)
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As usual, by rx, ys we denote the commutator x y x�1 y�1. By rG,Gs we will denote the subgroupgenerated by all commutators rx, ys with x, y P G. From (1.2) one sees that rEnpRq, EnpRqs � EnpRq forn ¥ 3, and hence rEpRq, EpRqs � EpRq. We claim that rGLpRq, GLpRqs � EpRq, and so rGLpRq, GLpRqs �EpRq. Indeed, for two elements M,N P GLnpRq their commutator in GLpRq becomes�rM,Ns 00 1
 � �MNM�1N�1 00 1
 � �MN 00 N�1M�1

 �M�1 00 M
 �N�1 00 N
 ,

and by Whitehead’s lemma all factors are in E2npRq.So one has a very noncommutative group GLpRq formed by arbitrarily large matrices, and itsnoncommutativity is measured by its commutator EpRq � rGLpRq, GLpRqs. This suggests that oneshould study the abelianization of GLpRq:
Definition 1.2.2. For a ring R the group K1 is given by

K1pRq def� GLpRq{EpRq � GLpRqab � H1pGLpRq,Zq.We note that GLnp�q is a functor CRing Ñ Grp, and similarly GLp�q is a functor CRing Ñ Grp. Alsothe abelianization is a functor Grp Ñ Ab (which is left adjoint to the inclusion Ab ãÑ Grp), hence K1 isa functor from commutative rings to abelian groups.
Remark 1.2.3. K1 was discovered in topology in the work of J.H.C. Whitehead (e.g. [Whi50]). A great expositionof topological use of K1 is [Mil66]. In algebra, K1 of a ring appeared first in [BS62].

By Whitehead’s lemma, the product rMs � rNs � rM �Ns in K1pRq can be viewed as the “block sum”of matrices rMs � rNs � rM `Ns, since M �N and M `N differ by an element of EpRq:�MN 00 1
 � �M 00 N
 �N 00 N�1



loooooomoooooon
PEpRq

.
Definition 1.2.4. We have the usual determinant homomorphism det : GLnpRq Ñ R�, and it obviouslyextends to a homomorphism det : GLpRq Ñ R�, since det�M 00 N
 � detM detN . The kernel ofthis map is by definition the special linear group SLpRq. One sees that EpRq lies in SLpRq, since allelementary matrices have determinant 1.We put SK1pRq def� SLpRq{EpRq.One has a split short exact sequence

0 Ñ SLpRq ãÑ GLpRq� R� Ñ 0
(the splitting is given by inclusion R� � GL1pRq ãÑ GLpRq), and there is a split short exact sequence

0 Ñ SK1pRq ãÑ K1pRq� R� Ñ 0
That is, K1pRq � SK1pRq`R�. Now the question is whether SK1pRq vanishes, i.e. whether elementarymatrices generate the whole SLpRq. In other words, given a matrix of determinant 1, can we alwaystransform it to the identity matrix using the elementary row (or column) operations? If R is a field, thenthe answer is “yes” by basic linear algebra. If R is a Euclidean domain, or more generally a principalideal domain, then the answer is “yes” [Ros94, §2.3], although it is less easy.As in the rest of this mémoire, we are interested in the case when R � OF is the ring of integers ofa number field. It is not necessarily a principal ideal domain, but we will see soon that SK1pOFq � 0.
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Theorem 1.2.5 (Bass–Milnor–Serre). Let OF be the ring of integers in a number field F . ThenK1pOFq � O�F .However, it is a subtle fact relying on the arithmetic of F .
Remark 1.2.6. In general SK1pRq does not vanish, but discussing such examples is beyond the scope of thistext. For instance, for the group ring ZG, where is G a finite abelian group, SK1pZGq vanishes “rarely”; see[ADS73, ADS85, ADOS87] and [Oli88].
Transfer map in K1Following [Mil71, §3 + §14], we review an additional construction that will be used below. Let R bea ring and S be its subring such that R is a finitely generated projective S-module. The inclusioni : S ãÑ R gives by functoriality a map i� : K1pSq Ñ K1pRq, but one can also get the transfer mapi� : K1pRq Ñ K1pSq going the other way.Note that for K0 the transfer i� : K0pRq Ñ K0pSq is obvious: a finitely generated projective moduleP over R can be viewed as such a module over S. This gives a map rPs ÞÑ rPSs on the generators ofK0. By abuse of notation we will identify rPs and i�rPs.
First observe that K1pSq has a K0pSq-module structure. Let rPs P K0pSq be an isomorphism class ofa finitely generated projective S-module. For an element x P K1pSq we would like to define the action
rPs � x.Since P is projective and finitely generated, one has P ` Q � Sr for some S-module Q. An auto-morphism α of P gives an automorphism α ` 1Q of P `Q, which after fixing a basis of P `Q can beviewed as an element of GLrpSq. So there is a map

AutpPq ãÑ AutpP `Qq �ÝÑ GLrpSq ãÑ GLpSq.
Claim. This is well-defined up to an inner automorphism of GLpSq, and hence gives a well-definedhomomorphism AutpPq Ñ K1pSq � GLpSqab.Proof. Assume that from α P AutpPq we got a matrix A P GLpSq using some basis b1, . . . , br of P `Q.With respect to another basis b11, . . . , b1s the resulting matrix is CAC�1 P GLspSq for some invertibles � r-matrix C.If we replace Q with another Q1 such that P ` Q1 � St , then Q ` St � Q1 ` Sr , hence a differentchoice of Q also alters the embedding AutpPq ãÑ GLpSq by an inner automorphism. �Now for rPs P K0pSq we have a map

GLnpSq �
//

def�hP
++f e d b a ` _ ^ ] \ Z Y XAutpSnq // AutpP ` Snq // K1pSqα � // 1P ` α

Observe that hP`P1 � hP � hP1 , so hP depends only on the class rPs P K0pSq. Now passing toabelianization and n Ñ 8, we get a map K1pSq � GLpSqab Ñ K1pSq. By definition, this is the action of
rPs:

K1pSq Ñ K1pSq,x ÞÑ rPs � x.
8



Now we define the transfer for K1. Again, we assume that R is a finitely generated projective S-module. We pick a projective S-module Q such that R ` Q � Sr is a free S-module of rank r. Anelement x P K1pRq is represented by a matrix A P GLnpRq � AutpRnq. Now Rn ` Qn is also a freeS-module of rank nr. We can consider an automorphism A ` 1Qn P AutpRn ` Qnq, represented by amatrix in GLnrpSq. As before, this gives a map i# : GLnpRq Ñ GLnrpSq, which induces a well-definedmorphism i� : K1pRq Ñ K1pSq (by the same considerations as above).Now if we take an element x P K1pSq and calculate i�i�pxq, then it is the same as rRs � x, where rRsis viewed as an element of K0pSq and the action is defined above.
K1pSq i� //

rRs $$H
H

H
H

H
K1pRq

i�
��K1pSqThis is really immediate from the definitions, yet it will be useful below.

Remark 1.2.7. Compare to the transfer in group cohomology [Bro94, §III.9, III.10].
Proof of K1pOFq � O�FOur goal is to show that SK1pOFq � 0 for a number field F , which means that SLpOFq is generated byelementary matrices. This is a very important and nontrivial result and it seems that there is no slickproof of it. A great article [BMS67] gives the solution. The exposition below is based on [Mil71, §16].

First observe that it is enough to consider SL2:
Proposition 1.2.8 (Bass). Let A be a Dedekind domain. Then every matrix in SLpAq can be re-duced by elementary row and column operations to a matrix in SL2pAq. That is, SL2pAq surjects toSLpAq{EpAq def� SK1pAq.
Proof. We take a matrix M P SLnpAq for n ¥ 3 and proceed by induction on n. We need to show thatmodulo elementary operations, M comes from SLn�1pAq. Consider the last row of the matrix:

M �

�����
� � � � � �... ... . . . ...
� � � � � �x1 x2 � � � xn

����P SLnpAq.
One should have x1A� � � � � xnA � A, since the coefficients are relatively prime.
Case 1: If x1, x2, . . . , xn�1 generate the whole ring A, then we can replace xn by 1 by elementarycolumn operations, and then by elementary operations replace M with a matrix�M 1 00 1
 , M 1 P SLn�1pAq.
Case 2: If x2 � 0, then by elementary column operations one can replace x2 with 1 and proceed as inCase 1.
Case 3: If x2 � 0, then there are finitely many maximal ideals m1, . . . ,ms containing x2, . . . , xn�1 (andhere we use the hypothesis that A is a Dedekind domain). Assume that the first r ideals m1, . . . ,mrcontain x1 and the remaining ideals mr�1, . . . ,ms do not contain x1. Choose an element y P A such that
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y � 1 pmod m1, . . . ,mrq,y � 0 pmod mr�1, . . . ,msq.
Adding the last column multiplied by y to the first column replaces x1 with x1 � xn y. Now

x1 � xn y, x2, . . . , xn�1
generate the whole A, and we can proceed as in the first case. �

The next step is to develop some calculus for SL2. Observe that a matrix �a bc d
 P SL2pRq modulo
E2pRq is uniquely defined by coefficients a and b. Indeed, if we have another matrix �a bc1 d1
 P SL2pRq,then �a bc d
 � � 1 0c d1 � c1 d 1
looooooooomooooooooon

PE2pRq
�
�a bc1 d1
 .

If we have two elements a and b such that aR�bR � R, then there exist c, d P R with a d�b c � 1,and hence a matrix �a bc d
 P SL2pRq. This suggests the following definition:
Proposition-definition 1.2.9. An element of SK1pRq given by a matrix �a bc d
 P SL2pRq, viewedmodulo E2pRq, is called a Mennicke symbol and denoted by �ba�.First we collect some properties:
Proposition 1.2.10. For any a, b P R such that aR � bR � R one has the following identities inSK1pRq:

1. �ba� � �ab�.
2. �ba� � �b�λ aa � and �ba� � � ba�λ b� for all λ P R.
3. �ba� �b1a � � �b b1a �.
4. �ba� � 1 if a or b is invertible.

Proof. This is a calculation with matrices [Mil71, Lemma 13.2], one just routinely checks the identitiesmodulo E2pRq. �

Now we know that Mennicke symbols generate SK1pAq for a Dedekind domain A. The groupSL2pOFq is finitely generated—it is a general property of arithmetic groups, important in the subsequentchapters—hence we know that SK1pOFq is at least finitely generated by Mennicke symbols.
Example 1.2.11. For instance [Ser73, §VII.1], the group SL2pZq is generated by two elements

T def�
�1 10 1
 , S def�

�0 �11 0 
 .
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S has order 4 and ST has order 6, and in fact SL2pZq it is the “amalgamated free product” C4 �C2 C6—see [Alp93] for an elementary proof. SL2pZq
I

〈ST〉oo

〈S〉
OO

t�Iuoo

OO

NNow observe that for any symbol �ba� we can find an integer r ¡ 0 such that br � 1 pmod aq—herewe use that OF is a number field!—and then by the listed properties�ba
�r
�
�bra

�
�
�1� λ aa

�
�
�1a
�
� 1.

So SK1pOFq is a finitely generated torsion group, hence it is finite. We need to invoke some numbertheory to show that in fact SL1pOFq is trivial. Let k be a local field containing n-th roots of unity. Wedenote their group by µn. For b P k� consider an abelian extension kp n?bq{k. Then the “norm residuesymbol” map (cf. [Neu99, Chapter IV + V]) has form
k� Ñ Galpkp n?bq{kq,a ÞÑ pa, kp n?bq{kq.

And Hilbert symbol [Neu99, §V.3] is a nondegenerate bilinear form��, �
p


 : k�{pk�qn � k�{pk�qn Ñ µn,
which is given by �a, b

p



� pa, kp n?bq{kq � n?bn?b .

Here p � ta P k | vpaq ¡ 0u is the maximal ideal of k, and n is implicit in the notation “��,�p	”.
Fact 1.2.12. Hilbert symbol has the following properties [Neu99, Proposition V.3.2]:

1) �aa1,bp

	
�
�a,b

p

	 �a1,b
p

	 and �a,bb1p

	
�
�a,b

p

	 �a,b1
p

	.
2) �a,bp 	 � 1 if and only if a is a norm from the extension kp n?bq{k.
3) �a,bp 	 � �b,ap 	�1.
4) �a,1�ap

	
� 1 (assuming a � 1) and �a,�ap

	
� 1.

5) If �a,bp 	 � 1 for all b P k�, then a P pk�qn.
If F is a number field having n-th roots of unity, then for each place p P MF (including infinite) wecan consider the completion Fp and the corresponding Hilbert symbol��, �

p


 : F�p {pF�p qn � F�p {pF�p qn Ñ µn.
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All completions are put together by the product formula [Neu99, Theorem VI.8.1]:¹
pPMF

�a, b
p



� 1 for any a, b P F�.

Remark 1.2.13. For F � Q and n � 2 these are the classic Hilbert symbols [Ser73, Chapter III]
p�, �qp : Q�p {pQ�p q2 �Q�p {pQ�p q2 Ñ t�1u

that are related to the properties of quadratic forms over Q [Ser73, Chapter IV]. In this case the product formulagives the quadratic reciprocity law [Neu99, VI.8.4].
The case with roots of unity. Let us assume that OF has p-th roots of unity for a prime p, so thatwe can consider Hilbert symbols �a,bq 	 P µp . Later on we will see that this assumption is harmless andone can always pass to a field extension Fpζpq{F . We want to show that SK1pOFq has no p-torsion. Forthis it is enough to prove that every Mennicke symbol �ba� P SK1pOFq has a p-th root, i.e. �ba� � �b1a1�p forsome symbol �b1a1�.By Chinese remainder theorem we can find a1 such that

a1 � a pmod bOFq, (1.4)a1 � 1 pmod pq for p | p, p - b.
So we have �ba� � � ba1

�, where a1 is relatively prime to p.
Claim. Let q | p be a prime lying over p. Then there exist u0, w0 in the q-adic completion of OF , suchthat �u0,w0

q

	
� 1.

Proof. Let U be the group of units of the q-adic completion of OF . This group contains p-th roots ofunity and the residue field is of characteristic p, hence rU : Ups ¥ p2 (cf. [Lan94, §II.3, Proposition 6]).Let π be a uniformizer. Consider the subgroup
U0 def� tu P U |

�u, π
q



� 1u.

It has index rU : U0s ¤ p, hence there exists u0 P U0 such that u0 is not a p-th root of unity inthe completion Fq and �u0,y
q

	
� 1 for some y � πiw0—see above property 5) of Hilbert symbols. Now�u0,w0

q

	
� 1. �

By Chinese remainder theorem we pick b2 such that
b2 � b pmod a1OFq, (1.5)b2 � w0 pmod qNq, (1.6)b2 � 1 pmod pNq for p | p, p � q. (1.7)

Here N is an integer large enough so that b2w0 has a p-th root in the completion Fq, and b2 has a p-throot in Fp for each p | p, p � q.
Claim. Consider an “arithmetic progression” consisting of all b2 satisfying (1.5), (1.6), (1.7). Then itcontains a “prime”, i.e. a number b2 such that b2 OF is a prime ideal. Further, this b2 can be chosento be positive in every real completion of F .
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This is essentially a generalized version of the Dirichlet’s theorem on arithmetic progressions whichis deduced from the Chebotarëv density theorem—cf. [Neu99, §VII.13].
Now by (1.6) holds (keep in mind that ��,�q	 is defined on F�q {pF�q qp , modulo p-th roots)�u0, b2

q



�
�u0, w0

q



� 1.

Hence for some power u def� ui0 of u0, one has�a1, b2b2OF


�
�u, b2

q



� 1. (1.8)

Choose a3 to be a “prime” (i.e. such that a3OF is prime) satisfying the congruences
a3 � a1 pmod b2OFq, (1.9)a3 � u pmod qNq,

with N as above. Now �b2a3
� (1.9)�

�b2a1
� (1.5)�

� ba1
� (1.4)�

�ba
�.

For a3 and b2 consider the product formula:¹
pPMF

�a3, b2
p



� 1.

• By the choice of b2 one has �a3,b2
p

	
� 1 for p | p and p � q, and also for infinite places.

• If r is a finite prime such that r - p, then the symbol �a3,b2
r

	 is “tame” and �a3,b2
r

	
� 1, unless r | a3or r | b2 (see [Neu99, §V.3] for calculation of tame symbols).

So from the product formula remains�a3, b2a3OF


�
�a3, b2b2OF



�
�a3, b2

q



� 1.

For the second two symbols in this product�a3, b2b2OF


�
�a1, b2b2OF


 , �a3, b2
q



�
�u, b2

q


 ,
and using (1.8) we conclude �a3,b2a3OF

	
� 1, which means that b2 is a p-th power modulo a3, so that

b2 � xp pmod a3OFq for some x,
and for Mennicke symbols it means �ba

�
�
�b2a3

�
�
�xpa3

�
�
� xa3

�p,
and �ba� is a p-th root. This shows finally that SK1pOFq has no p-torsion whenever F contains p-th rootsof unity.
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The general case. To finish the proof, assume now that F has no p-th roots of unity. Then considerthe extension Fpζpq{F : Fpζpq OFpζpq? _oo

F
d

OF
d

? _oo

Q Z? _oo

The inclusion OF ãÑ OFpζpq induces a morphism i� and transfer map i�, and their composition i� � i�is the action of rOFpζpqs P K0pOFq: K1pOFq i� //
rOFpζpqs &&L

L
L

L
L

K1pOFpζpqq
i�
��K1pOFq

Note that under the isomorphism K0pOFpζpqq � Z ` rK0pOFpζpqq one has i�rOFpζpqs � d � γ, whered � rFpζpq : Fs � rOFpζpq : OF s. Let α P OFpζpq be an element of order p. Then i�pαq has order p inSK1pOFpζpqq, so i�i�pαq � pd � γq � α � 0.Recall that multiplication in rK0pOFq is trivial, thus γ2 � 0, and
d2 � α � pd � γq pd � γq � α � 0.

However, p does not divide d, which means that α � 0. This completes the proof that SK1pOFqvanishes and K1pOFq � O�F . �

Structure of K1pOFqNow knowing that K1pOFq � O�F , we recall what this group is.
Theorem 1.2.14 (Dirichlet unit theorem). The group K1pOFq � O�F is finitely generated; precisely,

K1pOFq � O�F � Zr1�r2�1 ` µF ,where
• r1 is the number of real embeddings σ1, . . . , σr1 : F ãÑ R,• r2 is the number of conjugate pairs of complex embeddings σr1�1, . . . , σr2 , σr1�1, . . . , σr2 : F ãÑ C.• µF is the group of roots of unity in F ,
We just recall briefly that calculation of the rank starts with the logarithmic embedding (which isclearly a homomorphism from the multiplicative group F� to the additive group):

λ : F� Ñ Rr1�r2 ,a ÞÑ pλ1paq, . . . , λr1�r2paqqdef� plog |σ1paq|, . . . , log |σr1paq|, 2 log |σr1�1paq|, . . . , 2 log |σr1�r2paq|q.
14



For algebraic integers a P O�F one has NF{Qpaq � �1, so ° λipaq � log |NF{Qpaq| � 0, which meansthat the image of O�F under λ lies in the hyperplane of codimension one
H def� tpx1, . . . , xr1�r2q P Rr1�r2 |¸xi � 0u.

It is easy to see that the image of O�F under λ is a discrete subgroup in H , i.e. a lattice ΛF def� λpO�F q.Indeed, if we consider a ball B � H and the points λpaq � p|σ1paq|, . . . , |σr1�r2paq|q P B for a P O�F , thenwe have a bound on |σipaq|, and hence some bound on the coefficients of the minimal polynomial of a(which are symmetric functions in σipaq). So in each ball there are finitely many points λpaq comingfrom a P O�F .The kernel of λ clearly consists of some roots of unity µF , since it is a subgroup of the cyclic groupF�. Moreover, every root of unity is mapped to 0 because ΛF is a free group.Now the really hard part of the theorem is to show that the lattice ΛF � H is of the full rankr1 � r2 � 1 (see e.g. [Neu99, Theorem I.7.3], or [Jan96, p. 74–77]).
This of course can be found in any algebraic number theory textbook (e.g. [Neu99, §I.5–I.7]), and itwould be embarrassing to discuss the full proof. We recall it just to note that for the higher K-groupsK2pOFq, K3pOFq, K4pOFq, . . . it is also relatively easy to show that they are finitely generated (which ismade in a rather short note [Qui73a]), but calculation of their ranks is quite involved (which is the resultof [Bor74]). However, these ranks also depend only on r1 and r2, in a simple and beautiful way.Further we recall the class number formula giving the residue of zeta function ζFpsq at the simplepole s � 1 [Neu99, VII.5.11]: limsÑ1ps � 1q ζFpsq � 2r1 p2πqr2 hFωF � ?∆F RF ,

where hF def� # ClpFq � #K0pOFqtors is the class number, and ωF def� #µF � #K1pOFqtors is the number ofroots of unity. Here RF is the regulator, which is related to the volume of the lattice described aboveby Vol ΛF � RF ?r1 � r2.Basically, this formula involves torsion in K0 and K1, and suggests that for higher K-groups onecan also define regulators and get similar expressions. Using the functional equation, rewrite the classnumber formula for the zero at s � 0:
limsÑ0 s�pr1�r2�1q ζFpsq � �#K0pOFqtors#K1pOFqtors RF .The Lichtenbaum’s conjecture [Lic73] reads for n ¡ 0

limsÑnpn � sq�µn ζFp�sq � � #K2npOFq#K2n�1pOFqtors RF,n up to a power of two,
where µn is the multiplicity of zero ζFp�nq (see the preface), and RF,n is the so-called Borel’s regulator.The group K2npOFq is finite for n ¡ 0, which will be established in the subsequent chapters.
Example 1.2.15. If F � Q, then Rn,Q � 1, and for ζp�1q we get a formula

ζp�1q � � #K2pZq#K3pZqtors up to a power of two.
In fact K2pZq � Z{2 (see below) and K3pZq � Z{48, so up to a power of two, this indeed coincides withthe right value ζp�1q � �B2{2 � �1{12. N

This was a little digression related to the class number formula; in this text we are interested onlyin ranks of K-groups. We refer to [BG02], [Gon05], and [Ram89] for further discussion of regulators.
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1.3 A few words about K2
Recall that the group EpRq is by definition generated by elementary matrices. They satisfy relations(1.1), (1.2), (1.3), however, depending on R, there can be other less obvious relations, and the group ofelementary matrices EpRq is far from being “elementary”. This suggests the following
Definition 1.3.1. The Steinberg group StnpRq is the group generated by formal symbols xpnqij paq for1 ¤ i, j ¤ n, i � j , and a P R, modulo relations

xpnqij paqxpnqij pbq � xpnqij pa � bq, (1.10)
rxpnqij paq, xpnqjk pbqs � xpnqik pa bq for i � k, (1.11)
rxpnqij paq, xpnqk` pbqs � 1 for j � k, i � `. (1.12)

(These are the same as (1.1), (1.2), (1.3).) The Steinberg group StpRq is the limit
limÝÑn StnpRq,

given by the obvious maps StnpRq Ñ Stn�1pRq. (These are not necessarily injections though!)Obviously, St is a functor from the category of rings to the category of groups.
By the definition, there are surjections StnpRq � EnpRq given by xpnqij paq ÞÑ epnqij paq. Passing to alimit gives a surjection StpRq� EpRq.

Definition 1.3.2. The group K2 of a ring R is given by
K2pRq def� kerpStpRq� EpRqq.

We do not discuss in details K2 and its properties, in particular its rôle in arithmetic (cf. [BT73] and[Tat76]). A great reference is [Mil71], [Mag02, Part V], and the chapter on K2 in the textbook [Ros94].
Perfect groupsPerfect groups play a major rôle in everything what follows, so we record here some basic facts aboutthem.
Definition 1.3.3. A group P is called perfect if rP,Ps � P. In other words, if

P{rP,Ps � Pab � H1pP,Zq � 0.
Here are some immediate properties of perfect groups:

Proposition 1.3.4. 0) If P ¤ G is a perfect subgroup, then it is contained in every subgroup ofthe derived series G � rG,Gs � rrG,Gs, rG,Gss � � � �

1) The image of a perfect group under a homomorphism f : P Ñ G is also a perfect group.2) Any group G has a maximal perfect subgroup, the perfect radical PG, which is a character-istic subgroup of G.3) If φ : G Ñ H is a homomorphism, then φpPGq ¤ PH .4) If φ : G Ñ H is a homomorphism and PH � 1, then PG ¤ kerφ.
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Proof. 0) is clear from the definition.1) is the fact that homomorphisms send commutators to commutators.For 2) note that if P1 and P2 are two perfect subgroups of G, then the subgroup generated by P1and P2 is perfect as well. Hence there is the maximal perfect subgroup PG. By 1) any automorphismG Ñ G should send PG within itself, hence PG is a characteristic subgroup.3) is a particular case of 1), and 3) implies 4). �

Example 1.3.5. Recall that for GLpRq the derived series is given by
rGLpRq, GLpRqs � EpRq, rEpRq, EpRqs � EpRq,

therefore EpRq is the maximal perfect subgroup of GLpRq. Similarly, the relation (1.11) tells that
rStpRq, StpRqs � StpRq, so the Steinberg group is also perfect. Note that EpRq is the image of StpRqunder the surjection StpRq� EpRq. N

Kervaire’s theoremLet us recall briefly the theory of central extensions. We will freely use some basic group cohomology—cf. [Bro94] and [Wei94, Chapter 6].
Definition 1.3.6. An extension of a group G by an abelian group A is a short exact sequence

0 Ñ AÑ X Ñ G Ñ 1
An extension such that A lies in the center of X is called a central extension. A morphism of twoextensions of G is a homomorphism X Ñ Y giving a commutative diagram

0 // A // X //

��

G // 1
0 // B // Y // G // 1

An extension 0 Ñ A Ñ X Ñ G Ñ 1 is called a universal central extension if for every otherextension 0 Ñ BÑ Y Ñ G Ñ 1 there exists a unique morphism as above.
A universal central extension of G is clearly unique up to an isomorphism, since it is an initial objectin the category of central extensions of G. Here is a criterion of existence:

Theorem 1.3.7. A group G has a universal central extension if and only if G is perfect. Precisely,consider a presentation G � F{R where F is a free group and R � F its normal subgroup:
1 Ñ RÑ F Ñ G Ñ 1

Then the universal central extension is given by
0 Ñ H2pG,Zq Ñ rF, Fs

rF,Rs Ñ G Ñ 1
Theorem 1.3.8. A central extension

0 Ñ AÑ X pÝÑ G Ñ 1
is universal if and only if X is a perfect group and every central extension of X is trivial, i.e. of theform 0 Ñ BÑ X � BÑ X Ñ 1
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The latter two theorems are really standard. We refer to [Wei94, §6.9] for proofs.
Concerning K-theory, one has the following remarkable result:

Theorem 1.3.9 (Kervaire). The group extension from the definition of K2
0 Ñ K2pRq Ñ StpRq Ñ EpRq Ñ 1 (1.13)is a universal central extension. In particular, K2pRq � H2pEpRq,Zq.This was proved by Kervaire in [Ker70]. To establish this, first one should verify that the group extension(1.13) is central. More precisely, we have

Claim. K2pRq is the center of StpRq.
Proof. Take an element y P StpRq. If it lies in the center of StpRq, then its image φpyq under themap φ : StpRq Ñ EpRq should lie in the center of EpRq. However, we know that an n � n matrix
commuting with all n � n elementary matrices should have form

���a . . . a
�� for some a P R. This

means that the center of EpRq is trivial, represented by the identity matrix
���1 1 . . .

��, and therefore
ZpStpRqq � kerφ def� K2pRq.Conversely, if we start with an element y P StpRq such that φpyq � 1, we would like to see that ycommutes with all the generators of StpRq. The element y itself is a word of generators xpnqij paq for nbig enough. We can take n in such a way that i, j   n. Now consider the subgroup Pn generated byelements xpnq1n paq, xpnq2n paq, . . . , xpnqn�1,npaq for a P R. This is a commutative group thanks to the relation(1.12). Each element of Pn can be written uniquely as xpnq1n pa1q, xpnq2n pa2q, . . . , xpnqn�1,npan�1q. The image ofthis group in EpRq is the group of matrices�������

1 a11 a2. . . ...1 an�11

������
For i, j   n we have

xpnqij paqxpnqkn pbqxpnqij p�aq � # xpnqkn pbq, j � k,xpnqin pabqxpnqkn pbq, j � k.This shows that
xpnqij paqPn xpnqij paq�1 � xpnqij paqPn xpnqij p�aq � Pn for i, j   n.

Since y is a product of xpnqij paq for i, j   n, we have y Pn y�1 � Pn.By assumption, φpyq � 1, hence for all p P Pn
φpy p y�1q � φpyqφppqφpy�1q � φppq,

and y p y�1 � p.
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Now y commutes with every xpnqkn paq with k   n. By a similar argument one sees that y commuteswith every xpnqn` paq with `   n. So y commutes with the commutator
rxpnqkn paq, xpnqn` p1qs � xpnqk` paq where k � ` and k, `   n.Since n can be chosen to be arbitrarily large, this means that y commutes with all the generatorsof StpRq. �To finish the proof of theorem 1.3.9, we should show that the extension (1.13) is universal. Accordingto theorem 1.3.8, this is equivalent to StpRq being perfect and having only split central extensions.

Claim. Every central extension 0 Ñ AÑ X pÝÑ StpRq Ñ 1splits.Proof idea. We need to find a section
0 // A // X p // StpRq //

sff _Q 1
We send an element xijpaq P StpRq to some element sijpaq P X. We should choose these sijpaq insuch a way that they satisfy the Steinberg relations (1.10), (1.11), (1.12), so that this is a homomorphism.Further, we should take sijpaq P p�1pxijpaqq, so that it is a section.Since the kernel of p lies in the center of X, for any two elements x, y P StpRq it makes sense totake the commutator rp�1pxq, p�1pyqs as a well-defined element of X. One can observe [Mil71, p.49]from the commutator identities that if i, j, k, k1 are distinct indices, then

rp�1xikpaq, p�1xkjpbqs � rp�1xik1p1q, p�1xk1jpa bqs.This shows that the map
xijpaq ÞÑ sijpaq def� rp�1xikp1q, p�1xkjpaqs for some k � i, k � jis well-defined and does not depend on k. We see that ppsijpaqq � rxikp1q, xkjpaqs � xijpaq by theSteinberg identity (1.11). Moreover, one can check that sijpaq satisfy (1.10), (1.11), (1.12). �

Example: K2pZqTo get a feeling of K2, let us look at K2pZq [Mil71, §10]. It is the kernel of StpZq � EpZq, where StpZqcaptures the “obvious” commutator relations (1.1), (1.2), (1.3) in EpRq. So K2pZq should correspond tonon-obvious relations between elementary matrices. In E2pZq there is a matrix of order 4 defining arotation by 90 �: A def�
� 1 10 1 
 � � 1 0

�1 1 
 � � 1 10 1 
 � � 0 1
�1 0 
 .

A A A

This gives a relation
pep2q12 p1q ep2q21 p�1q ep2q12 p1qq4 � 1,which corresponds to a nontrivial element pxp2q12 p1qxp2q21 p�1qxp2q12 p1qq4 P K2pZq. One can check that it hasorder 2 in K2pZq, and in fact it generates K2pZq � Z{2Z:
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Theorem 1.3.10. For each n ¥ 3 the group StnpZq is a central extension
0 Ñ Cn Ñ StnpZq Ñ EnpZq Ñ 1

where Cn is the cyclic group of order 2 generated by pxp2q12 p1qxp2q21 p�1qxp2q12 p1qq4.A proof can be found in [Mil71, §10]. /Passing to the limit, we get K2pZq � Z{2Z, because of the universal central extension
0 Ñ K2pZq Ñ StpZq Ñ EpZq Ñ 1

Remark 1.3.11. K-groups are extremely difficult to compute even for Z. Later on we will review definitions ofthe higher K-groups K3, K4, K5, . . . For Z these are the following:
n: 0 1 2 3 4 5 � � �KnpZq: Z Z{2 Z{2 Z{48 0 Z � � �[Mil71, §10] [LS76] [Rog00] [EVGS02]

Note that all K2pZq, K3pZq, K4pZq are finite, and K5pZq has rank one. We will not be able to explain the finitepart, but we will see that next in this series should go some other finite groups K6pZq, K7pZq, K8pZq, then a groupK9pZq of rank one, and so on. Ranks are always periodic, with period four.For calculation of KnpZq see a survey [Wei05].
In fact for any number field F the group K2pOFq is finite. Originally this result is due to Garland[Gar71]. We will see more generally finiteness of K2pOFq, K4pOFq, K6pOFq, . . ., which follows from Borel’scomputation [Bor74].A definition of Kn for n ¡ 2 is the subject of the next chapter.
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Chapter 2

Higher algebraic K-theory of rings
(plus-construction)

In this chapter we review a definition of higher K-groups of a ring via the Quillen’s plus-construction.It is worth noting that the first K-group functors K0, K1, K2 as described in chapter 1 are notseparate entities; they can be put together in various ways. For instance, for an ideal I � R one candefine relative K-groups K1pR, Iq and K0pR, Iq, in such a manner that there is an exact sequence
? Ñ K2pRq Ñ K2pR{Iq Ñ K1pR, Iq Ñ K1pRq Ñ K1pR{Iq Ñ K0pR, Iq Ñ K0pRq Ñ K0pR{Iq

—see [Mil71, §4 + §6] for this. Then it is natural to ask what would be “K2pR, Iq”, and how to continuethe sequence with terms K3, K4, K5, . . . The key insight is that such a long exact sequence reminds thefibration long exact sequence in algebraic topology (proposition H.2.10), so one should somehow definea functor
CRing Ñ HCWTop,R ù KpRq.

from the category of (commutative) rings to the category of CW-complexes and homotopy classes ofmaps. Then one defines the higher K-groups by KipRq def� πipKpRqq.Now for each ideal I � R the projection p : RÑ R{I induces a map p� : KpRq Ñ KpR{Iq. We considerthe associated fibration (see definition H.2.8) and we force by definition homotopy fiber (its connectedcomponent at the base point) of such a fibration to be KpR, Iq. Then we have the desired long exactsequence
� � � Ñ KnpR, Iq i�ÝÑ KnpRq p�ÝÑ KnpR{Iq BÝÑ Kn�1pR, Iq Ñ � � �A reasonable construction of KpRq must give KipRq � πipKpRqq, where on the left hand side are theK-groups K0, K1, K2 discussed in chapter 1, and also the definition of this functor K on arrows shouldgive us the classic Kipfq.One of Quillen’s solutions is the following: Ki is the composition of functors

Ki : Rù GLpRqù BGLpRqù BGLpRq�ù πipBGLpRq�q.
Given a ring R, we consider the classifying space BGLpRq of the group GLpRq (cf. definition 1.2.1).Then from this space we can build another space “BGLpRq�” and take its homotopy groups. Building aspace BGLpRq� from BGLpRq is called plus-construction and it is described in this chapter, togetherwith proofs that Ki ’s obtained this way agree with what we saw in chapter 1.
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References. A nice exposition of the plus-construction is [Ber82a], and our overview loosely follows its §§4–9.

2.1 Perfect subgroups of the fundamental group
We are going to use some basic definitions and results from algebraic topology. They are collectedin appendix H, and the least standard section there is § H.4 discussing acyclic maps. In what follows,to make life easier, all spaces are tacitly assumed to have homotopy type of connected CW-complexeswith finitely many cells in any given dimension. The spaces are pointed, but the base points are droppedfrom the notation, e.g. πnpXq actually means πnpX, �q, etc.Recall that in § 1.3 we discussed perfect groups, i.e. those satisfying P{rP,Ps � Pab � H1pP,Zq � 0.In particular, a homomorphic image of a perfect group is again perfect.
Proposition 2.1.1. If f : X Ñ Y is an acyclic map, then π1pYq � π1pXq{P, where P is some perfectnormal subgroup of π1pXq.Proof. Let F be homotopy fiber of f . Consider the fibration long exact sequence

π2pYq Ñ π1pFq i�ÝÑ π1pXq f�ÝÑ π1pYq Ñ π0pFq
The map f� is surjective since π0pFq � 1 (because rH0pFq � 0). Since rH1pFq � π1pFqab � 0, the groupπ1pFq is perfect. The image of π1pFq under a homomorphism i� is again a perfect group P def� im i�.Finally, by exactness ker f� � im i� we conclude π1pYq � π1pXq{P. �

Now let us consider a pushout Y0 YX Y1 in the category of topological spaces. The Seifert–vanKampen theorem tells us how the fundamental group of Y0 YX Y1 is made: it is given by the “freeproduct with amalgamation”
Y0 YX Y1

I

Y0f1oo π1pY0q �π1pXq π1pY1q
I

π1pY0qf1�oo ker f1�? _oo

Y1
f0
OO

Xf1oo

f0
OO

π1pY1q
OO

π1pXqf1�oo

f0�
OO

ker f1�? _oo

If we assume f1 to be an acyclic cofibration, then by proposition H.4.6 its pushout f1 : Y0 Ñ Y0 YX Y1is also an acyclic cofibration. By the previous proposition π1pY1q � π1pXq{ker f1� and
π1pY0 YX Y1q � π1pY0q{ker f1�.Here ker f1� is the normal closure of the perfect subgroup f0� ker f1�.

We will use later on this observation:
Proposition 2.1.2. If f1 : X Ñ Y1 is an acyclic cofibration, then the pushout f1 : Y0 Ñ Y0 YX Y1 is alsoan acyclic cofibration with ker f1� the normal closure of the perfect subgroup f0� ker f1� of π1pY0q.
2.2 Plus-construction for a space
Given a space X, we can consider some perfect normal subgroup P � π1pXq of the fundamental group.We would like to come up with another space X� such that this subgroup P is killed in π1pX�q. Namely,we are looking for a map X Ñ X� such that kerpπ1pXq Ñ π1pX�qq � P. Moreover, we ask that the
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homology groups remain the same: HpXq � HpX�q. The solution of this problem is easy: just gluein some 2-cells to kill the generators of P � π1pXq, and then glue in some 3-cells to save the secondhomology group untouched. This construction changes the higher homotopy groups πpXq in somevery nontrivial way, and this will be the main story! Here is a precise statement:
Theorem 2.2.1 (Quillen). Let P be a perfect normal subgroup of π1pXq. Then there exists an acycliccofibration f : X Ñ X� with kerpπ1pXq f�ÝÑ π1pX�qq � P. If f 1 : X Ñ pX�q1 is another acyclic cofibrationwith the same property, then there is a homotopy equivalence h : X� Ñ pX�q1, making the diagramcommute

Xf
~~}}}}}}}} f 1

""DDDDDDDD

X� h // pX�q1
Proof of existence. First assume that P � π1pXq is a perfect group. We are going to attach 2-cells toX, producing a space X1, and then attach 3-cells to X1, producing a space X� with π1pX�q � 0.

• For each generator rαs of π1pXq we attach a 2-cell along α. The resulting space X1 has π1pX1q �0 (by the van Kampen theorem), and there is a Hurewicz isomorphism π2pX1q �ÝÑ H2pX1q—cf.theorem H.1.1.Now consider the pair long exact sequence
� � � Ñ H2pXq Ñ H2pX1q Ñ H2pX1, Xq δÝÑ H1pXq Ñ � � �

Since π1pXq is perfect, H1pXq � π1pXqab � 0.By excision theorem, the group H2pX1, Xq is generated by the added 2-cells:
H2pX1, Xq � H2pªλ B2,ªλ S1q �àλ Z.

• We chose maps bλ : S2 Ñ X1 such that they induce an isomorphism on homology
rHqp�S2q //

�

66
rHqpX1q // HqpX1, Xq

We attach 3-cells by �bλ : �λ S2 Ñ X1 to form another connected space X�. It still satisfiesπ1pX�q � 0.
We need to check that the inclusion X ãÑ X� is acyclic. By proposition H.4.7, it is enough to establishHpX�, Xq � 0:

� � � Ñ Hn�1pX�, Xq Ñ HnpXq Ñ HnpX�q Ñ HnpX�, Xq Ñ � � �By 5-lemma and excision, the induced map of exact sequences of triples
p
ªB3,ªS2, ptq ãÑ pX�, X1, Xq

gives an isomorphism Hp
�B3, ptq � HpX�, Xq:
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� � � // Hnp�S2, ptq //

�
��

Hnp�B3, ptq //

�
��

Hnp�B3,�S2q //

�
��

Hn�1p�S2, ptq //

�
��

� � �

� � � // HnpX1, Xq // HnpX�, Xq // HnpX�, X1q // Hn�1pX1, Xq // � � �

So HpX�, Xq � 0.
Now for the general case, let X Ñ X be a covering with π1pXq � P. By the previous case, there is anacyclic cofibration f : X Ñ X� with π1pX�q � 0. We consider the pushout of f along X Ñ X:

X�
I

Xfoo

X�
OO

Xfoo
OO

We can apply proposition 2.1.2: we know that f : X Ñ X� is also an acyclic cofibration, andkerpπ1pXq f�ÝÑ π1pX�qq � P. �

Remark 2.2.2. The construction with attaching 2-cells and 3-cells goes back to Kervaire [Ker69].
The uniqueness up to homotopy is deduced from the following:

Lemma 2.2.3. Let f : X Ñ Y and g : X Ñ Z be two maps with f being an acyclic cofibration. Letker f� ¤ kerg�. Then there exists a map h : Y Ñ Z making the diagram commute. Moreover, anytwo such are homotopic.
Xf

���������� g
��======== π1pXqf�

zzvvvvvvvvv g�
$$HHHHHHHHH

Y h //_______ Z π1pYq h� //________ π1pZq
Proof. We can assume that g is also a cofibration by replacing it with the associated cofibration (defi-nition H.2.8). Now consider a pushout

Z YX Y
I

Zfoo

Y
g OO

Xfoo

gOO
π1pZq �π1pXq π1pYq

I

π1pZqf�oo

Y
OO

Xf�oo

g�OO

Here ker f� is the normal closure of g� ker f� by proposition 2.1.2, which is trivial by the assump-tion. So f is a homotopy equivalence by proposition H.4.8, and so homotopy equivalence under X(proposition H.2.5). Let f�1 denote its homotopy inverse under X.
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Xf
{{wwwwwwwwww g

##GGGGGGGGGG

Y h //_________

g ##GGGGGGGGG Zf
{{wwwwwwwww

Z YX Y f�1
;;wwwwwwwww

The map h def� f�1 �g is the desired homotopy, and by the universality of pushouts any map h shouldarise this way. �

The main application of the plus-construction is the following. Recall from proposition 1.3.4 thatany group G contains the maximal perfect subgroup PG, which is automatically normal.
Definition 2.2.4 (Plus-construction). Let P � Pπ1pXq be the maximal perfect subgroup in π1pXq. Thenby virtue of theorem 2.2.1, there exists an acyclic cofibration, which we denote by qX : X Ñ X�, suchthat kerpπ1pXq qX�ÝÝÑ π1pX�qq � P.

The plus-construction is functorial in the following sense.
Proposition 2.2.5. Given a map f : X Ñ Y , there is a unique homotopy class of maps f� : X� Ñ Y�making the following diagram commute

X f //

qX
��

Y
qY
��X� f� // Y�

Proof. π1pXq f�
$$HHHHHHHHH

qX�

}}||||||||||||||||||||

π1pYq qY�
$$IIIIIIIII

π1pX�q h� //_________________ π1pY�q
We have f� kerqX� � f�Pπ1pXq ¤ Pπ1pYq � kerqY�,hence kerqX� ¤ kerpqY� � f�q, and we apply lemma 2.2.3. �

Proposition 2.2.6. For a product of two spaces one has
pX � Yq� � X� � Y� with qX�Y � pqX, qY q.

Proof. This follows from the properties of P and π1:
Pπ1pX � Yq � Ppπ1pXq � π1pYqq � Pπ1pXq �Pπ1pYq.

�
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Proposition 2.2.7. Let f0 � f1 : X Ñ Y be homotopy equivalent maps. Then f�0 � f�1 : X� Ñ Y� arehomotopy equivalent as well.Proof. Consider a homotopy h : X � Y Ñ Y . Applying proposition 2.2.6, we get
X � I h //

pqX ,qIq
��

Y
qY
��X� � I� h� // Y�

�

Now consider a fibration F iÝÑ E pÝÑ B. One would like to find assumptions under which the plus-construction gives again a fibration F� i�ÝÑ E� p�ÝÑ B� (i.e. so that F� is homotopy fiber of p�). In thiscase one says that the fibration is plus-constructive. For a complete discussion of plus-constructivefibrations see [Ber82b], [Ber83], and [Ber82a, Chapter 4, 6, 8]. But let us sweep under the rug thesetechnical results by citing a couple of facts to be used later.
Fact 2.2.8. Let F Ñ E Ñ B be a fibration of connected spaces. Assume that Pπ1pBq � 1. ThenF� Ñ E� Ñ B� is also a fibration of connected spaces.This is easy to show, see e.g. [Ber82a, 6.4 a)]. /

Fact 2.2.9. Consider a central group extension 1 Ñ C Ñ E Ñ G Ñ 1 where E is a perfect group.Then BC Ñ BE� Ñ BG� is a homotopy fibration.This is less easy; see for this [Ber82a, 8.4] or [Ger73b]. /

2.3 Homotopy groups of X�
For a given space X, we would like to get information about homotopy groups πipX�q. The idea due toDror [Dro72], is to consider a Postnikov-like tower of spaces

� � � Ñ Xn�1 Ñ Xn Ñ � � � Ñ X3 Ñ X2 Ñ X1 � X
The construction is performed in such a way that each step kills more homology:

rHipXnq � 0 for i   n
(here and below we omit the coefficient ring Z in “HpXq” to simplify the notation).Consequently, taking the limit AX � limÐÝXn , one gets an acyclic space. In fact AX is homotopy fiberof the acyclic cofibration X Ñ X� produced by the plus-construction. This is explained in [Ber82a, §7]and [Ger73a] but we will not really need it.Now we describe inductively what these spaces Xn are. The starting space X2 is the covering of Xhaving fundamental group π1pX2q � Pπ1pXq � H1pXq:

X2
A

//

��

PKpH1pXq, 1q
��X // KpH1pXq, 1qSimilarly, Xn�1 Ñ Xn is the pullback of the path fibration over the Eilenberg–Mac Lane spaceKpHnpXnq, nq:
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Xn�1
A

��

// PKpHnpXnq, nq
��Xn θn // KpHnpXnq, nq

(2.1)

The morphism θn : Xn Ñ KpHnpXnq, nq is given as follows. Recall that for any free chain complexC over a principal ideal domain there is a natural split short exact sequence
0 Ñ Ext1RpHn�1pCq,Mq Ñ HnpC;Mq Ñ HompHnpCq,Mq Ñ 0

(this is the “universal coefficient theorem” [May99, §17.3]). For instance, if we take C � CpXnq thesingular complex for Xn and M � HnpXq, then by our inductive assumption Hn�1pXnq � 0 the Extvanishes, and remains an isomorphism
HompHnpXnq, HnpXnqq � HnpXn, HnpXnqq. (2.2)Further, there is a natural isomorphism [May99, §22.2]
HnpXn;HnpXnqq � rXn, KpHnpXnq, nqs, (2.3)where rXn, KpHnpXnq, nqs denotes the set of homotopy classes of maps Xn Ñ KpHnpXnq, nq. Now wecan take the composition of (2.2) and (2.3):

1HnpXnq
�

((RRRRRRRRRRRRRRRR HompHnpXnq, HnpXnqq � //

**UUUUUUUU
HnpXn;HnpXnqq

�
��θn rXn, KpHnpXnq, nqsThe image of 1HnpXnq under these maps is by definition θn : Xn Ñ KpHnpXnq, nq. It is defined up tohomotopy. However, since Xn�1 is, by definition, homotopy fiber of θn , changing θn within its homotopyclass changes Xn�1 within it fiber homotopy class over Xn. Hence Xn�1 is unique up to fiber homotopyequivalence over Xn , and the construction is functorial up to fiber homotopy.

The construction is inductive and uses at each step the fact that rHipXnq � 0 for i   n. We check itinductively. At each step there is a homotopy fibration
KpHnpXnq, n � 1q Ñ Xn�1 Ñ Xn

We apply the Hurewicz theorem (H.1.1). The space KpHnpXnq, n � 1q is pn � 2q-connected, so
Hn�1pKpHnpXnq, n � 1qq � πn�1pKpHnpXnq, n � 1qq � HnpXnq.

Further, πnpKpHnpXnq, n � 1qq surjects to HnpKpHnpXnq, n � 1qq, thus the latter is 0.
rHipKpHnpXnq, n � 1qq � " HnpXnq, i � n � 10, otherwise.Denote KpHnpXnq, n � 1q by K. We use the Serre exact sequence (proposition H.3.3). In this caserHipXnq � 0 for i   n by the induction hypothesis and rHjpKq � 0 for j   n � 1.

H2n�2pKq Ñ � � � Ñ HnpKq Ñ HnpXn�1q Ñ HnpXnq �ÝÑ Hn�1pKq Ñ � � �The last arrow is an isomorphism, hence rHnpXn�1q � 0. �
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We can apply fact 2.2.8 to homotopy fibrations Xn�1 Ñ Xn θnÝÑ KpHnpXnq, nq to get new fibrations
X�2 Ñ X� Ñ Kpπ1pX�q, 1q,X�n�1 Ñ X�n Ñ KpHnpXnq, nq for n ¥ 2.

Let us look at the corresponding homotopy long exact sequences.
• For n � 1 we have

� � � Ñ 1 Ñ π2pX�2 q �ÝÑ π2pX�q Ñ 1 Ñ π1pX�2 q Ñ π1pX�q �ÝÑ π1pX�q Ñ 1
So we deduce π1pX�2 q � 1, and πipX�2 q � πipX�q for i ¥ 2. The Hurewicz theorem gives anisomorphism π2pX�2 q � H2pX2q and a surjection π3pX2q� H3pX2q.

• For n � 2 we have a short exact sequence
� � � Ñ 1 Ñ π3pX�3 q �ÝÑ π3pX�2 q Ñ 1 Ñ π2pX�3 q Ñ π2pX�2 q Ñ H2pX2q Ñ π1pX�3 q Ñ 1

Here π2pX�2 q Ñ H2pX2q can be identified with the Hurewicz isomorphism as above, and we haveπ1pX�3 q � π2pX�3 q � 1. Again by Hurewicz π3pX�3 q � H3pX3q and π4pX�3 q� H4pX3q.For i ¥ 3 one has πipX�3 q � πipX2q � πipX�q.
• And so on...
It is clear how one proceeds by induction in this manner to conclude that for n ¥ 2

πipX�n q � " 0, i   n,πipX�q, i ¥ n; (2.4)
πnpX�n q � HnpXnq,πn�1pX�n q� Hn�1pXnq.

2.4 Higher K-groups of a ring
Now we are going to apply the construction from the previous section to the classifying space X � BGof a group G. In this case the calculation above gives

πipBG�q �
" G{PG, i � 1,HippBGqiq, i ¥ 2, (2.5)

Take G � GLpRq. We have PG � EpRq, and hence π1pBGLpRq�q � GLpRq{EpRq � K1pRq. Nowfrom the definition of X2 we see that it is the space BPG, hence π2pBGLpRq�q � H2pEpRq,Zq. We knowthat the latter is K2pRq. This motivates the following
Definition 2.4.1. For a ring R the higher K-groups are given by

KipRq def� πipBGLpRq�q for i ¡ 0.
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We would like to describe K3pRq, which was not defined before. Recall that we have a groupextension 0 Ñ K2pRq Ñ StpRq Ñ EpRq Ñ 1This is a universal central extension, hence H1pStpRq,Zq � H2pStpRq,Zq � 0. We apply fact 2.2.9 toget a homotopy fibration BK2pRq Ñ BStpRq� Ñ EpRq�The fibration long exact sequence gives immediately πipBStpRq�q � πipBEpRq�q for i ¥ 3. Theplus-construction on BStpRq kills its fundamental group since StpRq is perfect itself, so BStpRq� is a1-connected space. The Hurewicz theorem gives an isomorphism π2pBStpRq�q � H2pBStpRq�q. Thelatter is H2pBStpRqq � 0, since the plus-construction preserves homology. Again by Hurewicz we have
π3pBEpRq�q � π3pBStpRq�q � H3pStpRq,Zq.Finally, π3pBEpRq�q � π3pBGLpRq�q by the following

Lemma 2.4.2. One has πipBG�q � πipBPG�q for i ¥ 2.Proof. Recall that pBGq2 can be identified with BPG and then use (2.4). �We conclude that K3pRq � H3pStpRq,Zq.
Remark 2.4.3. For a topological approach to the theory of central extensions of a perfect group see [Ber82a,Chapter 8] and [Woj85].

The plus-construction may seem strange: we took BGLpRq, then modified it by gluing 2-cells and3-cells to obtain something called BGLpRq�, calculated its homotopy groups, and π1pBGLpRq�q happensto be the same as K1pRq while π2pBGLpRq�q is K2pRq as defined before. So why we take this particularextrapolation of lower K-groups? It all may seem puzzling at first.
From the isomorphism πnpBG�q � HnppBGqnq for n ¥ 2 we get a recipe of computing KipRq.• For i � 1 we already saw that K1pRq � H1pBGLpRqq.• For i � 2 let pBGq2 be homotopy fiber of the map BGLpRq Ñ KpK1pRq, 1q:

pBGq2 //

��

A

PKpK1pRq, 1q
��BGLpRq // KpK1pRq, 1q

Then K2pRq � H2ppBGq2q.• For i � 3 consider homotopy fiber
pBGq3 //

��

A

PKpK2pRq, 2q
��

pBGq2 // KpK2pRq, 2q
And we have K3pRq � H3ppBGq3q.
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• And so on...
One can think of the description above as of an inductive definition of higher K-groups that doesnot mention explicitly the plus-construction. This may look more natural than the plus-constructionitself.

2.5 Quillen’s results
Let us mention one complete calculation of higher K-groups (one of the few known!).
Example 2.5.1. Quillen introduced the plus-construction in order to calculate KipFqq for finite fields Fq(strictly speaking, before the higher K-groups were defined). These are the following cyclic groups:

i : 0 1 2 3 4 5 6 � � �KipFqq : Z Z{pq � 1q 0 Z{pq2�1q 0 Z{pq3�1q 0 � � �

K0pFqq � Z,K2ipFqq � 0 for i ¡ 0,K2i�1pFqq � Z{pqi � 1qZ for i ¡ 0.
Of course this is clear for K0 and K1. For K2 of a field there is also a nice description, due toMatsumoto (see e.g. [Ros94, Theorem 4.3.15]; the original paper is [Mat69]):

For any field F the group K2pFq is the free abelian group (written multiplicatively) on symbols tu, vufor u, v P F� modulo relations
a) tu1u2, vu � tu1, vu � tu2, vu and tu, v1v2u � tu, v1u � tu, v2u.b) tu, 1� uu � 1 for u � 0 and u � 1.
One sees that from these relations follow automatically

c) tu,�uu � 1. Indeed, from a) and b)
tu,�uu � tu, 1� uu � tu, 1� u�1u�1 � tu�1, 1� u�1u � 1.

d) tu, vu � tv, uu�1. Indeed, from c)
tu, vu � tv, uu � tu,�uu � tu, vu � tv, uu � tv,�vu � tu,�uvu � tv,�uvu � tuv,�uvu � 1.

Remark 2.5.2. Observe that these are the relations that e.g. Hilbert symbols satisfy (see p. 11):
a) �aa1 ,b

p

	
�
�a,b

p

	 �a1 ,b
p

	 and �a,bb1
p

	
�
�a,b

p

	 �a,b1
p

	.
b) �a,1�a

p

	
� 1.

c) �a,�a
p

	
� 1.

d) �a,b
p

	
�
�b,a

p

	�1.
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Assuming the (difficult) Matsumoto’s theorem, we can calculate K2pFqq for any finite field Fq . Eachelement of K2pFqq is represented by a symbol tx, yu for some x, y P F�q . Let a be the generator ofthe cyclic group F�q . Then tx, yu � tam, anu for some m and n. By bilinearity property a), the latterequals to ta, aumn. By property d) one has tx, xu2 � 1 for any x. If m and n are not both odd, then
ta, aumn � 1. Otherwise, we have

tam, anu � ta, aumn � ta, au.
If the characteristic is 2, then ta, au � ta,�au � 1 by property c).
If the characteristic is odd, by a simple counting argument there exists a pair of odd numbers m andn such that an � 1� am. Indeed, consider two sets

X def� tan | n oddu and Y def� t1� am |m oddu.Observe that |X| � |Y | � q�12 . The set X contains all the non-squares in F�q . For the second set1 R Y , so it is not possible that in Y are only squares and X X Y � H. This means ta, au � ta, aumn �
tam, 1� amu � 1 by property b).In either case, the symbols are trivial, and we conclude that K2pFqq � 0.

The calculation of higher K-groups of Fq is more difficult. The original Quillen’s paper is [Qui72],and an exposition can be found in [Ben98, vol. II, §2.9]. NNow we state some important properties of K-groups KipOFq for a number field F . The proofs arevery nice and interesting, but they use an alternative definition of higher K-groups via the so-called
Q -construction. Discussing this would lead us a bit too far from the main story. We just briefly mentionthat, starting from the category R-Proj fg of finitely generated projective R-modules, one can build fromit another category QR-Proj fg ; then for the latter one can construct the classifying space BQR-Proj fg(this is similar to taking the classifying space BG of a group G).
Theorem 2.5.3. Let R-Proj fg the the category of finitely generated projective R-modules. There is ahomotopy equivalence (natural up to homotopy)BGLpRq� Ñ ΩpBQR-Proj fgq,where Ω denotes the loop space functor (taken at the point 0 P BQR-Proj fg coming from the zeroobject).This means that BGLpRq� carries some extra structure: we can multiply loops, and this makesBGLpRq� into an H-group. It will be important in chapter 3. In fact, BGLpRq� is an infinite loop
space—see [Ada78, Chapter 3] and [Ber82a, Chapter 10].This suggests an alternative definition

KipRq def� πi�1pBQR-Proj fgq,which actually works for K0—unlike the plus-construction that ignores K0.A brief discussion of the Q -construction is included in appendix Q. It will not be used in the maintext, but it may be interesting for understanding what it is all about.
Now we list some results that are proved using the Q -construction.

Theorem 2.5.4 (Localization exact sequence). Let A be a Dedekind domain with field of fractions F .Then there is a long exact sequence
� � � Ñ Ki�1pFq Ñ º

p�A

KipA{pq Ñ KipAq Ñ KipFq Ñ � � �

where p runs through all maximal ideals.
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This is [Qui73b, Corollary p. 113]. /

In particular, if A � OF is the ring of integers of a number field F , then OF{p are finite fields. Quillen’scalculation (example 2.5.1) tells that KipOF{pq are finite cyclic groups for i ¡ 0. We can tensor the longexact sequence with Q, resulting in a long exact sequence
� � � Ñ Ki�1pFq bQÑ

º
p�OF

KipOF{pq bQlooooooomooooooon
�0

Ñ KipOFq bQÑ KipFq bQÑ � � �

Hence we have
Corollary 2.5.5. Let F be a number field. Then for i ¥ 2

KipOFq bQ � KipFq bQ.
The following is is the main result of [Qui73a]:

Theorem 2.5.6. Let F be a number field. The groups KipOFq are finitely generated for all i � 0, 1, 2, . . .
Corollary 2.5.7. Let S be a finite set of prime ideals in OF . Then the groups KipOF,Sq are finitelygenerated. Their ranks are given by

rkK0pOF,Sq � 1,rkK1pOF,Sq � |S| � r1 � r2 � 1,rkKipOF,Sq � rkKipOFq. pi ¥ 2q
Here OF,S is the ring of S-integers

OF,S def� tx P F | |x|p ¤ 0 for all p R Su � OF .
For i � 0 we know that the S-class group is finite; for i � 1 the structure of O�F,S is given by the“Dirichlet S-unit theorem” (cf. theorem 1.2.14 and [Neu99, §I.11]):

O�F,S � Z#S�r1�r2�1 ` µF .
Proof. We have the following variation of the localization exact sequence:

� � � //
²

pK2pOF{pq // K2pOFq // K2pOF,Sq EDBC
GF@A

//
²

pK1pOF{pq // K1pOFq // K1pOF,Sq // � � �

We know that KipOF{pq are finite cyclic groups for all i ¡ 0 and zero for even i ¡ 0 (example 2.5.1),so the maps KipOFq Ñ KipOF,Sq have finite kernel for i ¡ 0 and also finite cokernel for i ¡ 1. Thismeans that KipOF,Sq are finitely generated. Moreover,
rkKipOFq � rkKipOF,Sq for i ¡ 1.

�
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We just describe in a couple of words how Quillen proves theorem 2.5.6.Let V be a vector space of finite dimension n. Then its proper subspaces 0 �W � V form a partiallyordered set by inclusion. Any partially ordered set can be viewed as a small category with arrows
HompW,W 1q def�

" �, W �W 1,
H, W �W 1.As explained in § Q.3, for a small category one can build its classifying space. In this case thesimplicial set structure is clear: the p-simpleces are the chains of proper subspaces

0 �W0 �W1 � � � � �Wp � V.
Denote the geometric realization by V . We assume V � H when n ¤ 1. The following result isstated in [Sol69] and explained also in [Qui73a, Theorem 2]:

Theorem 2.5.8 (Solomon–Tits). Let n ¥ 2. The space V has the homotopy type of a bouquet of
pn � 2q-spheres. In particular,

rHip V ;Zq � " a free Z-module, i � n � 2,0, otherwise.So the following definition makes sense
Definition 2.5.9. Let V be a vector space of dimension n. The Steinberg module stpVq of V is theGLpVq-module given by the natural action of GLpVq on Hn�2p V ;Zq. For n � 1 we let stpVq to be Zwith the trivial action of GLpVq.

As we mentioned, KipOFq can be defined as homotopy groups of the classifying space BQ OF -Proj fg .For brevity let us denote the category Q OF -Proj fg simply by Q . We can consider a filtration by subcat-egories by the rank of projective modules
Q 0 � Q 1 � Q 2 � � � � � Q �

¤
n¥0 Q n.

Here the category Q 0 is trivial.
The following is [Qui73a, Theorem 3]:

Theorem 2.5.10. For n ¥ 1 the inclusion Q n�1 � Q n induces a long exact sequence
� � � // Hi�1pBQ n�1;Zq // Hi�1pBQ n;Zq // ²αHi�1�npGLpPαq, stpVαqq EDBC
GF@A

// HipBQ n�1;Zq // HipBQ n;Zq // ²αHi�npGLpPαq, stpVαqq // � � �

where Pα represent the isomorphism classes of projective OF -modules of rank n, and Vα def� PαbOF F .(Note that rkPα � dimF Vα.) In particular, the homology groups stabilize: the morphism
HipBQ n�1;Zq Ñ HipBQ n;Zq

is surjective for n ¡ i and injective for n ¡ i � 1.
Observe that α runs through a finite set—there are finitely many projective OF -modules of fixedrank, essentially by finiteness of the class group ClpFq.
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Now one is ready to prove that KipOFq � πi�1pBQ q are finitely generated. In fact, BQ is an anH-space, in particular it is a nilpotent space, hence the condition that πipBQ q is finitely generated isequivalent to HipBQ ;Zq being finitely generated—see [MP12, Theorem 4.5.2]. It is enough to show thatHipBQ n;Zq is finitely generated for all i and n, and then we are done since HipBQ ;Zq � HipBQ n;Zqfor n big enough. The key fact is the following:
Claim. HipGLpPq, stpVqq is finitely generated for each finitely generated projective OF -module P andV def� P bOF F .This comes down to finiteness results for arithmetic groups that are proved in [Rag68]; namely, ifΓ is an arithmetic group and M is a Γ-module finitely generated over Z, then the group cohomologyH ipΓ,Mq is finitely generated. We refer to [Qui73a] for details on reduction.Finally, one uses induction on n. The basic case is the trivial category Q 0:

HipBQ 0;Zq � " Z, i � 0,0, i ¡ 0.The induction step is provided by the long exact sequence from theorem 2.5.10.
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Chapter 3

Rational homotopy: from rkK

pOFq todimQHpSLpOFq,Rq

This chapter is devoted to reducing our problem about the ranks of KipOFq to calculation of cohomologyof SLpOFq. Recall the definitions from § 1.2. For a ring R we can consider the group GLpRq. We have
rGLpRq, GLpRqs � EpRq, and in case R � OF by Bass–Milnor–Serre EpOFq � SLpOFq (theorem 1.2.5).The plus-construction described in the previous chapter gives K-groups

KipOFq def� πipBGLpOFq�q � πipBSLpOFq�q for i ¥ 2
—the last isomorphism is because SLpOFq is the maximal perfect subgroup of GLpOFq; cf. lemma 2.4.2.

It is always easier to deal with homology instead of homotopy groups. Hurewicz homomorphismgoing from πi to Hi (cf. theorem H.1.1) yields
KipOFq def πipBGLpOFq�qHur.// HipBGLpOFq�;Zq � // HipBGLpOFq;Zq � // HipGLpOFq,ZqKipOFq � // πipBSLpOFq�q Hur.// HipBSLpOFq�;Zq � // HipBSLpOFq;Zq � // HipSLpOFq,Zq for i ¥ 2.

Here on the right side “HipGLpOFq,Zq” denotes the group homology (with trivial action of GLpOFqon Z). The groups KipOFq are finitely generated (theorem 2.5.6) and we are interested in the ranks ofKipOFq, so we can look at the dimensions of Q-vector spaces πipBGLpOFq�qbZQ. A classical theorem byCartan and Serre says that if X is a homotopy associative H-space, then the Hurewicz homomorphisminduces an injection πpXq bZ Q ãÑ HpX;Qq whose image is the subspace PHpX;Qq of primitiveelements in HpX;Qq. The rest of this chapter is devoted to explanation of this result. In our situationthis means that
KipOFq bZ Q �PHipGLpOFq,Qq,KipOFq bZ Q �PHipSLpOFq,Qq for i ¥ 2.

Example 3.0.11. For i � 1 we have the first homology group H1pGLpOFq,Zq, which is isomorphic tothe abelianization
GLpOFqab � GLpOFq{rGLpOFq, GLpOFqs � GLpOFq{SLpOFq � O�F .The primitive elements in H1 is the whole H1 because of the grading reasons. We know thatK1pOFq � O�F , and we know that the latter has rank r1 � r2 � 1. From now on we focus of Ki withi ¥ 2. N
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The point of passing from GL to SL is that it is (psychologically) easier to work with semisimplegroups instead of reductive. We also replace the coefficients with R, since in next chapter we will usea geometric approach to the group (co)homology. We conclude that the ranks can be obtained asrkKipOFq � dimR PHipSLpOFq,Rq for i ¥ 2.Dually, we can take the indecomposable elements in cohomology:rkKipOFq � dimRQH ipSLpOFq,Rq for i ¥ 2.So the key to the computation is the real cohomology of SLpOFq. All the hard work on this willfollow in the subsequent chapters.
References. All definitions and facts about Hopf algebras come from the seminal paper by Milnor and Moore[MM65b]; there is also an appendix to [Qui69] containing a nice summary. The Cartan–Serre theorem probablyappears first in [MM65b, p. 263]. A modern exposition of this is [FHT01, Chapter 16]—with a simplifying hypothesisthat the space is simply connected—and [MP12, Chapter 9].A discussion of the H-space structure on BGLpRq� can be found in [Lod76].
3.1 H-spaces
Definition 3.1.1. Let pX, eq be a pointed topological space. We say that X is an H-space if there isa continuous map µ : X � X Ñ X (multiplication) such that the following diagram is homotopicallycommutative:

X
�

""FFFFFFFFF
p1,eq// X � X

µ
��

Xpe,1qoo
�

||xxxxxxxxx

X
µ � p1X, eq � 1X � µ � pe, 1Xq.We say that H is homotopy associative if the following diagram is homotopically commutative:
X � X � X id�µ //
µ�id
��

X � X
µ
��X � X µ // X

µ � p1X � µq � µ � pµ � 1Xq.(“H” commemorates Heinz Hopf.)
Example 3.1.2. Every topological group is an H-space. For instance, the circle S1, can be viewed asthe subset of complex numbers having norm 1:S1 � tz P C | |z| � 1u.So S1 comes with a natural multiplication, making it into a Lie group, and hence a homotopyassociative H-space. Similarly S0 and S3 arise the same way from real numbers R and quaternions
H. The sphere S7 is made from octonions O; the multiplication in O is non-associative, but S7 is stillan H-space. It is a famous result of Adams [Ada60] that S0, S1, S3, S7 are the only spheres carrying anH-space structure (cf. [May99, §24.6]). N

36



Example 3.1.3. A typical example of a homotopy associative H-space is the loop space ΩpX, �q of apointed space pX, �q. The multiplication is the natural multiplication of loops at the base point, and theidentity is the constant loop at the base point. We have mentioned in § 2.5 that BGLpRq� is a loop space,hence it is a homotopy associative H-space. NOne can give another description of an H-space structure on BGLpRq�, coming from an explicit“direct sum” of matrices. The following “checkerboard map” is a homomorphism
` : GLpRq �GLpRq Ñ GLpRq,

pA` Bqij �
$&% A`m, i � 2` � 1 or j � 2m � 1,B`m, i � 2` or j � 2m,0, otherwise.Schematically,

A �
�����

- - - � � �
- - - � � �
- - - � � �... ... ... . . .

����, B �
�����

, , , � � �
, , , � � �
, , , � � �... ... ... . . .

����, A` B def�

���������

- 0 - 0 - � � �0 , 0 , 0 � � �
- 0 - 0 - � � �0 , 0 , 0 � � �
- 0 - 0 - � � �... ... ... ... ... . . .

��������
.

Via the plus-construction this map GLpRq �GLpRq Ñ GLpRq induces a map
BGLpRq� � BGLpRq� �

//
,,d c b a ` _ ^ ] \ [ Z YBpGLpRq �GLpRqq�

`�
// BGLpRq�

Here the first map is some fixed homotopy equivalence, since we know that (cf. proposition 2.2.6)
BpGLpRq �GLpRqq� � pBGLpRq � BGLpRqq� � BGLpRq� � BGLpRq�.

One can check that this operation makes BGLpRq� into a homotopy associative and homotopycommutative H-space. We refer to [Lod76, §1.2] for this verification.
3.2 Hopf algebras
We make a brief summary of needed theory of Hopf algebras. The main reference is a seminal paper[MM65b], and a modern and concise exposition is [MP12, Chapter 20, 21, 22]. The article by Milnorand Moore is written very well, so we do not reproduce any proofs that can be found there.From now on k denotes the ground field. By V or simply V we denote a graded k-vector space

V �àn¥0Vn.The induced grading on tensor products is given by pU bk Vqn � °i�j�n Ui bk Vj .There is a natural graded commutativity isomorphism (“twisting”)
T : U bk V Ñ V bk U,u b v ÞÑ p�1qdegu�deg v v b u.

We denote by V_ the dual graded vector space with V_n def� HomkpVn, kq. Graded k-vector spacesform a “symmetric monoidal category” (cf. [ML98, Chapter XI]) in the obvious way.
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We will just identify in our diagrams
pU bk Vq bk W � U bk pV bk Wq,k bk V � V � V bk k.

Definition 3.2.1. We have two dual notions of algebra and co-algebra over k.
An algebra is A coalgebra isa graded vector space A coming with a graded vector space A coming witha product µ : Abk AÑ A and a coproduct ∆: AÑ Abk A anda unit η : kÑ A. a counit ε : AÑ k.

(Here and everywhere all tensor products are graded and everything is compatible with gradings.)We require that the following diagrams commute:
Abk k

KKKKKKKKKKK

KKKKKKKKKKK
idbη // Abk A

µ
��

k bk Aηbidoo

ssssssssss

ssssssssss

A
Abk k

KKKKKKKKKKK

KKKKKKKKKKK
oo idbε Abk AOO ∆ k bk A//εbid

ssssssssss

ssssssssss

A
Further,

it is called associative it is called coassociative

if the following diagram commutes:
Abk Abk Aidbµ //
µbid
��

Abk A
µ
��Abk A µ // A

Abk Abk A ooidb∆
OO∆bid

Abk A
∆
��Abk A ∆ // A

Moreover,
A is called commutative A is called cocommutative

if the following diagram commutes:
Abk A

T
��

µ
{{xxxxxxxxx

A
Abk Aµ

ccFFFFFFFFF

Abk A
T
��

A
∆ccFFFFFFFFF

∆{{xxxxxxxxx

Abk A
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It is clear how to define the morphisms f : A Ñ B in the category of algebras (coalgebras) byrequiring that they preserve the structure.
Abk A µA //

fbf
��

A
f
��

k ηA //
f
��

A
f
��Bbk B µB // B k ηB // B

A ∆A //
f
��

Abk A
fbf
��

A εA //
f
��

k
f
��B ∆B // Bbk B B εB // kFor two algebras A and B the product A bk B has A bk B as the underlying graded vector space.The unit is the obvious map ηA b ηB : kÑ Abk B. The product is defined by

Abk Bbk Abk B idbTbidÝÝÝÝÝÑ Abk Abk Bbk B µAbµBÝÝÝÝÑ Abk B
Dually, for coproducts in coalgebras

Abk B ∆Ab∆BÝÝÝÝÑ Abk Abk Bbk B idbTbidÝÝÝÝÝÑ Abk Bbk Abk B
Definition 3.2.2. We say that A is a Hopf algebra (bialgebra), if

1. pA, µ, ηq is an associative algebra.2. pA,∆, εq is a coassociative coalgebra.3. ∆: AÑ Abk A and ε : AÑ k are morphisms of algebras.4. µ : Abk AÑ A and η : kÑ A are morphisms of coalgebras.
We say that A is a quasi-Hopf algebra, if we drop the associativity and coassociativity condition. Wesay that A is connected if η : k �ÝÑ A0 is an isomorphism (equivalently, if ε : A0 �ÝÑ k is an isomorphism).

Remark 3.2.3. If we just assume that ε : A Ñ k is a morphism of algebras and η : k Ñ A is a morphism ofcoalgebras, then the fact that ∆: A Ñ A bk A and µ : A bk A Ñ A are morphisms of (co)algebras is expressed bycommutativity of the following diagram:
Abk A Abk Abk Abk Aµbµoo

A
∆ <<xxxxxxxxx

Abk Aµ
bbFFFFFFFFF

∆b∆ // Abk Abk Abk A
idbTbid

OO

Example 3.2.4 (The only we care about). Let X be a topological space. Then its homology has a naturalgrading H0pX;kq, H1pX;kq, H2pX;kq, . . .
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The diagonal map X Ñ X � X induces a map HpX;kq Ñ HpX � X;kq, and then by the Künnethformula HpX � X;kq � HpX;kq bk HpX;kq, since we work over a field. It means that there is acoproduct ∆: HpX;kq Ñ HpX;kq bk HpX;kq.If we further assume that pX, eq is a homotopy associative H-space, then there is also a productµ : HpX;kq bk HpX;kq Ñ HpX;kq induced by the multiplication X � X Ñ X. The inclusion teu ãÑ Xinduces a unit η : kÑ HpX;kq and the projection X � teu induces a counit ε : HpX;kq Ñ k.With all this, for a homotopy associative H-space X the homology HpX;kq carries a cocommutativeHopf algebra structure. It is connected whenever X is connected. NAssume a Hopf algebra A consists of finite dimensional spaces An in each degree n (note this doesnot mean that Àn¥0 An is finite dimensional). Then A_ is also a Hopf algebra in an obvious way(µ� : A_ Ñ A_ bk A_ becomes a coproduct, η� : A_ Ñ k becomes a counit, etc.).
Example 3.2.5 (The only we co-care about). For HpX;kq with each HnpX;kq of finite dimension, thedual algebra is the cohomology algebra HpX;kq (where the multiplication is the usual cup-product).Indeed, recall that the cup-product

! : HppX;kq bk HqpX;kq Ñ Hp�qpX;kq
is induced by the diagonal map ∆: X Ñ X � X.If X has an H-space structure, then the multiplication µ : X � X Ñ X induces a co-multiplication incohomology µ� : HpX;kq Ñ HpX;kq bk HpX;kq. NIn what follows we will work with topological spaces with each HnpX;kq having finite dimension. Itis a very non-trivial fact mentioned in § 2.5 that BGLpOFq� is such a space.
Definition 3.2.6. For the counit ε : AÑ k the graded subspace IA def� ker ε is called the augmentation
ideal of A. 0 Ñ IA ãÑ A εÝÑ k(Note that ε � η � idk , hence A � IA` k.)The space of indecomposable elements, denoted QA, is given by the exact sequence

IAbk IA µÝÑ IA� QAÑ 0
Definition 3.2.7. For the unit η : kÑ A we denote JA def� coker η.

k ηÝÑ A� JAÑ 0
(Note that ε � η � idk , hence A � JA` k.)The space of primitive elements PA is given by the exact sequence

0 Ñ PA ãÑ JA ∆ÝÑ JAbk JAObserve that actually JA � IA.
From the definitions we see that if we have a Hopf algebra A with each An of finite dimension,then PpA_q � pQAq_ and QpA_q � pPAq_.
For the tensor product Abk A we have a decomposition

Abk A � pk ` JAq bk pk ` JAq
� pk bk kq ` pJAbk kq ` pk bk JAq ` pJAbk JAq.
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Further, the following diagram commutes:
Abk k

KKKKKKKKKKK

KKKKKKKKKKK
oo idbε Abk AOO ∆ k bk A//εbid

ssssssssss

ssssssssss

A
pid b εq �∆pzq � z � pε b idq �∆pzq.

So for every element z P JA the coproduct is of the form
∆pzq � z b 1�¸ zp1q b zp2qloooooomoooooon

PJAbkJA
�1b z,

and if z is primitive, then we have ∆pzq � z b 1� 1b z.
We could take this as the definition:

PA def� tz P A | ∆pzq � z b 1� 1b zu.
Remark 3.2.8. Note that taking indecomposable or primitive elements is consistent with tensor products:

IpAbk Bq � pIAbk 1Bq ` p1A bk IBq,PpAbk Bq � pPAbk 1Bq ` p1A bk PBq.
Example 3.2.9. Consider an exterior algebra

A � Λpxi1 , xi2 , xi3 , . . .q
over a field k, freely generated by elements xi1 , xi2 , xi3 , . . . of degrees i1, i2, i3, . . . This is anticommutative(i.e. x^ y � �y^x), but if we assume that the degrees i` are odd, then it is graded commutative in theabove sense (i.e. x ^ y � p�1qdegx�degy y ^ x).There are no relations between different xi` , hence the space of indecomposable elements Qi`A indegree i` is one-dimensional generated by xi` . If we take tensor products of such algebras, then thedimensions of spaces Qi`A sum up. For instance, consider

A � Λpx5, x9, . . . , x4i�1, . . .qbr1 bk Λpx3, x5, . . . , x2i�1, . . .qbr2 .
Then we have

i : 2 3 4 5 6 7 8 9 � � �dimkQiA : 0 r2 0 r1�r2 0 r2 0 r1�r2 � � �

This is a rather dull example, but it will be very important for us. N

Now we cite some results from [MM65b] that hold for chark � 0. The point is that for a Hopfalgebra, being both algebra and co-algebra imposes severe restrictions on the structure.
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Theorem 3.2.10. Let A be a connected quasi-Hopf algebra over a field of characteristic zero. Con-sider the composite morphism PAÑ JA � IAÑ QAThen
• PAÑ QA is a monomorphism if and only if A is associative and commutative.
• PAÑ QA is an epimorphism if and only if A is coassociative and cocommutative.
• PA Ñ QA is an isomorphism if and only if A is a commutative and cocommutative Hopfalgebra.

This is [MM65b, Proposition 4.17] or [MP12, Corollary 22.3.3]. /

For a graded vector space V we denote by ApVq the corresponding free commutative algebragenerated by V . One has ApVq � ΛpV�q b PpV�q,where ΛpV�q is the exterior algebra generated by the the subspace of V concentrated in odd degrees,and PpV�q is the polynomial algebra generated by the subspace concentrated in even degrees.
Theorem 3.2.11 (Leray). Let A be a connected, commutative, and associative quasi-Hopf algebraover a field of characteristic zero. Let σ : QAÑ IA be a morphism of graded vector spaces such thatthe composition QA σÝÑ IA πÝÑ QA is the identity, where π is the quotient map. Then the morphism ofalgebras f : ApQAq Ñ A induced by σ is an isomorphism.
This is [MM65b, Theorem 7.5] or [MP12, Theorem 22.4.1]. /

3.3 Rationalization of H-spaces
We are going to show the Cartan–Serre theorem. Namely, for an H-space X it characterizes its homo-topy groups πpXq up to rationalization, i.e. πpXq bZ Q. This situation occurs very often in algebraictopology when one is interested in passing from coefficients in Z to coefficients in Q, or in general tosome localization of Z—just because it is difficult to cope with the torsion part of homotopy groups.The right way to do that is to modify the topological space X itself so that the homotopy groups changefrom πpXq to πpXQq � πpXq bZ Q. We quickly summarize the needed theory following [MP12].

Given an abelian group A, we can take its rationalization, which is simply the Q-vector spaceAQ
def� A bZ Q. There is a canonical map A Ñ AQ given by a ÞÑ a b 1. This satisfies the followinguniversal property: any morphism f : AÑ B to another Q-vector space B factors uniquely through AQ:

A f //

  @@@@@@@@ B
AQ

D!rf
>>~

~
~

~

One would like to consider such a rationalization for nilpotent topological spaces.
Recall that there is a natural action of π1pXq on the higher homotopy groups πnpXq. Namely, if wehave a loop α : I Ñ X representing an element rαs P π1pXq and a map f : pSn, �q Ñ pX, �q representingan element rfs P πnpXq, then in the following diagram there exists a homotopy Sn � I Ñ X making itcommute:
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Sn � t0u Y t�u � I fYα //
��

X
��Sn � I //

h 77ppppppp
�That is, hpx, 0q � fpxq and hp�, tq � αptq. The based homotopy class of h1 : pSn, �q Ñ pX, �q dependsonly on the classes rαs and rfs, hence we can put rαs � rfs def� rh1s. This is the action of π1pXq on πnpXq.

Definition 3.3.1. A space X is called nilpotent if the action of π1pXq on πnpXq is nilpotent. That is,there is a finite chain of subgroups
t1u � Gq � � � � � G2 � G1 � G � πnpXq,

where the quotient groups Gi�1{Gi are abelian and the action of π1pXq on Gi�1{Gi is trivial.
Remark 3.3.2. Nilpotent spaces give the right setting for rationalization. To simplify things, some books justassume that π1pXq � 0, however, this assumption is too severe for the applications we have in mind.

We will not need the theory of nilpotent spaces, since the only case that interests us is given byH-spaces.
Example 3.3.3. If pX, eq is an H-space, then in the diagram above we can take homotopy

hpx, tq � µpαptq, fpxqq.
We get

hpx, 0q � µpe, fpxqq � fpxq,hp�, tq � µpαptq, eq � αptq,hpx, 1q � µpe, fpxqq � fpxq,
hence rαs � rfs � rfs, and the action of π1pXq on homotopy groups πnpXq is trivial for n ¥ 1. Such aspace is called simple. In particular, any simple space is nilpotent. In particular, the action of π1pXq onitself is given by conjugation, so a simple space has abelian π1pXq. NWe assume from now on that all our spaces have abelian π1. This is harmless since we have inmind only the H-space BGLpRq�.
Definition 3.3.4. We say that a nilpotent space Y is rational if the following equivalent conditions hold:

1. The homotopy groups πnpYq are Q-vector spaces.
2. The homology groups rHnpY ;Zq are Q-vector spaces.
Assume that X is an H-space. Consider a map φ : X Ñ XQ to a rational space XQ, which satisfies thefollowing equivalent conditions:
1. The induced map on homotopy groups φ� : πnpXq Ñ πnpXQq is a rationalization for n ¥ 1.
2. The induced map on homology groups φ� : rHnpX;Zq Ñ rHnpXQ;Zq is a rationalization for n ¥ 1.
3. The induced map on homology groups φ� : rHnpX;Qq Ñ rHnpXQ;Qq is an isomorphism.
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A map to a rational space φ : X Ñ XQ with these properties is unique up to homotopy and it iscalled a rationalization of X. It satisfies the following universal property: for every map f : X Ñ Y toa rational space Y there is a unique (up to homotopy) arrow rf making the diagram commute:
X f //

φ   AAAAAAA Y
XQ

D!rf
>>}

}
}

}

To justify this definition as it is stated here, we refer to [MP12, §6.1]. /

Example 3.3.5. Consider the circle S1. We would like to describe the rationalization S1
Q. First make atrivial observation that Q is the following direct limit. Consider a sequence of multiplication by n maps

Z 1ÝÑ Z 2ÝÑ Z 3ÝÑ Z 4ÝÑ ZÑ � � �
This obviously defines a directed system of abelian groups An � Z with maps fn � n : An Ñ An�1,and it makes sense to consider the direct limit limÝÑAn , which is of course Q. Similarly we can considera sequence of maps S1 Ñ S1 given by n : z ÞÑ zn (viewing S1 as a set of complex numbers z P C suchthat |z| � 1): S1 1ÝÑ S1 2ÝÑ S1 3ÝÑ S1 4ÝÑ S1 Ñ � � �On the fundamental group π1pS1q � Z this induces multiplication by n maps

π1pS1q 1ÝÑ π1pS1q 2ÝÑ π1pS1q 3ÝÑ π1pS1q 4ÝÑ π1pS1q Ñ � � �
So this is the same as the sequence of maps between Z considered above.Recall the “telescoping” construction for direct limit of topological spaces [May99, §14.6]: for eachmap fn : Xn Ñ Xn�1 we take the mapping cylinder Mfn , and we identify the copies of Xn for Mfn andMfn�1 . The result is a “telescope”

T1

T2

T3

X0 X1 X2 X3 X4
. . .

If Xn are CW-complexes, then it is an increasing sequence of CW-complexes
T1 � T2 � T3 � � � �

(Tn being the union of the first n mapping cylinders) which deformation retracts on Xn. Hence thedirect limit is limÝÑXn � limÝÑTn � �Tn.In our case of S1 this telescope �Tn gives some space S1
Q together with a map S1 Ñ S1

Q (inclusionof the base of the telescope). Now we have
πiplimÝÑS1q � limÝÑπipS1q �

"
Q, i � 1,0, i � 1.
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We see that the map S1 Ñ S1
Q induces rationalization of π1pS1q. Similarly, one could check theisomorphism HipS1;Qq � HipS1

Q;Qq using the fact that homology commutes with directed limits [May99,§14.6]: HiplimÝÑS1q � limÝÑHipS1q.So the telescope gives the rationalization of S1. NObserve that S1 is an Eilenberg–Mac Lane space KpZ, 1q, and its rationalization S1
Q is an Eilenberg–Mac Lane space KpQ, 1q.

Theorem 3.3.6. For any abelian group A the rationalization of an Eilenberg–Mac Lane space KpA,nqis given by the map KpA,nq Ñ KpAbZ Q, nq.Observe that the crucial point in the construction of S1
Q was the multiplication by n map n : S1 Ñ S1,i.e. the fact that S1 is an H-space. Now let X be an arbitrary H-space with multiplication µ : X�X Ñ X.This gives a point-wise multiplication of maps f : Sn Ñ X, which is homotopic to the product inducedby the pinch map Sn Ñ Sn _ Sn.

It follows that the product on an H-space induces addition in πipXq:
rµpf, gqs � rfs � rgs.

So the maps µn : X Ñ X given by
x ÞÑ “xn” def� µpx, µpx, µpx, � � � qqqloooooooooooomoooooooooooonninduce multiplication rfs ÞÑ n � rfs on πipXq. The multiplication µ : X � X Ñ X may not be associative,but we just put brackets in the definition as we like.

X 1 // X µ2 // X µ3 // X µ4 // X // � � �πipXq 1 // πipXq 2 // πipXq 3 // πipXq 4 // πipXq // � � �
So we have the very same situation as with S1, and we see the following

Proposition 3.3.7. For any H-space X the described telescoping construction gives the rationaliza-tion φ : X Ñ XQ.
3.4 Cartan–Serre theorem
Now if X is a connected H-space, then the diagonal ∆: X Ñ X � X induces a product on HpX;Qq, themultiplication µ : X�X Ñ X induces a coproduct on HpX;Qq, and we have a commutative, associative,connected quasi-Hopf algebra (it may be not co-associative and not co-commutative, depending on theH-space).From theorem 3.2.11 we know that A is isomorphic as an algebra to the tensor product of anexterior algebra on odd degree generators and a polynomial algebra on even degree generators. Thecohomology of the Eilenberg–Mac Lane spaces KpQ, nq gives exactly exterior and polynomial algebras:
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Proposition 3.4.1. Let ιn P HnpKpQ, nq;Qq denote the “fundamental class” represented by the identitymap KpQ, nq Ñ KpQ, nq. The cohomology algebra HpKpQ, nq;Qq is
• the exterior algebra Qrιns{ι2n on ιn , if n is odd(in particular, this shows that KpQ, nq � SnQ),
• the polynomial algebra Qrιns on ιn , if n is even.

This is proved by induction on n using the path space fibration KpQ, nq Ñ PKpQ, n� 1q Ñ KpQ, n� 1q.See example H.3.4 or [tD08, §20.7]. �

Assume now that X is a rational H-space such that its homology groups
HipX;Zq � HipX;Qq

are finite dimensional Q-vector spaces. The generators in each degree can be represented by mapsf : X Ñ KpQ, nq, and this gives X Ñ
¹
n KpQ, nq � � � � �KpQ, nqlooooooooooooooomooooooooooooooon

�KpπnpXq,nq
,

inducing an isomorphism on cohomology
HpX;Qq �ÝÑâ

n HpKpπnpXq, nq;Qq.
By our assumption that HipX;Qq are finite dimensional, we can use the Künneth formula, and alsowe can pass to an isomorphism of homology groups

HpX;Qq �ÝÑâ
n HpKpπnpXq, nq;Qq � Hp

¹
n KpπnpXq, nq;Qq.

Now observe that both spaces X and ±nKpπnpXq, nq are nilpotent and rational (cf. example 3.3.3),and we should conclude that we have a homotopy equivalence
X �

¹
n KpπnpXq, nq

(e.g. from the universality of rationalization).
The rational homology HpX;Qq is a cocommutative Hopf algebra, and we look at its space ofprimitive elements PHpX;Qq. Since the primitive elements are defined by the comultiplication (comingfrom ∆: X Ñ X�X) and they do not depend on the multiplication (coming from the H-space structure),we can replace X with the corresponding product of rational Eilenberg–Mac Lane spaces KpQ, nq.Observe that for products of spaces we have

πpY � Zq � πpYq ` πpZq,PHpY � Z;Qq � PHpY ;Qq ` PHpZ;Qq.
Now for an Eilenberg–Mac Lane space KpQ, nq the Hurewicz homomorphism

h : πpKpQ, nqq Ñ HpKpQ, nq;Qq
sends πpKpQ, nqq to the subspace of primitive elements (one checks this e.g. using the calculationmentioned in proposition 3.4.1). Hence we have the following:
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Theorem 3.4.2 (Cartan–Serre). Let X be a homotopy associative H-space with finite dimensionalHnpX;Qq. Then the Hurewicz homomorphism
h : πpXQq � πpXq bZ QÑ HpXQ;Zq � HpX;Qq

is a monomorphism, and its image is the subspace of primitive elements.Dually, if X is a homotopy associative and homotopy commutative H-space, then πpXq bZ Q can beidentified with indecomposable elements in cohomology HpX;Qq (see theorem 3.2.10).
* * *

With this we say goodbye to the homotopical methods, since now we know that all the remainingdifficulties are in computing real group cohomology HpSLpOFq,Rq.
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Chapter 4

Calculation of rkKipOFq via the stable
cohomology of SLn
Now we finally calculate the ranks rkKipOFq. In the previous chapter we establishedrkKipOFq � dimRQH ipSLpOFq,Rq pi ¥ 2q.

HpSLpOFq,Rq is the cohomology ring of the infinite special linear group SLpOFq def� limÝÑn SLnpOFq.Here R is viewed as an SLpOFq-module with the trivial action. “Q” means that we take indecomposableelements. This suggests that one should look at cohomology for each SLnpOFq and then pass to thelimit. In fact cohomology of SLnpOFq is very difficult, but it stabilizes and becomes tractable as n Ñ 8.This chapter is supposed to explain that. We take for granted certain property of stable cohomologyof arithmetic groups from [Bor74].
References. This chapter follows [Bor72] and [Bor74, §10-12].
4.1 The setting
Although SLn is the only thing we care about, let us fix slightly more general assumptions and notation.• Let G be a semisimple linear algebraic group defined over Q. We will have in mind G � SLn{Q. Ingeneral, if a group G1 defined over a number field F (e.g. G � SLn{F ), then we take the restrictionof scalars G � ResF{QG1—see § A.2.• The group of real points GpRq is a Lie group, and for our purposes we assume that GpRq isnon-compact and connected. For instance, this is the case for SLn.• Let Γ � GpRq be an arithmetic subgroup inside GpRq. We will have in mind Γ � SLnpZq.• Let K be a maximal compact subgroup of GpRq—cf. [Hel01, §VI.1, VI.2]. They are all conjugate.For example, a maximal compact subgroup of SLnpRq can be identified with SOnpRq, the subgroupof matrices that preserve the standard bilinear form on Rn:

〈x, y〉 def� ¸
1¤i¤nxi yi,and have determinant 1. In other words,SOnpRq � tA P SLnpRq | AJA � AAJ � Iu.
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For the complexification SLnpCq, a maximal compact subgroup can be identified with the special
unitary group SUn , the subgroup of complex matrices that preserve the standard Hermitian formon Cn: 〈x, y〉 def� ¸

1¤i¤nxi yi,and have determinant 1. In other words,
SUn def� tA P SLnpCq | A:A � AA: � Iu,

where : denotes the conjugate transpose. This group naturally contains SOnpRq.
• The right cosets of K in GpRq form the symmetric space of maximal compact subgroupsX def� GpRq{K (recall that for any Lie group GpRq factor by a compact subgroup K � GpRq issmooth). Endowed with a GpRq-invariant Riemannian metric, it is a complete symmetric Rieman-nian manifold with negative curvature, diffeomorphic to Euclidean space.
• Let GpRqu be a maximal compact subgroup of the complexification GpCq of GpRq, such thatGpRqu � K. Then Xu def� GpRqu{K is called the dual symmetric space to X, and it is compact.The main example of this duality to keep in mind is the following:

GpRq X XuSLnpRq SLnpRq{SOnpRq SUn{SOnpRqSLnpCq SLnpCq{SUn SUn
• We denote by g the Lie algebra of GpRq and by k the Lie algebra of K.

Example 4.1.1. Look at a group
SL2pRq �

"�a bc d
 | ad � bc � 1* .
SL2pRq acts transitively on the upper half space H def� tz P C | im z ¡ 0u by Möbius transformations

z ÞÑ az � bcz � d .
(This action is not faithful; usually one considers faithful action of PSL2pRq def� SL2pRq{t�Iu.)The stabilizer of i P H is given by �a bc d
 such that ai�bci�d � i, i.e. ai � b � di � c, that is

"� a b
�b a
 | a2 � b2 � 1* � "� cosφ sinφ

� sinφ cosφ
 | φ P r0, 2πq* � SO2pRq.
This is the “circle group”, a maximal compact subgroup in SL2pRq. It is not a normal subgroup, butwe still can consider the cosets X � SL2pRq{SO2pRq. Since SO2pRq is the stabilizer of i and the actionis transitive, one has X � H.Consider now the discrete subgroup Γ def� SL2pZq � SL2pRq. It naturally acts on X, and we areinterested in the set ΓzX. As we know [Ser73, §VII.1], a fundamental domain of the action of SL2pZq onH can be given by

tz P H | |z| ¡ 1, |Repzq|   1{2u .
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Imz

Note that ΓzX is not compact and it is neither a smooth manifold: the two points coming from iand 12 � ?32 are singular; in fact it is an orbifold (cf. [ALR07]). The problem is that SL2pZq has torsion;we will go back to this in example 4.3.3. N

4.2 De Rham complex
Just to fix some notation which will be used in the subsequent chapters as well, we recall de Rhamcohomology of smooth manifolds.Let M be a smooth manifold (of class C8). We denote by ΩqpMq the space of smooth real-valuedexterior differential q-forms on M . All these spaces form a graded R-algebra with respect to exteriormultiplication ^: ΩpMq def� à

q¥0 ΩqpMq.
We have de Rham differential (also called exterior derivative) d : ΩpMq Ñ Ω�1pMq:

df def� differential of f for f P Ω0pMq � C8pMq,dpα^ βq def� pdαq ^ β � p�1qq α^ pdβq for α P ΩqpMq.
These differentials form de Rham cochain complex

0 Ñ Ω0pMq dÝÑ Ω1pMq dÝÑ Ω2pMq Ñ � � �
that is, d �d � 0. According to de Rham theorem, cohomology of the complex above is isomorphic tothe usual singular cohomology:

HqdRpMq def� closed q-forms
exact q-forms

def� kerpΩqpMq dÝÑ Ωq�1pMqqimpΩq�1pMq dÝÑ ΩqpMqq
� HqpM ;Rq.

Remark 4.2.1. Let us recall the framework for de Rham theorem.Assume that F is a sheaf on a smooth manifold M . An acyclic resolution of F is a long exact sequence ofsheaves 0 Ñ F α
ÝÑ A0 d0

ÝÑ A1 d1
ÝÑ A2 Ñ � � �such that HqpM,Aiq � 0 for all q ¥ 1.
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Then the abstract de Rham theorem states that if for such an acyclic resolution one takes the complex ofglobal sections 0 Ñ FpMq
αMÝÑ A0pMq

d0MÝÑ A1pMq
d1MÝÑ A2pMq Ñ � � �then HqpM,Fq � HqpApMq, dMq, where on the left hand side is the standard sheaf cohomology.If F � R is the sheaf of locally constant functions, then de Rham complex gives an acyclic resolution

0 Ñ RÑ Ω0 Ñ Ω1 Ñ Ω2 Ñ � � �

Similarly, singular cohomology corresponds to another acyclic resolution of R
0 Ñ RÑ S0 Ñ S1 Ñ S2 Ñ � � �

(Sq is the sheafification of the presheaf of singular q-cochains U ÞÑ SqpUq def
� Hompsingular q-chains on U,Rq, andthe morphisms are induced by the usual simplicial differentials).Putting together the two resolutions of R, we get

HqpM ;Rq def
� HqpSpMqq � HqpM,Rq � HqpΩpMqq

def
� HqdRpMq.

Details on this can be found e.g. in [Wel08, Chapter II] or [War83, Chapter 5].
We recall that a sheaf F on a manifold M is soft if for any closed subset S �M the restriction FpMq Ñ FpSqis surjective. Further, a sheaf F is fine if for any locally finite open cover tUiu of M there exists a subordinate

partition of unity, that is a family of sheaf morphisms ηi : F Ñ F such that1. ° ηi � 1.2. ηipFxq � 0 for all x in some neighborhood of the complement of Ui .For instance, Ωq are fine sheaves.Any soft sheaf is fine [Wel08, Proposition II.3.5], and for any fine sheaf one has HqpM,Fq � 0 for q ¥ 1[Wel08, Theorem II.3.11]. Hence resolution by soft or fine sheaves is acyclic.
To sum up all the above, in order to show that some cohomology theory agrees with the singular / de Rhamcohomology, it is enough to show that one has a resolution of R by fine sheaves.

Definition 4.2.2. We say that an R-linear map D : ΩpMq Ñ ΩpMq is a derivation of degree ` if itsends an element α P ΩqpMq to an element Dpαq P Ωq�`pMq, and satisfies the graded Leibniz rule

Dpα^ βq � Dpαq ^ β � p�1qq` α^Dpβq for α P ΩqpMq.
The usual de Rham differential d : ΩpMq Ñ Ω�1pMq is a derivation of degree 1.

Definition 4.2.3. A graded algebra coming with a derivation d of degree �1 such that d � d � 0 iscalled a differential graded algebra (or just DG-algebra).
So ΩpMq with de Rham differential is a DG-algebra.
If D1 is a derivation of degree `1 and D2 is a derivation of degree `2, then their graded commutatoris given by

rD1, D2s def� D1 �D2 � p�1q`1`2�1D2 �D1.
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Observe that rD1, D2s is a derivation of degree `1 � `2:
rD1, D2spα^ βq � D1pD2pαq ^ β � p�1qq`2 α^D2pβqq�

p�1q`1`2�1D2pD1pαq ^ β � p�1qq`1 α^D1pβqq
� D1D2pαq ^ β � p�1qq`1�`1`2 (((((((D2pαq ^D1pβq�

p�1qq`2 (((((((D1pαq ^D2pβq � p�1qq p`1�`2q α^D1D2pβq�
p�1q`1`2�1D2D1pαq ^ β � p�1qq`2�1

(((((((D1pαq ^D2pβq�
p�1qq`1�`1`2�1

(((((((D2pαq ^D1pβq � p�1qq p`1�`2q�`1`2�1 α^D2D1pβq
� pD1D2pαq � p�1q`1`2�1D2D1pαqq ^ β

� p�1qq p`1�`2q α^ pD1D2pβq � p�1q`1`2�1D2D1pβqq
� rD1, D2spαq ^ β � p�1qq p`1�`2q α^ rD1, D2spβq.On ΩpMq there is also a derivation of degree �1. For any vector field X P ΓpTMq one has the

contraction operator ιX : ΩpMq Ñ Ω�1pMq:
ιXθ def� θpXq for θ P Ω1pMq,ιXpα^ βq def� pιXαq ^ β � p�1qq α^ pιXβq for α P ΩqpMq.

Here θpXq is a function given by x ÞÑ θxpXxq, where by Xx we denote the corresponding elementof TxM . So d is a derivation of degree �1 and ιX is a derivation of degree �1, which means there is aderivation of degree 0 given by the commutator:
LX � rd, ιXs � d � ιX � ιX � d.The operator on the left hand side is known as the Lie derivative (cf. [War83, 2.24–2.25] or [Spi99a,Chapter 5 + Exercise 7.18]), and the identity above is known as Cartan’s magic formula (due to ÉlieCartan). In particular, for a function f P C8pMq its Lie derivative LXf is just the application of a vectorfield X P ΓpTMpMqq viewed as a first order differential operator:

X : C8pMq Ñ C8pMq,f ÞÑ Xpfq.
This satisfies the Leibniz rule Xpf � gq � Xpfq � g � f � Xpgq.For two vector fields X,Y P ΓpTMq one can define the Lie derivative LXY � rX,Y s, which is knownas Lie bracket [War83, 2.24-2.25], and then one can work out a formula for the Lie derivative of adifferential form α P ΩqpMq:

LX0pαpX1 ^ � � � ^ Xqqq � pLX0αqpX1 ^ � � � ^ Xqq � ¸
1¤i¤q αpX1 ^ � � � ^ Xi�1 ^ rX0, Xis ^ Xi�1 ^ � � � ^ Xqq.

For instance, if q � 1, then this formula reads
LX0pαpX1qq � pLX0αqpX1q � αrX0, X1s.One has LX0pαpX1qq � X0 � αpX1q, and applying Cartan’s magic formula to the right hand side,

X0 � αpX1q � dαpX0, X1q � X1 � αpX0q � αrX0, X1s.
53



This can be written as dαpX0, X1q � X0 � αpX1q � X1 � αpX0q � αrX0, X1s.Proceeding similarly by induction with Cartan’s magic formula, we deduce a formula for differentialsthat involves Lie brackets:
dαpX0 ^ . . .^ Xqq � ¸

0¤i j¤qp�1qi�j αprXi, Xjs ^ X0 ^ . . .^ pXi ^ . . .^ pXj ^ . . .^ Xqq (4.1)
�

¸
0¤i¤qp�1qi Xi � αpX0 ^ . . .^ pXi ^ . . .^ Xqq.

4.3 Group cohomology
We recall briefly that in general for a group Γ and a Γ-module V the i-th cohomology is defined by

HqpΓ, Vq def� ExtqZΓpZ, Vq.So one can start with a projective resolution of Z by ZΓ-modules:
� � � Ñ P2 Ñ P1 Ñ P0 Ñ ZÑ 0then apply to this the contravariant functor HomZΓp�, Vq, and calculate HqpΓ, Vq � HqpHomZΓpP, Vqq.In practice one usually applies bar-resolution [Wei94, §6.5] that results in taking cochains
CqpΓ;Vq def� HomZΓpΓq�1, Vq,

which is a Γ-module by means of the action px � fqpx0, . . . , xqq def� fpx0 � x, . . . , xq � xq. The differentialsare given by
dfpx0, . . . , xqq def� x0 � fpx1, . . . , xqq� ¸

0¤i¤qp�1qi�1 fpx0, . . . , xixi�1, . . . , xqq� p�1qq�1 fpx0, . . . , xq�1q. (4.2)
(This is the so-called “non-homogeneous resolution”.)One gets an augmented cochain complex

0 Ñ V εÝÑ C0pΓ;Vq dÝÑ C1pΓ;Vq dÝÑ C2pΓ;Vq Ñ � � �where the augmentation ε is given by sending v P V to the function x ÞÑ x � v on Γ.Now HqpΓ, Vq � HqpCpΓ;Vq, dq.
Remark 4.3.1. We recalled the above also to make the following definition.Assume that G is a topological group and V is a G-module with continuous action G Ñ GLpVq. Consider theaugmented cochain complex as above with cochains CqpG;Vq replaced by continuous maps. Cohomology of theresulting complex HqctpG,Vq def

� HqpCctpG;Vq, dqis called continuous cohomology.Similarly, let G be a Lie group and let V be a G-module with a smooth action G Ñ GLpVq. If we replace thecochains with differentiable maps (of class C8), then differentiable cohomology is given by
Hqd pG,Vq def

� HqpCd pG;Vq, dq.
Since any differentiable cochain is continuous, one gets a map Hqd pG,Vq Ñ HqctpG,Vq, which is an isomorphismif V is “quasi-complete”. For further discussion of continuous and differentiable cohomology we refer to [BW00,Chapter IX] and [Gui80]. We will not make use of it.
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Let us recall a couple of basic properties of group cohomology [Bro94, Proposition II.10.2 andIII.10.4]:
Proposition 4.3.2. Assume that V is a vector space over a field of characteristic zero. Then

(1) If Γ is a finite group, then HqpΓ, Vq � 0 for q � 0.
(2) If Γ1 � Γ is a normal subgroup of finite index, then

HqpΓ, Vq � HqpΓ1, VqΓ{Γ1 .
Working with explicit formulas like (4.2) is not very insightful, so let us take a geometric approach.
Recall that we have a Lie group GpRq and a symmetric space X def� GpRq{K. The action of Γ on Xby left translations is proper (given a compact set C � X, the set tγ P Γ | C X γ � C � Hu is finite).Suppose also that the action is free. Then ΓzX is a smooth manifold, and it is the Eilenberg–Mac Lanespace KpΓ, 1q, so that

HpΓ,Rq � HpΓzX,Rq, (4.3)
where on the right hand side is the usual singular, or de Rham cohomology. It is a standard topologicalinterpretation of group cohomology—cf. e.g. [Bro94, §II.4].If Γ has torsion, then the action of Γ on X is not free, and we cannot use (4.3). But according toSelberg’s lemma (proposition A.3.5), Γ contains a torsion free normal subgroup of finite index Γ1 � Γ,which it is enough for our purposes.
Example 4.3.3. Consider Γ � SL2pZq. There are two elements

S � � 0 �11 0
 , T � � 1 10 1

with S of order 4 and ST of order 6, so SL2pZq has torsion. However, one can find a torsion freesubgroup of finite index inside SL2pZq. Observe that if a matrix x has finite order α, then it satisfies anequation Xα � 1 � 0. The minimal polynomial PpXq P QrXs for x has distinct roots (the eigenvalues),and these are necessarily roots of unity. The trace of x is ¤ 2.Take any prime p ¡ 2 and consider the reduction modulo p homomorphism

GL2pZq Ñ GL2pZ{pZq.
Its kernel Γppq ¤ GL2pZq has finite index; more precisely, we know that

#GL2pZ{pZq � pp2 � 1q pp2 � pq.
Now if x P Γppq is an element of finite order, then we know that trx ¤ 2 and trx � 2 pmod pq. Butsince we took p ¡ 2, this means trx � 2. Since x is a diagonalizable matrix (the minimal polynomialhas distinct roots), we must conclude x � �1 00 1
.For SL2pZq we take the subgroup SL2pZqXΓppq, i.e. the kernel of SL2pZq Ñ SL2pZ{pZq. It is torsionfree by what we just said and it has finite index (which equals p3 � p). It is known as the principal

congruence subgroup of level p. N

The argument in the example of SL2pZq is actually quite general. We refer to § A.3 for a full proof.
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Using torsion free normal subgroups of finite index, we can deduce
Proposition 4.3.4. One has an isomorphism

HqpΓ,Rq � HqpΩpXqΓq, (4.4)where ΩpXq is de Rham complex of X, and ΩpXqΓ is the subcomplex of Γ-invariant differentialforms.Proof. 1. If Γ is torsion-free, then we have (4.3). Using de Rham theorem (cf. remark 4.2.1) wededuce that HqpΩpXqΓq � HqpΓzX,Rq.2. If Γ has torsion, take a torsion free normal subgroup of finite index Γ1 � Γ. The factor groupΓ{Γ1 acts on HqpΓ1,Rq, and by the second part of proposition 4.3.2,
HqpΓ,Rq � pHqpΓ1,RqqΓ{Γ1 .

We have ΩpXqΓ � pΩpXqΓ1qΓ{Γ1 . The group Γ{Γ1 is finite, so by the first part of proposition 4.3.2,
HqpΩpXqΓq � HqpΩpXqΓ1qΓ{Γ1 .

Hence all reduces to the torsion free case. �In fact the problem is that when Γ has torsion, the space ΓzX is not a smooth manifold but anorbifold. In this case we need a de Rham theorem for orbifolds. Cf. [ALR07, Chapter 2].
More generally, if Γ Ñ GLpVq is a finite dimensional real or complex representation of Γ, then

HpΓ, Vq � HppΩpXq b VqΓq.
For this see [BW00, §VII.2]. Our representations are trivial.
4.4 Lie algebra cohomology
Let g be a real Lie algebra over k acting on a k-vector space V . We will have in mind k � R or C. Onecan define cohomology Hpg;Vq.More precisely, let V be a g-module, i.e. a k-vector space together with a morphism of Lie algebrasρ : g Ñ glpVq. Equivalently, a g-module can be viewed as a module over the ring Upgq, the universalenveloping algebra of g. The corresponding action of elements x P g on v P V will be denoted by x � v.The situation is the same as for group cohomology: one has

Hqpg;Vq def� ExtqUpgqpk, Vq.A particular projective resolution of k by Upgq-modules gives rise to the Chevalley–Eilenberg–Koszul
complex. It results in the following formulas. As cochains one takes

Cqpg;Vq def� HomRp
q©

g, Vq � q©
g_ bk V,

and the differentials dq : Cqpg;Vq Ñ Cq�1pg;Vq are given by
dqfpx0 ^ � � � ^ xqq def� ¸

0¤i j¤qp�1qi�j fprxi, xjs ^ x0 ^ � � � ^ pxi ^ � � � ^ pxj ^ � � � ^ xqq (4.5)
�

¸
0¤i¤qp�1qi xi � fpx0 ^ � � � ^ pxi ^ � � � ^ xqq.
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In particular, the zeroth differential for v P V is
d0vpx0q def� x0 � v.As always, pxi means that xi is omitted. Then d � d � 0 (simply because the fancy formula for dcomes from a resolution), so that we have a cochain complex

0 Ñ V d0ÝÑ C1pg;Vq d1ÝÑ C2pg;Vq d2ÝÑ C3pg;Vq Ñ � � �And Hqpg;Vq � HqpCpg;Vq, dq. One can take this for a definition of cohomology.
Again, some geometric interpretation would be helpful. Observe that formula (4.5) is the same as(4.1), so the complex for Lie algebra cohomology really originates from de Rham complex. Precisely,recall that in our setting g is the Lie algebra of a connected real Lie group GpRq. The group GpRq actson differential forms ΩpGpRqq by multiplication on the left:

pg � αqh def� αgh.This action is compatible with wedge products:
g � pα^ βq � pg � αq ^ pg � βq for α P ΩqpGpRqq, β P ΩqpGpRqq.

The differential forms that are stable under this action are called left-invariant. They form a space
ΩpGpRqqGpRq def� tα P ΩpGpRqq | g � α � α for all g P Gu.

Note that we have g � dα � dpg � αq � dα, if α P ΩpGpRqqGpRq.So ΩpGpRqqGpRq is a subcomplex of the usual de Rham complex pΩpGpRqq, dq:
0 Ñ R εÝÑ Ω0pGpRqqGpRq dÝÑ Ω1pGpRqqGpRq dÝÑ Ω2pGpRqqGpRq Ñ � � �

more precisely, pΩpGpRqqGpRq, dq is a DG-subalgebra of de Rham DG-algebra pΩpGpRqq, dq.
Remark 4.4.1. If GpRq is compact, then by the “averaging trick” one can produce a map ΩpGpRqq Ñ ΩpGpRqqGpRqwhich is homotopic to the identity. Thus one can use left-invariant differential forms to calculate cohomology of aconnected compact Lie group. However, our Lie groups are not compact.

Now the Lie algebra g can be identified with the tangent space at the identity TeGpRq (note thatany tangent vector v P TeG extends to a left invariant vector field g ÞÑ L�g v where Lg : G Ñ G is themultiplication on the left by g). Having a left invariant differential form α P ΩqpGpRqqGpRq, we canevaluate it at �q TeGpRq. This gives an isomorphism of graded algebras
ΩpGpRqqGpRq Ñ HomRp

©
g,Rq,α ÞÑ α|�q TeGpRq .Indeed, for an element f : �q gÑ R, we can define a q-form α P ΩqpGpRqq by

αgppX1qg , . . . , pXqqgq � fpLg�1�pX1qg , . . . , Lg�1�pXqqgq,where g P GpRq and X1, . . . , Xq are vector fields on GpRq.
57



This α is actually left invariant:
pL�gαqhppX1qh, . . . , pXqqhq � αghpLg�pX1qh, . . . , Lg�pXqqhq

� fpLh�1�pX1qh, . . . , Lh�1�pXqqhq
� αhppX1qh, . . . , pXqqhq.

To see that it is injective, assume that α P ΩqpGpRqqGpRq is a left-invariant form such that at theidentity α|�q TeGpRq � 0. Then at any other point g P GpRq we get
αgppX1qg , . . . pXqqgq � pL�gαqepLg�1�pX1qg , . . . , Lg�1�pXqqgq

� αepLg�1�pX1qg , . . . , Lg�1�pXqqgq � 0.
Now recall the differential (4.1). If α is a left-invariant q-form and X0, . . . , Xq are left-invariant vectorfields, then we have a formula

dαpX0 ^ . . .^ Xqq � ¸
0¤i j¤qp�1qi�j αprXi, Xjs ^ X0 ^ . . .^ pXi ^ . . .^ pXj ^ . . .^ Xqq.

Similarly, on the complex HomRp
� g,Rq with the trivial action of g on R, there is a differential

dfpx0 ^ . . .^ xqq � ¸
0¤i j¤qp�1qi�j fprxi, xjs ^ x0 ^ . . .^ pxi ^ . . .^ pxj ^ . . .^ xqq,

for f : �q gÑ R and x0, . . . , xq P TeGpRq � g. We have obviously a commutative diagram
ΩqpGpRqqGpRq d //

�
��

Ωq�1pGpRqqGpRq
�
��HomRp

�q g,Rq d // HomRp
�q�1 g,Rq

And this leads to an isomorphism
HpΩpGpRqqGpRqq � Hpg,Rq,

where on the right hand side is the Lie algebra isomorphism as defined above.
Remark 4.4.2. If GpRq is compact, then we get HpGpRq,Rq � Hpg,Rq.As a banal example, let GpRq � S1 � � � � � S1looooooomooooooonn

be a torus. Then the Lie algebra g of GpRq can be identified with
Rn with the zero bracket. Hence the complex HomRp

�q g,Rq has zero differentials, and we obtain
HqpS1 � � � � � S1looooooomooooooonn

,Rq � q©
Rn.

dimRHqpS1 � � � � � S1looooooomooooooonn
,Rq � �nq


.
(The same can be deduced by induction from the Künneth formula.)
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Example 4.4.3. Consider the group SU2. By definition, it consists of all matrices A � �a bc d
 P SL2pCq
such that A:A � AA: � I . In particular, one sees that the matrices must be of the shape � a b

�b a

. Allsuch matrices form an algebra H which is spanned over R by four matrices

1 �
� 1 00 1
 , i �

� i 00 �i
 , j �
� 0 1
�1 0
 , k �

� 0 ii 0

H � Rr1s ` Rris ` Rrjs ` Rrks.In fact H is the algebra of quaternions with the usual relations

i2 � j2 � k2 � �1, ij � k, jk � i, ki � j.
Under this identification, we see that an element z � a 1� b i� c j� dk P H lies in SU2 whenever

a2 � b2 � c2 � d2 � 1.
That is, SU2 can be identified with the group of quaternions of norm 1, which is topologically thesphere S3. From this it is clear that the cohomology algebra HpSU2;Rq is spanned by elements1 P H0pS3;Rq and x3 P H3pS3;Rq, with obvious cup-products

1! 1 � 1, 1! x3 � x3 ! 1 � 1, x3 ! x3 � 0.
That is, we get the free exterior algebra over R generated by one element x3 of degree 3:

HpSU2;Rq � Λpx3q.
Of course in what follows we are not going to calculate any Lie algebra cohomology from explicitcochains and cocycles, but let us do that just once in the easiest example of su2. The algebra su2 consistsof matrices A PM2pCq such that trA � 0 and A: � �A:

A � � a b
�b �a


 .
Under this identification, the Lie bracket r�, �s on su2 is the usual commutator.A convenient basis of su2 over R is given by three matrices u � � i2 σu , v � � i2 σv , t � � i2 σt , where

σu def�
� 0 11 0
 , σv def�

� 0 �ii 0
 , σt def�
� 1 00 �1
 .The bracket in this basis is determined by

ru, vs � t, ru, ts � �v, rv, ts � u. (4.6)Now let us look at the complex
0 Ñ R d0ÝÑ HomRpg,Rq d1ÝÑ HomRpg^ g,Rq d2ÝÑ HomRpg^ g^ g,Rq Ñ 0

d0cpxq � 0,d1fpx ^ yq � �frx, ys,d2fpx ^ y ^ zq � �fprx, ys ^ zq � fprx, zs ^ yq � fpry, zs ^ xq.
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• Note that H0pg,Rq � kerd0 � R. In general, if we have an action of g on V , then H0 is given by
H0pg, Vq � Vg def� tv P V | x � v � 0 for all x P gu.

• Next observe that H1pg,Rq � kerd1 � 0.• From the relations (4.6) we deduce that d2 � 0, and so H3pg,Rq � kerd3 � R.• Finally, dim kerd2 � dim imd1 � 3, so H2pg,Rq � 0.
So the complex gives us indeed the expected cohomology Hpsu2,Rq � HpSU2;Rq. N

4.5 Relative Lie algebra cohomology
We are interested not in the Lie group GpRq itself, but in the symmetric space X � GpRq{K, where Kis a maximal compact subgroup in GpRq. Let k be the Lie algebra of K. We want to define the relativecohomology Hqpg, k;Vq. It is also possible to do using Ext functors of certain modules (see [BW00,Chapter I]), but for us a down to earth definition will do; we will not go into details. In addition tothe differentials d : Cqpg;Vq Ñ Cq�1pg;Vq, for each x P g one has maps Lx : Cqpg;Vq Ñ Cqpg;Vq andιx : Cqpg;Vq Ñ Cq�1pg;Vq given by

pLxfqpx1 ^ � � � ^ xqq � ¸
1¤i¤q fpx1 ^ � � � ^ rxi, xs ^ � � � ^ xqq � x � fpx1 ^ � � � ^ xqq,

pιxfqpx1 ^ � � � ^ xq�1q � fpx ^ x1 ^ � � � ^ xq�1q.The three maps are related by Cartan’s magic formula

Lx � d � ιx � ιx � d.Now take Cqpg, k;Vq to be the subspace of Cqpg;Vq given by the elements annihilated by ιx and Lxfor all x P k:
Cqpg, k;Vq def� tf P Cqpg;Vq | ιxf � 0 and Lxf � 0 for all x P ku � Homkp

q©
g{k, Vq.

This gives a cochain complex
0 Ñ R dÝÑ C1pg, k;Vq dÝÑ C2pg, k;Vq dÝÑ C3pg, k;Vq Ñ � � �

And Hqpg, k;Vq def� HqpCpg, k;Vq, dq.
The geometric meaning of this is the following:

HpΩpXqGpRqq � Hpg, k;Rq, (4.7)i.e. this computes cohomology of the complex of GpRq-invariant differential forms on X.The complex ΩpXqGpRq is very important, so we introduce a special notation:
IGpRq def� ΩpXqGpRq.

We are going to admit the following classical result.
Fact 4.5.1. The differential forms in IqGpRq def� ΩqpXqGpRq are closed (i.e. dα � 0 for all α P IGpRq).Moreover, they are also co-closed (δα � 0), and thus harmonic (∆α � 0).
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This goes back to Élie Cartan, and a modern exposition can be found in [BW00, §II.3]. /(The notions of co-closed and harmonic forms will be explained and applied in the next chapter.)
Since differential forms in IGpRq are closed, (4.7) can be written simply as

IGpRq � Hpg, k;Rq. (4.8)We note that taking the space IGpRq is functorial. An injective R-morphism
f : G1 ãÑ G2.induces a morphism f� : IG2pRq Ñ IG1pRq.One of many ways to construct this is the following. In G2pRq we may take a maximal compact subgroupK2 such that K2 � fpK1q. Then there is an inclusion

G1pRq{K1loooomoooonX1
ãÑ G2pRq{K2loooomoooonX2

,
and f� may be viewed as the restriction of differential forms from X2 to X1. This construction does notdepend on the choice of K2, since any two maximal compact subgroups in G2pRq are conjugate by aninner automorphism leaving their intersection pointwise fixed.

In general, if we have a subgroup Γ � GpRq, then
HpΩpXqΓq � Hpg, k; CpΓzGpRqqq

—this is proved in [MM65a, §3]; in particular (4.7) is a special case. Then by (4.4),
HpΓ,Rq � Hpg, k; C8pΓzGpRqqq.

Now let us recall some theory for Lie algebras which will be useful also in the next chapter. For athorough treatment we refer to the book [Hel01], or to Bourbaki [Bou60, Bou72, Bou68, Bou75].
For a Lie algebra g one can consider the adjoint representation gÑ glpgq given by x ÞÑ adx , where

adx : gÑ g,y ÞÑ rx, ys.
The Killing form on a finite dimensional Lie algebra g is the symmetric bilinear form given by

Bgpx, yq def� trpadx � adyq.It is obvious that this is bilinear and symmetric, since we take a trace. Further, this form is invariant,in the sense that Bgprx, ys, zq � Bgpx, ry, zsqIndeed,
trpadrx,ys � adzq � trpadx � ady � adzq � trpady � adx � adzq

� trpadx � ady � adzq � trpadx � adz � adyq
� trpadx � adry,zsq.

61



Fact 4.5.2. If g is a simple Lie algebra, then any invariant symmetric bilinear form on g is a scalarmultiple of the Killing form.
Example 4.5.3. If g is a subalgebra of glnpRq, then we see that the symmetric bilinear form given by〈X,Y〉 � trpXYq is invariant. The only problem is to find the scalar multiplier.For instance, in slnpRq we can take a matrix X def� e11�e22. Then X2 � e11�e22 and trpX2q � 2. Nowlook at the adjoint action adX . It is given by

rX, eijs � re11, eijs � re22, eijs � 2 eij .
Hence the Killing form is BgpX,Xq � trpadX � adXq � 4n.So the scalar multiple is 2n, and BgpX,Yq � 2n trpXYq. One can work out the other examples similarly[Hel01, §III.8].

algebra : slnpRq sonpRq spnpRqKilling form : 2n trpXYq pn � 2q trpXYq p2n � 2q trpXYq
N

Fact 4.5.4. A Lie algebra g is semisimple if and only if the Killing form is nondegenerate.
Example 4.5.5. Consider the algebra slnpRq � glnpRq given by the n� n matrices of trace zero. It hasdimension n2 � 1 with a standard basis consisting of elementary matrices eij for i � j , together withmatrices eii � ei�1,i�1 for 1 ¤ i ¤ n � 1. In particular, for sl2pRq a basis is given by

x � � 0 10 0 
 , y � � 0 01 0 
 , h � � 1 00 �1 
 .We calculate rx, ys � h, rx, hs � �2x, ry, hs � 2 y, and the Killing form is
Bgp�, �q x y hx 0 4 0y 4 0 0h 0 0 8We see that this is non-degenerate. N

Example 4.5.6. Consider the Lie algebra sonpRq � glnpRq consisting of the skew-symmetric squarematrices n � n, such that MJ � �M . It has dimension �n2� � n pn�1q2 . The basis consists of matriceseji � eij for 1 ¤ i   j ¤ n. For instance, so3pRq has a basis
u � �� 0 �1 0

�1 0 00 0 0
�, v � �� 0 0 �10 0 0

�1 0 0
�, w �

�� 0 0 00 0 �10 �1 0
�.

We have ru, vs � �w, ru,ws � v, rv,ws � �u, and the Killing form is given by
Bgp�, �q u v wu �2 0 0v 0 �2 0w 0 0 �2Observe that this is nondegenerate and negative definite. N

Fact 4.5.7. If GpRq is a semisimple compact Lie group and g its Lie algebra, then the Killing formBgp�, �q is negative definite.
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An involution of a semisimple real Lie algebra g is an endomorphism θ : g Ñ g such that θ2 � id.It is called a Cartan involution on g if the bilinear form
Bθpx, yq def� �Bgpx, θpyqqis symmetric and positive definite. Since θ is an involution, it has eigenvalues �1. We let k to be theeigenspace corresponding to the eigenvalue �1:
k

def� tx P g | θpxq � xu,
and let p be the eigenspace corresponding to the eigenvalue �1:

p
def� tx P g | θpxq � �xu.

We have the eigenspace decomposition
g � k` p.Observe that if x P k and y P p, then rx, ys P p:

θrx, ys � rθpxq, θpyqs � rx,�ys � �rx, ys.
Similarly we see that

rk, ks � k, rk, ps � p, rp, ps � k.
Example 4.5.8. If g is a subalgebra of matrices inside glnpRq and g is closed under matrix transposex ÞÑ xJ, then it is easy to check that θ : x ÞÑ �xJ is a Cartan involution. It is indeed a Lie algebramorphism, since θrx, ys � �rx, ysJ � �ryJ, xJs � r�xJ,�yJs � rθpxq, θpyqs.Observe that θ leaves the Killing form invariant:

Bgpθpxq, θpyqq � trpadθpxq � adθpyqq � trpθ � adx � θ�1 � θ � ady � θ�1q � trpadx � adyq � Bgpx, yq,hence the form Bθp�, �q is symmetric:
Bθpx, yq � �Bgpx, θpyqq � �Bgpθpxq, θ2pyqq � �Bgpy, θpxqq � Bθpy, xq.Bθp�, �q is positive definite:

Bθpx, xq � � trpadx � ad�xJq � trpadx � padxqJq,and the latter is positive for x � 0 (we assume that the algebra is semisimple).So the Cartan decomposition boils down to the well-known fact that any matrix can be written as asum of a skew-symmetric matrix x P k and a symmetric matrix y P p. N

Example 4.5.9. More concretely, take g � slnpRq and a Cartan involution θ : x ÞÑ �xJ. The matricesfixed by θ form a subalgebra of traceless skew-symmetric matrices, which is sonpRq. The complemen-tary subspace p is formed by the traceless symmetric matrices. N

Example 4.5.10. For instance, for sl2pRq one has
θ : x ÞÑ �y, y ÞÑ �x, h ÞÑ �h.

And we calculate
Bθp�, �q x y hx �4 0 0y 0 �4 0h 0 0 �8
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Note that θpx � yq � x � y, θpx � yq � �px � yq, and θphq � �h. We have a decomposition of
sl2pRq into a subalgebra of skew symmetric traceless matrices k generated by x � y � � 0 1

�1 0 
, and
a subspace of symmetric traceless matrices p generated by x � y � � 0 11 0 
 and h � � 1 00 �1 
.Observe that on k the Killing form is negative definite:Bgpx � y, x � yq � Bgpx, xq � 2Bgpx, yq � Bgpy, yq � �8.On p the Killing form is positive definite:Bgph, hq � 8, Bgpx � y, x � yq � Bgpx, xq � 2Bgpx, yq � Bgpy, yq � 8.

NNow go back to the case when g is the Lie algebra of a semisimple Lie group GpRq and k is the Liealgebra of its maximal compact subgroup K.
Fact 4.5.11. To each maximal compact subgroup K is associated a Cartan involution θ : gÑ g givingthe corresponding decomposition

g � k` p,where
k � tx P g | θpxq � xu, p

def� tx P g | θpxq � �xu.
rk, ks � k, rk, ps � p, rp, ps � k.Further, if we assume that GpRq is non-compact, holds equality rp, ps � k.As for the dual symmetric space Xu � GpRqu{K, the Cartan decomposition for gu is given by

gu � k` ip � gC.From this one can work out thatIGpRq � Hpg, k;Rq � Hpgu, k;Rq � HpΩpXuqGpRquq.
But now the space Xu is compact, hence in fact HpΩpXuqGpRquq � HpXu,Rq. We record thisisomorphism:

IGpRq � HpXu,Rq, (4.9)i.e. the space IGpRq is the usual de Rham cohomology of the compact dual symmetric space Xu.
Example 4.5.12. Consider the Lie algebra sl2pCq and its subalgebra su2. One can calculate the relativecohomology Hpsl2pCq, su2;Rq. Recall the basis of su2 was given by matrices u � � i2 σu , v � � i2 σv ,t � � i2 σt , where

σu def�
� 0 11 0
 , σv def�

� 0 �ii 0
 , σt def�
� 1 00 �1
 .We can complete this to a basis of sl2pCq by adding ru � 12 σu , rv � 12 σv , rt � 12 σt . Then the bracketsare given by

ru, vs � �t, ru, ts � �v, rv, ts � �u,
rru, rvs � �t, rru,rts � �v, rrv,rts � �u,
ru, rvs � �rt, ru,rts � �rv, rv,rts � �ru.It is easy to see that the complex Cpsl2pCq, su2;Rq gives the same cohomology as Cpsu2,Rq. N
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Remark 4.5.13. There is an alternative interpretation, linking all to continuous cohomology already mentionedin remark 4.3.1: let GpRq be a connected Lie group and let K be a maximal compact subgroup of GpRq. Onehas Hpg, k;Vq � Hd pGpRq, Vq.This is known as van Est isomorphism. For details we refer to [BW00, §XI.5] and [Gui80, §III.7]; the original paperis [vE55]. We will not make use of this.

4.6 Cohomology and homotopy of SU{SOpRq and SU
In the view of (4.9), we would like to know cohomology of compact symmetric spaces Xu.For GpRq � SLnpRq this space is SUn{SOnpRq, and for SLnpCq this space is SUn. In fact this is a well-known calculation. For example, in the case of SUn one argues by induction, starting from SU2 � S3and using the Leray–Serre spectral sequence for fibration (see example H.3.5)

SUn�1 ãÑ SUn Ñ S2n�1 (4.10)The result is HpSUn;Rq � Λpx3, x5, . . . , x2n�1q,where by Λp. . . , x` , . . .q we denote the symmetric R-algebra freely generated by elements x` of degree` � 3, 5, . . . , 2n � 1. In fact for any compact Lie group GpRq the algebra HpGpRq;Rq is given byΛpx2i1�1, . . . , x2i`�1q for some i1, . . . , i` . This is a result of Hopf [MT91, Theorem IV.6.26].As for homotopy groups, fibration (4.10) suggests that groups like πipSUnq are related to the homo-topy groups of spheres, so their calculation is hopeless. Here is an example of calculations taken from[MT64]:
i : 3 4 5 6 7 8 9 10πipSU3q : Z 0 Z Z{6 0 Z{12 Z{3 Z{30πipSU4q : Z 0 Z 0 Z Z{24 Z{2 Z{120`Z{2
i : 11 12 13 14 15 16 17 18πipSU3q : Z{4 Z{60 Z{6 Z{84` Z{2 Z{36 Z{252`Z{6 Z{30` Z{2 Z{30` Z{6

πipSU4q : Z{4 Z{60 Z{4 Z{1680`
Z{2 Z{72` Z{2 Z{504`

Z{2`Z{2`
Z{2` Z{2

Z{40`
Z{2`

Z{2` Z{2
Z{2520`
Z{12` Z{2

So higher homotopy groups of SUn are as mysterious as those of Sn. However, we can pass to thelimit nÑ8:
SU{SOpRq def� limÝÑn SUn{SOnpRq,

SU def� limÝÑn SUn.
Then there is a nice answer, which is a part of the classical Bott periodicity; cf. an expository article[Bot70] by Bott himself and full proofs in Séminaire Henri Cartan, 12ième année [CDD�61]; anothernice reference is [MT91].The homotopy groups of SU and SU{SOpRq can be obtained from the well-known calculations ofπipOpRqq and πipBUq and the weak homotopy equivalences OpRq � Ω2pSU{SOpRqq and BU � ΩSU—cf.[MT91, §IV.6] for this.
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The answer is periodic, with period 8 (the periodic part is shaded in the table):
i : 0 1 2 3 4 5 6 7 8 9 � � �πipOpRqq : Z{2 Z{2 0 Z 0 0 0 ZπipSU{SOpRqq : 0 0 Z{2 Z{2 0 Z 0 0 0 ZπipBUq : 0 0 Z 0 Z 0 Z 0 ZπipSUq : 0 0 0 Z 0 Z 0 Z 0 Z

The cohomology rings are easier. Without Bott periodicity one obtains [MT91, §IV.3]
HpSU{SOpRq;Rq � Λpx5, x9, . . . , x4i�1, . . .q,HpSU ;Rq � Λpx3, x5, . . . , x2i�1, . . .q.

In fact SU{SOpRq and SU are H-spaces, so the Cartan–Serre theorem (§ 3.4) explains the relationbetween πpSU{SOpRqq b R, πpSUq b R and cohomology rings HpSU{SOpRq;Rq, HpSU ;Rq.It is interesting to know that our arithmetic investigations are related to Bott periodicity.
4.7 The morphism jq : IqGpRq Ñ HqpΓ,Rq
Since the forms IGpRq are closed, the inclusion IGpRq def� ΩpXqGpRq � ΩpXqΓ induces a homomorphismin cohomology jq : IqGpRq Ñ HqpΩpXqΓq � HqpΓ,Rq.
Remark 4.7.1. Alternatively, by van Est theorem (remark 4.5.13) we have

IGpRq � Hpg, k,Rq � Hd pGpRqq.
The inclusion Γ � GpRq induces HpGpRqq Ñ HpΓq, and further there is a map Hd pGpRqq Ñ HpGpRqq fromthe differentiable cohomology to the usual group cohomology. In this view the morphism can be interpreted asrestriction j : Hd pGpRqq Ñ HpΓq.

As we saw above, the spaces IqGpRq � HqpXu,Rq are known by classical computations, thus thequestion that interests us is for which q the morphism jq : IqGpRq Ñ HqpΓ,Rq is an isomorphism. Thefollowing is [Bor74, §7.5], and it is the main point for all calculations.
Theorem 4.7.2. Let G be a semisimple linear algebraic group over Q and let Γ � GpRq be anarithmetic subgroup. One can define constants mpGpRqq and cpGq, such that the morphism

jq : pIqGpRqqΓ Ñ HqpΓ;Rq
is injective for q ¤ cpGq and surjective for q ¤ mintcpGq,mpGpRqqu.
Example 4.7.3. Let G � SLn{Q be the special linear group. Then both constants mpGpRqq and cpGqare arbitrarily large as nÑ8, hence the theorem gives isomorphisms pIqGpRqqΓ � HqpΓ;Rq in the stablecase. N

We will examine the morphism jq in the subsequent chapters. Now we would like to apply thetheorem.
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4.8 Final results

Remark 4.8.1. Consider a sequence of graded R-algebras An �Àj Ajn with graded morphisms fn : An�1 Ñ An .For instance, here we work with cohomology HpM ;Rq which naturally comes as a graded R-algebra.We are interested in stability, hence in inverse limits like lim
ÐÝ

An . But of course we want to have this limitdegree-wise. Let us be pedantic and denote by lim
ÐÝn

An the inverse limit in the graded category. It is given by agraded R-module lim
ÐÝn

An �àj Aj , where Aj � lim
ÐÝn pAjn, f jnq,

which has the obvious graded R-algebra structure.In our situation An will be finite dimensional graded algebras over R or C.
From theorem 4.7.2 we easily deduce the following:
Theorem 4.8.2. Consider a sequence of semisimple algebraic groups Gn{Q and their algebraicsubgroups Γn:

fn : Gn ãÑ Gn�1,Γn ãÑ Γn�1.Here fn are injective morphisms over Q, such that Γn � GnpRq is mapped into Γn�1 � Gn�1pRq.Assume the following:
1) Given any dimension q , there exists Npqq such that

pIqGnpRqqΓn � IqGnpRq for all n ¥ Npqq.
2) The constants mpGnpRqq and cpGnq tend to 8 as nÑ8.
Then HplimÝÑΓn,Rq � limÐÝHpΓn,Rq � limÐÝIGnpRq.

Remark 4.8.3. If Γn � GnpRq�—in particular, if GnpRq is connected—then the condition 1) is satisfied.The only case that interests us is G1n � SLn{F and Gn � ResF{QG1n . The group GnpRq is connected. In this case2) is satisfied as well.
Proof. The first isomorphism HplimÝÑΓn,Rq � limÐÝHpΓn,Rqis just because Γn are arithmetic groups, and thus HpΓn,Rq are finite dimensional R-vector spaces;cf. theorem A.3.4. By theorem 4.7.2 and assumptions 1) and 2), we get isomorphisms

jn : IGnpRq �ÝÑ HpΓn,Rq.Inclusions Gn ãÑ Gn�1 induce the following commutative diagrams:
IGn�1pRq //

jn�1 �
��

IGnpRq
� jn
��HpΓn�1,Rq // HpΓn,Rq
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Passing to the limit nÑ8, we get
limÐÝn HpΓn,Rq � limÐÝn IGnpRq.

�

Example 4.8.4. Consider Gn � SLn{Q and Γn � SLnpZq. Then
HplimÝÑSLnpZq,Rq � limÐÝn HpSLnpZq,Rq � limÐÝn ISLnpRq � HpSU{SOpRq;Rq � Λpx5, x9, . . . , x4i�1, . . .q.

We consider the indecomposable elements in the latter algebra and conclude that for i ¥ 2
dimRKipZq b R � dimRQHplimÝÑSLnpZq;Rq � " 1, i � 1 pmod 4q,0, otherwise.The following table is taken from [Wei05].

n : 2 3 4 5 6 7 8 9KnpZq : Z{2 Z{48 0 Z 0 Z{240 p0?q Z` Z{2n : 10 11 12 13 14 15 16 17KnpZq : Z{2 Z{1008 p0?q Z 0 Z{480 p0?q Z` Z{2n : 18 19 20 21 22 23 24 25KnpZq : Z{2 Z{528 p0?q Z Z{691 Z{65 520 p0?q Z` Z{2
p0?q — finite groups that are conjecturally zero

So we understand at least the periodicity of ranks! NNow we turn to the general situation. Let F be a number field of degree d � r1 � 2 r2, where r1 isthe number of real places on F and r2 is the number of complex places on F . One has
F bQ R � Rr1 ` Cr2 .

We denote by M8F the set of all archimedian places. Consider algebraic groups G1n � SLn{F and theirarithmetic subgroups Γ1n � SLnpOFq. There are natural injective morphisms over F :
f 1n : G1n ãÑ G1n�1,Γ1n ãÑ Γ1n�1.To work with algebraic groups over Q, we take restrictions of scalars:

Gn def� ResF{QG1n, fn def� ResF{Q f 1n.For each place v PM8F we denote by Fv the completion of F at v:
Fv � " R, v is real,

C, v is complex.
Let G1n,v def� pG1nqFv be the extension of scalars to Fv . We have

GnpRq � ¹
vPM8F

G1n,vpFvq
— cf. § A.2 for extension and restriction of scalars.
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The symmetric space Xn � GnpRq{Kn corresponding to GnpRq is the product of such symmetricspaces for each G1n,vpFvq, and the maps fn : GnpRq ãÑ Gn�1pRq are compatible with such decomposition.Therefore we get limÐÝIGnpRq �
â
vPM8F

Iv ,
where Iv def� limÐÝIG1n,v pFvq.Precisely, in case of SLn ,

pG1n,vqpFvq � " SLnpRq, v is real,SLnpCq, v is complex.
GnpRq � SLnpF bQ Rq � SLnpRq � � � � � SLnpRqloooooooooooooomoooooooooooooonr1

�SLnpCq � � � � � SLnpCqloooooooooooooomoooooooooooooonr2
,

GnpCq � SLnpCq � � � � � SLnpCqloooooooooooooomoooooooooooooond
.

The maximal compact subgroup in GnpRq is
Kn � SOnpRq � � � � � SOnpRqlooooooooooooooomooooooooooooooonr1

�SUn � � � � � SUnlooooooooomooooooooonr2
.

The dual group is Gn,u � SUn � � � � � SUnlooooooooomooooooooond
.

The corresponding symmetric space is
Xn � SLnpRq{SOnpRq � � � � � SLnpRq{SOnpRqlooooooooooooooooooooooooooomooooooooooooooooooooooooooonr1

�SLnpCq{SUn � � � � � SLnpCq{SUnloooooooooooooooooooooomoooooooooooooooooooooonr2and the dual symmetric space is
Xn,u � SUn{SOnpRq � � � � � SUn{SOnpRqloooooooooooooooooooooomoooooooooooooooooooooonr1

�SUn � � � � � SUnlooooooooomooooooooonr2
.

Xn Xn,u HplimÝÑXn,uqSLnpRq SLnpRq{SOnpRq SUn{SOnpRq Λpx5, x9, . . . , x4i�1, . . .qSLnpCq SLnpCq{SUn SUn Λpx3, x5, . . . , x2i�1, . . .q
The conditions of theorem 4.8.2 are satisfied, and we get

HplimÝÑΓ1n;Rq � limÐÝHpΓ1n;Rq � limÐÝIGnpRq �
â
vPM8F

Iv .
Iv � " Λpx5, x9, . . . , x4i�1, . . .q, v is real,Λpx3, x5, . . . , x2i�1, . . .q, v is complex.So the result is

HplimÝÑSLnpOFq,Rq � Λpx5, x9, . . . , x4i�1, . . .qbr1 bΛpx3, x5, . . . , x2i�1, . . .qbr2 .
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We look at the dimension of the space of indecomposable elements QH iplimÝÑSLnpOFq;Rq:
i : 2 3 4 5 6 7 8 9 � � �dimRQH ipSLpOFq,Rq : 0 r2 0 r1�r2 0 r2 0 r1�r2 � � �

Since rkKipOFq � dimRQH ipSLpOFq,Rq, we are done. This is worth repeating:
Theorem 4.8.5. Let F be a number field and OF be its ring of integers. Let r1 be the number of realplaces on F and let r2 be the number of complex places on F . The ranks of K-groups KipOFq dependonly on r1 and r2. One has

rkK0pOFq � 1, rkK1pOFq � r1 � r2 � 1,
and for i ¥ 2 the ranks are periodic, with period 4:

i pmod 4q : 0 1 2 3rkKipOFq : 0 r1�r2 0 r2
The rest of this text aimed towards theorem 4.7.2.
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Chapter 5

A theorem of Matsushima

Here we review a result due to Matsushima involving the Matsushima’s constant mpGpRqq for asemisimple Lie group GpRq. It applies to the case of a discrete subgroup Γ � GpRq such that ΓzGpRqis compact. The proof in fact relies on Hodge theory for compact manifolds, which is of course a verystandard material, but this chapter starts with a detailed overview, since later on we will need to adjustit to certain non-compact cases.
References. The main content of this chapter corresponds to [Bor74, §3]. For a systematic treatment we drewupon the monograph [BW00].
5.1 Harmonic forms on a compact manifold (théorie de Hodge

pour les nuls)
From now on M denotes a connected, smooth (of class C8), oriented manifold. Recall from § 4.2de Rham complex ΩpMq. We need some extra structure, so further we assume that a Riemannian
metric is defined on M . That is, at each point x PM there is an inner product (= a symmetric, bilinear,positive definite map) 〈�, �〉x : TxM � TxM Ñ R,depending smoothly on x, which means that for all vector fields X,Y P ΓpTMq the map x ÞÑ 〈Xx , Yx〉xis smooth. Of course any smooth manifold admits a Riemannian structure, but later on its particularchoice will be important.Let us recall the definition of Laplace–Beltrami operator [Spi99c, Chapter 7, Addendum 2].
Remark 5.1.1. We begin with some linear algebra. Let V be a real vector space of dimension n coming with aninner product and orientation. By orientation we mean a choice of one of the two connected components of thespace ΛnpVqzt0u. The product extends to ΛqpVq by

〈w1 ^ � � � ^wq , v1 ^ � � � ^ vq〉 � det
�
����

〈w1, v1〉 〈w1, v2〉 � � � 〈w1, vq〉〈w2, v1〉 〈w2, v2〉 � � � 〈w2, vq〉... ... . . . ...〈wq , v1〉 〈wq , v2〉 � � � 〈wq , vq〉

�
��� (5.1)

and bilinearity. Then 〈�, �〉 extends to the whole exterior algebra ΛpVq by letting the product of elements of differentdegrees to be zero. Let e1, . . . , en be an orthonormal basis for V . Then an orthonormal basis of ΛpVq is given by
ei1 ^ � � � ^ eir with 1 ¤ i1   � � �   ir ¤ n.
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Now Hodge star is a linear map � : ΛqpVq Ñ Λn�qpVq that can be written in this basis as
�p1q � �e1 ^ � � � ^ en,

�pe1 ^ � � � ^ enq � �1,
�pe1 ^ � � � ^ eqq � �eq�1 ^ � � � ^ en.Here the sign “�” is determined by the orientation—one takes “�” whenever e1 ^ � � � ^ en lies in the positivecomponent of ΛnpVqzt0u. One easily checks that this does not depend on the choice of an orthonormal basis ofV . With this definition we see

� �� � p�1qq pn�qq � id : ΛqpVq Ñ ΛqpVq.The inner product of two elements v,w P ΛqpVq can be expressed as
〈v,w〉 � �pw ^� vq � �pv ^�wq.

To wash away the sin of defining something using a particular basis, we recall an invariant definition of �:there is a bilinear map
t�, �u : ΛqpVq �Λn�qpVq ^

ÝÑ ΛnpVq �
ÝÑ R,where the second arrow is the isomorphism defined by the inner product and orientation on V . Then one candefine a map A : ΛqpVq Ñ pΛn�qpVqq_by Apαqpηq � tα, ηu for α P ΛqpVq, η P Λn�qpVq.Now we have

ΛqpVq A //

��

33pΛn�qpVqq_ � // Λn�qpVq
where the second isomorphism is induced by the inner product on V .

For smooth manifolds the Hodge star is used as follows. The Riemannian scalar product definesdually a product on 1-forms (on the cotangent space T�nM), and hence by virtue of (5.1) an inner product〈�, �〉 : ΩqpMq �ΩqpMq Ñ Ω0pMq.So there is a Hodge star operator � : ΩqpMq Ñ Ωn�qpMq, which satisfies
� �� � p�1qq pn�qq � id : ΩqpMq Ñ ΩqpMq. (5.2)It is defined to be compatible with the inner product of differential forms coming from the Rieman-nian structure: 〈α, β〉 � �pα^� βq � �pβ ^ αq.The volume form ω is by definition the unique positively oriented n-form having unit length, i.e.〈ω,ω〉 � 1. One also sees that ω is � 1, the Hodge star of the constant map 1. In what follows ω denotesthe volume form (one should bear in mind that in the notation “�” and “ω”, and for other things below,a choice of some Riemannian structure is implicit).So we have an identity α^� β � 〈α, β〉 ω,which actually can be treated as the definition of Hodge star.Using Hodge star, we can define an operator

δ def� p�1qn pq�1q�1
� �d �� : ΩqpMq Ñ Ωq�1pMq, (5.3)which lowers the degree of a differential form. For 0-forms one has just δf � 0.
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A form α such that δα � 0 is called co-closed.From identity (5.2) and definition (5.3) we deduce
δ � δ � 0, � � δ � p�1qq d ��, δ �� � p�1qq�1

� �d . (5.4)
ΩqpMq δ // Ωq�1pMq � // Ωn�q�1pMq � � δ �ΩqpMq � // Ωn�qpMq d // Ωn�q�1pMq p�1qq d ��
ΩqpMq � // Ωn�qpMq δ // Ωn�q�1pMq δ �� �ΩqpMq d // Ωq�1pMq � // Ωn�q�1pMq p�1qq�1

� �dE.g. for the first one,
� δ β � p�1qn pq�1q�1

��d� β
� p�1qn pq�1q�1 p�1qpn�q�1q pq�1q d� β
� p�1qq d� β.

Finally, Laplace–Beltrami operator (also called Laplacian) is defined by
∆ def� δ � d � d � δ : ΩqpMq Ñ ΩqpMq.

Example 5.1.2. If M � Rn , then on the space Ω0pRnq of smooth functions Rn Ñ R the Laplace–Beltramioperator is the usual ∆f � �
¸

1¤i¤n
B2f
Bx2i(normally it is taken with the plus sign). For instance, in R3

∆f � d δfloomoon
�0

�δdf
� ��d�� BfBx dx � Bf

By dy � Bf
Bz dz



� ��d� BfBx dy ^ dz � Bf

By dx ^ dz � Bf
Bz dx ^ dy


� ��
� B2f
Bx2 dx ^ dy ^ dz � B2f

By2 dx ^ dy ^ dz � B2f
Bz2 dx ^ dy ^ dz


� �
� B2f
Bx2 � B2f

By2 � B2f
Bz2



��pdx ^ dy ^ dzqloooooooooomoooooooooon

�1
� �

� B2f
Bx2 � B2f

By2 � B2f
Bz2


 .
N

One checks easily using (5.4) that the operators d, δ,� commute with ∆:
d �∆ � ∆ � d, δ �∆ � ∆ � δ, � �∆ � ∆ �� .
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Definition 5.1.3. For two q-forms α, β P ΩqpMq their Hodge inner product (symmetric, positivedefinite) 〈�, �〉M : ΩpMq �ΩpMq Ñ Ris given by 〈α, β〉M def� »
M α^� β � »M �pα^� βq � 1 � »M 〈αx , βx〉x ω.

We extend this on ΩpMq simply requiring that different ΩqpMq are orthogonal. The correspondingnorm of a differential form is given by
}α}M def� b〈α,α〉M .

Definition 5.1.4. A form α P ΩqpMq is called square integrable if
〈α,α〉M �

»
M α^�α � »M }αx}2x ω   8.

Similarly, α P ΩqpMq is called absolutely integrable if»
M }αx}x ω   8.

In particular, when M is compact, all forms are integrable.
Remark 5.1.5. Observe that if we write α locally in an orthonormal basis, then }αx}2x is the sum of squares ofthe coefficients. If we have two q-forms α and β, then the coefficients α ^ β are products of coefficients of α andβ. Hence the Cauchy–Schwarz identity gives

}αx ^ βx}x ¤ }αx}x � }βx}x .

Let now α P Ωq�1pMq and β P ΩqpMq. The Leibniz rule together with d� β � p�1qq � δ β gives
dpα^� βq � dα^� β � p�1qq�1 α^ d� β � dα^� β � α^� δ β.

Integrating this over M , we obtain»
M dpα^� βq � 〈dα, β〉M � 〈α, δβ〉M . (5.5)

Remark 5.1.6. Let us recall the Stokes’ formula ([War83, Theorem 4.9] or [Spi99a, Chapter 8]).A subset D �M of a smooth oriented n-manifold is called a regular domain if for each point x PM either(a) Some open neighborhood of x is contained in M or MzD.(b) There is a coordinate chart pU,φq centered in x such that φpU XDq � φpUq XHn , where
Hn def

� tpx1, . . . , xnq P Rn | xn ¥ 0u.
The points of type (b) comprise the boundary BD.Now if D is a regular domain and σ is an pn � 1q-form with compact support, then»

D dσ �
»
BD σ.
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In particular, if M is compact, then for an pn � 1q-form σ»
M dσ � 0.

The key words here are “form with compact support”. A non-compact case will be investigated in the nextchapter.
Now α ^ � β has compact support if either α or β has compact support. In this case the Stokes’formula can be applied, and it gives ³M dpα^� βq � 0. So (5.5) implies

〈dα, β〉M � 〈α, δβ〉M if one of α, β has compact support. (5.6)In particular, if M is a compact manifold, then this means that δ is adjoint to d with respect to theinner product on ΩpMq. Since 〈�, �〉M is a positive definite bilinear form, the operator δ is uniquelydefined by (5.6). From this adjunction one easily sees that
∆α � 0 ðñ dα � 0 and δα � 0 if α has compact support. (5.7)

Definition 5.1.7. A differential form α P ΩpMq such that ∆α � 0 is called harmonic.In words: a form with compact support is harmonic if and only if it is closed and co-closed.Indeed, this follows from
〈∆α,α〉M � 〈pδd � dδqα,α〉M

� 〈δdα, α〉M � 〈dδα, α〉M
� 〈dα, dα〉M � 〈δα, δα〉M
� }dα}2M � }δα}2M .

Example 5.1.8. Recall that a function f : Rn Ñ R is called harmonic if it satisfies the Laplace equation
B2f
Bx21 � � � � �

B2f
Bx2n � 0.

Our definition generalizes this to differential forms on smooth manifolds. NWe denote the space of harmonic q-forms on M by
HqpMq def� tα P ΩqpMq | ∆α � 0u.

The Hodge decomposition theorem [War83, 6.8] tells that there is an orthogonal direct sum
ΩqpMq � ∆ΩqpMq `HqpMq if M is compact

� dδΩqpMq ` δdΩqpMq `HqpMq
� dΩq�1pMq ` δΩq�1pMq `HqpMq.

Recall how the Hodge decomposition implies that for compact M each de Rham cohomology class
rαs P HqdRpM ;Rq is represented uniquely by a harmonic form Hpαq P HqpMq.For a form α P ΩqpMq with corresponding orthogonal decomposition α � ∆Gpαq � Hpαq withHpαq P HqpMq and ∆Gpαq P ∆ΩqpMq � pHqpMqqK the form Gpαq is called the Green operator of α.So any q-form decomposes as α � dδGpαq � δdGpαq �Hpαq.
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Further G commutes with d. If α is a closed form (i.e. dα � 0), we thus get
α � dδGpαq �Hpαq,

and so α and Hpαq represent the same class in de Rham cohomology HqdRpM ;Rq. Now assume thatα1, α2 P HqpMq are two harmonic forms representing the same class in HqdRpM ;Rq, i.e.
0 � dβ � pα1 � α2q

for some β P Ωq�1pMq. The forms dβ and pα1 � α2q are orthogonal thanks to (5.7):
〈dβ, α1 � α2〉M � 〈β, δα1 � δα2〉M � 〈β, 0〉M � 0,

so we must have dβ � 0 and α1 � α2.
Further note that since � commutes with ∆, it maps harmonic forms to harmonic forms. Having aharmonic form α P HqpMq representing a nonzero cohomology class rαs P HqdRpMq, we get a harmonicform �α P Hn�qpMq. Using � �� � p�1qq pn�1q, we see

〈α,�α〉M �
»
M α^�p�αq � �}α}2M � 0.

So for each nonzero cohomology class rαs P HqdRpMq we have canonically a nonzero cohomologyclass r�αs P Hn�qdR pMq such that 〈α,�α〉M � 0. Since 〈�, �〉M is a nondegenerate pairing, this gives anisomorphism HqdRpMq � Hn�qdR pMq_,the Poincaré duality. Again, this works only if M is compact.
Remark 5.1.9. The most difficult thing to prove, which we left out, is the Hodge decomposition theorem. For athorough treatment see [War83, Chapter 6].

In short, Hodge theory gives very nice results for cohomology of a compact manifold. To get sometheory work in a non-compact situation, one needs an identity analogous to (5.6). This will be discussedin the next chapter.
5.2 Matsushima’s constant
We go back to the particular situation of the previous chapter.

• GpRq is a semisimple Lie group, for our purposes we can assume it is non-compact and connected.In particular, we have in mind algebraic group G � SLn{Q and its group of real points SLnpRq.More generally, we take G1 � SLn{F defined over a number field F and then take its restrictionG � ResF{QG1.Since in this chapter everything concerns Lie groups, we will write simply “G” instead of “GpRq”.
• Γ is a discrete subgroup in G. The main example to have in mind is that of SLnpZq, or moregenerally SLnpOFq.• We denote by K a maximal compact subgroup of G.
• X def� G{K is the symmetric space of maximal compact subgroups.
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• Bgp�, �q denotes the Killing form of g. Since G (and hence g) is semisimple, we have a positivedefinite symmetric bilinear form on g given by
Bθpx, yq def� �Bgpx, θpyqq.

This gives a right invariant Riemannian metric on G, and hence a metric on ΓzG.
• In everything that follows we denote m def� dimG and n def� dimX.
• Let g and k be Lie algebras of G and K respectively.
• Let θ : g Ñ g be the Cartan involution corresponding to K. Consider the respective Cartan

decomposition
g � k` p,where

k � tx P g | θpxq � xu, p
def� tx P g | θpxq � �xu.One has

rk, ks � k, rk, ps � p, rp, ps � k.The composition is orthogonal with respect to the Killing form: Bgpk, pq � 0. Further, since weassume that G is non-compact, holds equality rp, ps � k.
Let Lp�, �q : k� kÑ R be the symmetric bilinear form defined by the adjoint action of k on p:

Lpx, yq def� trpadp,x � adp,yq,
where adp,x : p Ñ p is the linear map on p given by z ÞÑ rx, zs. This definition makes sense because
rk, ps � p. One has Bgpx, yq � Bkpx, yq � Lpx, yq for x, y P k.Note that K is compact, hence the Killing form Bkp�, �q is negative definite. The eigenvalues of adxfor x P k are purely imaginary, and k acts faithfully on p via the adjoint representation, hence Lp�, �q isnegative nondegenerate, and we put

A def� mint�Lpx, xq | x P k, Bgpx, xq � �1u.
We have 0   A ¤ 1. Let x1, . . . , xm be an orthonormal basis for p with respect to the Killing formBgp�, �q. For indices 1 ¤ i, j, k, ` ¤m we consider

Rijk` def� Bgprx` , xks, rxj , xisq � Bgprrx` , xks, xjs, xiq. (5.8)It is the curvature tensor on X, with the invariant Riemannian metric given by the restriction of theKilling form on p � TepXq. In particular, it satisfies the identities (cf. [Spi99b, §4.D])
Rijk` � �Rjik` , Rijk` � �Rij`k,Rijk` � Rk`ik,Rijk` � Rik`j � Ri`jk � 0 (“the first Bianchi identity”).

Of course these identities are immediate from the definition (5.8), and the geometric interpretationof Rijk` will not be needed in what follows.
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Definition 5.2.1. For q � 1, 2, 3, . . . consider a symmetric bilinear form on pb p given by
Fqg pξ, ηq def� A2 q ¸i,j ξij ηij �

¸
ijk`Rijk` ξi` ηjk.The Matsushima’s constant is defined as

mpGq def� mpgq def� maxt0u Y tq | Fqg pξ, ξq ¡ 0 on pb pzt0b 0uu.
This makes sense because the form °ijk` Rijk` ξi` ηjk is not positive definite for a trivial reason: thereis some coefficient Rijk`   0, so we can set ξi` � ξjk � ηil � ηjk � 1, and the rest to zero, making surethe value Rijk` ξi` ηjk � Rji`k ξjk ηi` � 2Rijk` is negative. However, if we add to this a positive definiteform A2 q °i,j ξij ηij , then for q small enough the sum may become positive definite.

Remark 5.2.2. The definition of mpGq does look strange, and one probably can understand it only reading theproof of theorem 5.3.1.
The constant A is relatively easy to calculate. The problem is to estimate the eigenvalues of thebilinear form °ijk` Rijk` ξi` ηjk. The constants mpGq were determined case by case in [Mat62a] and[KN62].

Example 5.2.3. Consider g � sl2pRq with Cartan involution θ : x ÞÑ �xJ. In the decomposition g � k`pthe space k is given by the traceless antisymmetric matrices, and p by the traceless symmetric matrices.A basis for k gives u def�
� 0 1
�1 0 
, and a basis for p give a def�

� 1 00 �1 
 and b def�
� 0 11 0 
.

We see that ru, as � �2b, ru, bs � 2a, ra, bs � 2u, hence adp,u � � 0 2
�2 0 
, and

Lpu,uq � Bgpu,uq � trpadpu � adpuq � �8.
Trivially A � 1. Next we calculate the curvature tensor Rijk` � Bgprx` , xks, rxj , xisq. The values are

Ruaua � 32, Rubub � 32, Rabab � �32
(and the rest are deduced from these). The quadratic form Fqg pξ, ξq is

Fqg pξ, ξq � 12 r pξ2uu � ξ2ua � ξ2ub � ξ2au � ξ2aa � ξ2ab � ξ2bu � ξ2ba � ξ2bbq�64 p�ξuu ξaa � ξuu ξbb � ξua ξau � ξbu ξub � ξaa ξbb � ξab ξbaq.This form is never positive definite. For instance, take ξua � �1, ξau � 1, and the rest � 0. We have1{r � 64   0. So in this case mpgq � 0. N

Example 5.2.4. To see something less trivial, take g � sl3pRq. Now the dimension is 8, a base for k and
p is given by

k : u � �� 0 1 0
�1 0 00 0 0

�, v � �� 0 0 10 0 0
�1 0 0

�, w �
�� 0 0 00 0 10 �1 0

�,

p : a � �� 1 0 00 �1 00 0 0
�, b � �� 0 0 00 1 00 0 �1

�, c � �� 0 1 01 0 00 0 0
�, d � �� 0 0 10 0 01 0 0

�, e � �� 0 0 00 0 10 1 0
�.
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The Killing form on sl3pRq is Bgpx, yq � 6 trpx � yq, and we calculate
Bgp�, �q a b c d e u v wa 12 �6 0 0 0 0 0 0b �6 12 0 0 0 0 0 0c 0 0 12 0 0 0 0 0d 0 0 0 12 0 0 0 0e 0 0 0 0 12 0 0 0u 0 0 0 0 0 �12 0 0v 0 0 0 0 0 0 �12 0w 0 0 0 0 0 0 0 �12Further, we calculate the Killing form of k and the linear form Lp�, �q:

Bkp�, �q u v wu �2 0 0v 0 �2 0w 0 0 �2
Lp�, �q u v wu �10 0 0v 0 �10 0w 0 0 �10We see easily that A � 5{6. Since now p has dimension 5, we are not going to write down explicitlythe quadratic form Fqg pξ, ξq. Calculations show that mpgq � 1. N

Example 5.2.5. The general formula for A obtained by Matsushima in [Mat62b, §7] is the following.Assume that g and k are simple Lie algebras. Then
A � dim p2 dim k

� dim g� dim k2 dim k
.

In particular, for slnpRq we have
dim g � dim slnpRq � n2 � 1,
dim k � dim sonpRq �

�n2


� n pn � 1q2 .

And we calculate A � n � 22n .
This agrees with the value 5{6 above for sl3pRq. Other values of A for classical cases can be found in[KN62, p. 245]. In notation of Kaneyuki and Nagano, A � 2bpg,kq. N

It is more difficult to see in general when the quadratic form Fqg pξ, ξq is positive definite. Suchcalculations also can be found in [KN62].
Example 5.2.6. The Matsushima constant for SLnpRq is

mpSLnpRqq � ZZn � 24
^̂ ,

by which we denote the biggest integer strictly smaller than pn � 2q{4For SLnpCq the constant is mpSLnpCqq � YYn2 ]] .
N
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Example 5.2.7. In the case that interests us, we take G1 � SLn{F over a number field F , and then therestriction G � ResF{QG1. After we take real points, we obtain an identificationGpRq � SLnpRq � � � � � SLnpRqloooooooooooooomoooooooooooooonr1
�SLnpCq � � � � � SLnpCqloooooooooooooomoooooooooooooonr2

.
The only thing we care about is that mpGpRqq nÑ8ÝÝÝÑ 8. N

5.3 Matsushima’s theorem
Recall from § 4.7 that we have a morphism

jqΓ : IqG def� ΩqpXqGlooooooomooooooonclosed forms
Ñ HqpΩpXqΓq � HqpΓzX,Rq � HqpΓ,Rq.

A theorem of Matsushima [Mat62b, Mat62a] tells that for co-compact Γ this is an isomorphism up todegree mpGq:
Theorem 5.3.1. Let Γ be a discrete subgroup of G and assume that ΓzG is compact. Then themorphism jqΓ is• injective for all q ,• surjective for q ¤mpGq.Of course this makes sense only if the constant mpGq is known. It turns out to be a relatively smallnumber; e.g. as we mentioned above, mpSLnpRqq � XXn�24 \\. But if we are interested in the case nÑ8,we are in business—see the previous chapter for this.

The forms IqG are harmonic (cf. [BW00, §II.3]), so jqΓ is injective by Hodge theory, under the assump-tion that ΓzG, and hence ΓzX, is compact. (The manifold ΓzX is not necessarily smooth, but we cando the same thing that we did in the previous chapter: pick a torsion free normal subgroup of finiteindex Γ1 � Γ and then HpΓ,Rq � HpΓ1,RqΓ{Γ1 , pIGqΓ � ppIGqΓ1qΓ{Γ1 , ΩpXqΓ � pΩpXqΓ1qΓ{Γ1 .)The nontrivial part is surjectivity, and all amounts to the following: if one has a Γ-invariant formη P pΩqpXqqΓ: η � ¸
|I|�q ηI ωI def� ¸

1¤i1 ��� iq¤n ηi1,...,iq ω1 ^ � � � ^ ωq ,
then it is G-invariant, provided q ¤mpGq:y � η � 0 for all y P g.Since g � k` p with rp, ps � k, it is enough to show the above for y P p, i.e. thatxi � ηI � 0 for all 1 ¤ i ¤m, I � ti1, . . . , iqu � t1, . . . ,mu(recall that by x1, . . . , xm we denote an orthonormal basis for p).The proof goes as follows. The form Fqg on pb p from the definition of the Matsushima’s constantcan be defined on p b p b C8pΓzXq by tensoring with the scalar product 〈f, g〉ΓzX def� ³ΓzX f � g ω. Thenwe consider an element of pb C8pΓzXq given in the basis x1, . . . , xm by

px1 � ηI , . . . , xm � ηIq.Using certain manipulations, one can show thatFqg px1 � ηI , . . . , xm � ηIq ¤ 0,which means xi � ηI � 0 since Fqg is positive definite for q ¤mpGq.
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Proof. We are going to use some explicit computations with the structure constants of g.Recall that we have the Cartan decomposition g � k`p. We can fix a basis pxiq1¤i¤m of p, which is or-thonormal with respect to the Killing form, and a basis pxaqm�1¤a¤n of k, which is “pseudo-orthonormal”,i.e. with the Kronecker δ notation,Bgpxi, xjq � δij , Bgpxa, xbq � �δab.Now we are going to write some cumbersome formulas in the fixed bases, and in what follows theindices i, j, k, ` always range from 1 to m and a, b, c, d range from m � 1 to n.Let caij be the structure constants of g. Since rp, ps � k, we get
rxi, xjs � ¸

m a¤n caij xa, rxa, xis �¸j cia,i xj . (5.9)
For a form η P ΩqpXqΓ we consider an expression

Φpηq def� pq � 1q!2 ¸
i,j,I }rxi, xjs � ηI}2ΓzX,where

}α}2ΓzX def� 〈α,α〉ΓzX , 〈α, β〉ΓzX def� »
ΓzX 〈αx , βx〉x ω.

Here and below I runs through the q element subsets of t1, . . . ,mu.Now using (5.9) we write
Φpηq � pq � 1q!2 ¸

i,j,I caij cbij 〈xa � ηI , xb � ηI〉ΓzX .
For the bilinear form Lp�, �q on k (defined in the previous section) we have

Lpxa, xbq �¸i,j ciaj cjbi �
¸
i,j caij cbji � �

¸
i,j caij cbij .Further note that xa and xb are orthogonal, and Lpxa, xbq � 0 unless a � b.Hence

Φpηq � �pq � 1q!2 ¸
a,b,I Lpxa, xbq 〈xa � ηI , xb � ηI〉ΓzX � �pq � 1q!2 ¸

a,I Lpxa, xaq }xa � ηI}2ΓzX.Now by the definition of the constant A (see the previous section) we have an inequality
Φpηq ¥ A pq � 1q!2 ¸

a,I }xa � ηI}2ΓzX. (5.10)
If instead of taking I running through the indices 1 ¤ j1   � � �   jq ¤ m we take all the indices1 ¤ j1, . . . , jq ¤m, then we have

Φpηq � 12 q ¸
i,jj1,...,jq

}rxi, xjs � ηj1,...,jq }2ΓzX.
Using again (5.9), we write
Φpηq � 12 q ¸

i,j,aj1,...,jq
caij 〈xa � ηj1,...,jq , rxi, xjs � ηj1,...,jq〉ΓzX � 1q ¸

i,j,aj1,...,jq
caij 〈xa � ηj1,...,jq , xi � xj � ηj1,...,jq〉ΓzX (5.11)
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(the latter since caji � �caij and rxi, xjs � xi � xj � xj � xi).Up to this point we just did some formal manipulations in fixed bases. Now we use the assumptionthat η is a Γ-invariant form, i.e. η P ΩqpXqΓ � Cqpg, k; C8pΓzGqq. The action of k on the latter is givenby xa � ηj1,...,jq � ηprxa, xj1s, xj2 , . . . , xjq q � ηpxj1 , rxa, xj2s, . . . , xjq q � � � � � ηpxj1 , xj2 , . . . , rxa, xiq sq.We write this as xa � ηj1,...,jq �¸u p�1qu�1 ηprxa, xju s, xj1 , . . . , pxju , . . . , xjq q.
Now we have from (5.9) an expression rxa, xju s � °k cka,ju xk , so

xa � ηj1,...,jq �¸u,kp�1qu�1 cka,ju ηpxk, xj1 , . . . , pxu, . . . , xjq q.
We put this into (5.11) to obtain

qΦpηq � ¸
i,j,k,uj1,...,jq

p�1qu�1 �¸
a caij cak,ju

� 〈ηk,j1,...,pju ,...,jq , xi � xj � ηj1,...,jq〉ΓzX .
By assumption ΓzX is compact, hence we can use the Stokes’ formula

〈x � f, g〉ΓzX � 〈f, x � g〉ΓzX � 0
Hence qΦpηq � �

¸
i,j,k,uj1,...,jq

p�1qu�1 �¸
a caij cak,ju

� 〈xi � ηk,j1,...,pju ,...,jq , xj � ηj1,...,jq〉ΓzX .
Now observe that from the definition of Rijk` (formula (5.8)) follows Rijk` � �°a caij cak` , so

qΦpηq � ¸
i,j,k,uj1,...,jq

p�1qu�1Rijkiu 〈xi � ηk,j1,...,pju ,...,jq , xj � ηj1,...,jq〉ΓzX
�
¸
i,j,k,uj1,...,jq

Rijkiu 〈xi � ηk,j1,...,pju ,...,jq , xj � ηju ,j1,...,pju ,...,jq〉ΓzX .
The last sum can be written as

qΦpηq � q ¸
i,j,k,`j2,...,jq

Rijk` 〈xi � ηk,j2,...,jq , xj � η`,j2,...,jq〉ΓzX .
Since Rijk` � �Rij`k , we have

Φpηq � �
¸
i,j,k,`j2,...,jq

Rijk` 〈xi � η`,j2,...,jq , xj � ηk,j2,...,jq〉ΓzX .
Now going back to the inequality (5.10),

¸
j2,...,jq

� A2 q ¸a }xa � ηI}2ΓzX �
¸
i,j,k,`Rijk` 〈xi � η`,j2,...,jq , xj � ηk,j2,...,jq〉ΓzX

�
¤ 0.
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Finally observe that in the brackets we have a form on pp b pq b C8pΓzXq, given by tensoring Fqgwith the scalar product 〈�, �〉ΓzX on C8pΓzXq. For q ¤mpGq the form Fqg is positive definite, hence ourform is positive definite as well, and we conclude
xi � η`,j2,...,jq � 0 for all 1 ¤ i, `, j2, . . . , jq ¤m.

This is what we wanted to show. �Hopefully, after reading this proof, the definition of Matsushima’s constant becomes a bit more clear.
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Chapter 6

A theorem of Garland

In this chapter we consider a theorem due to Garland [Gar71] regarding the injectivity of morphismj : IG Ñ HpΓ,Rq.We already reviewed in § 5.1 the classic Hodge theory. If the manifold is not compact, then it doesnot work, but one can still show some facts if M is a complete Riemannian manifold.
References. The discussion of square integrable forms follows [Bor74, §1–2]. The Garland’s theorem is takenfrom [Bor74, §3].
6.1 Complete Riemannian manifolds
Let M be a smooth, oriented, connected Riemannian manifold. M has a natural metric: for two pointsx, y PM one puts

dpx, yq def� infplength of a piecewise smooth path joining x and yq.
A Riemannian manifold M is said to be complete if the corresponding metric space pM,dq is com-plete (i.e. every Cauchy sequence in pM,dq converges). A characterization of complete Riemannianmanifolds is given by Hopf–Rinow theorem [dC92, Chapter 7]. The following are equivalent:

1. M is complete as a metric space.2. The closed and bounded sets in M are compact.3. M is geodesically complete, meaning that any geodesic γptq starting from a point x P M isdefined for all values of the parameter t P R.
Recall that a continuous function f : M Ñ R is called proper if for every compact subset K � R itspreimage f�1pKq �M is compact. The following is a useful completeness criterion [Gor73, Gor74].

Theorem 6.1.1. A Riemannian manifold pM,gq is complete if and only if there exists a properC8-function µ : M Ñ r0,8q such that d µpxq has bounded length, i.e. for some constant c ¡ 0,
}dµpxq}x ¤ c for all x PM.

Example 6.1.2. The Euclidean space Rn with the canonical Riemannian structure is of course complete.For a point x � px1, . . . , xnq P Rn it is natural to consider its distance to 0 � p0, . . . , 0q:
}x} �bx21 � � � � � x2n.
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This function is not smooth at 0. To fix this, for some ε ¡ 0 we replace it with
µpxq �bx21 � � � � � x2n � ε2.

f(x)

x

√
x21 + · · ·+ x2n + ε2√
x21 + · · ·+ x2n

We compute dµpxq � 1µpxq px1 dx1 � � � � � xn dxnq.
Now

}dpµpxqq}x � }x}µpxq   }x}
}x} � ε   1.

NFor a general proof of the theorem, we fix a point x0 PM and consider
r : M Ñ R,x ÞÑ dpx0, xq.This is a continuous function, and by the triangle inequality it satisfies
|rpyq � rpxq| ¤ dpx, yq,i.e. it is Lipschitz (with Lipschitz constant 1). This function is proper: indeed, for each R ¡ 0 the set
tx PM | dpx0, xq ¤ Ruis closed and bounded, hence compact (by Hopf–Rinow theorem). The function is not C8, but for everyε ¡ 0 there exists a C8-approximation rε : M Ñ R such that
|rεpxq � rpxq|   ε, (6.1)and
}drεpxq}x   1� ε (6.2)—for this see e.g. [Gaf59, §3] or [dR84, §15]. Now (6.1) means that rε is also a proper function, and (6.2)is the bound that we need.

Conversely, suppose that on M there exists a proper function µ with }dµpxq}x ¤ c. We would like toshow that M is complete. Let γ : t ÞÑ γptq be a geodesic segment with t P I for some bounded intervalI � R. Assume that γ is parametrized so that }dγ{dt} � 1. Suppose the length of γ is finite. Then since
}dγ{dt} � 1, the variation of µ � γ on I is bounded, and so imγ is contained in a bounded set (becauseµ is a proper map). But then imγ can be extended (at both ends) to a longer geodesic segment. HenceM is complete. �
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Lemma 6.1.3. Let M be a complete Riemannian manifold. Then there exist
• a family of compact sets Cr � Dr for r ¡ 0 such that Cr contains the interior of Cr1 if r ¡ r1and M is the union of the Cr ,
• a family of smooth functions σr : M Ñ R for r ¡ 0 with values 0 ¤ σrpxq ¤ 1, such that

σrpxq � " 1, x P Cr ,0, x R Dr .
σr(x)

x

Cr

Dr

• a constant c,
such that

}dσrpxq}x ¤ c r�1 for all x PM.
First let us explain why it is useful. We have the great Stokes’ formula (5.6), which works fordifferential forms with compact support. If some form α fails to have compact support, then we canreplace it with σr � α, apply Stokes to it, and then look what happens as r Ñ 8. To analyze the caser Ñ8, we need the bound on }dσrpxq}x .

Proof. To prove the lemma we recall that one can define a smooth function m : r0,8q Ñ r0, 1s suchthat mpxq � 0 for x P r0, 1s and fpxq � 1 for x P r2,8q.Indeed, one takes θpxq def�
" 0, x ¤ 0,e�1{x , x ¡ 0.And mpxq def� θp2� xqθpx � 1q � θp2� xq .(Cf. the construction of “bump functions” for partitions of unity.)

x

m(x)

0 1 2

We take σrpxq def� mpµpxq{rq, where µ is given by the previous theorem, and it is clear that
}dσrpxq}x ¤ c1 r�1}dµpxq}x ¤ c r�1.

�
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6.2 Adjunction 〈α, δβ〉M � 〈dα, β〉M on complete manifolds
Proposition 6.2.1. As before, let M be a connected complete Riemannian manifold. Let α P ΩqpMqand β P Ωq�1pMq. Assume that the functions

x ÞÑ }αx}x � }βx}x , x ÞÑ 〈pdαqx , βx〉x , x ÞÑ 〈αx , pδβqx〉xare absolutely integrable on M . Then
〈dα, β〉M � 〈α, δβ〉M .

Proof. If one of α and β has compact support, then this is the usual Stokes’ formula (5.6). If not, wereplace α with σr � α where σr is taken as in the lemma 6.1.3. Then σr � α has compact support, and
〈σr � α, δβ〉M � 〈dpσr � αq, β〉M .

By the Leibniz rule, dpσr � αq � dσr ^ α� σr � dα.We take the limit r Ñ8:
limrÑ8 〈σr � α, δβ〉Mloooooooooomoooooooooon

�〈α,δβ〉M
� limrÑ8 〈dσr ^ α, β〉M � limrÑ8 〈σr � dα, β〉Mloooooooooomoooooooooon

�〈dα,β〉M
.

Since 〈σr � α, δβ〉M tends to 〈α, δβ〉M and 〈σr � dα, β〉M tends to 〈dα, β〉M , it remains to show that
limrÑ8 〈dσr ^ α, β〉M def� limrÑ8

»
M 〈dσrpxq ^ αx , βx〉 ω � 0.

We apply the Cauchy–Schwarz inequality for inner products and an inequality for wedge products(remark 5.1.5):
| 〈dσrpxq ^ αx , βx〉x | ¤ }dσrpxq ^ αx}x � }βx}x ¤ }dσrpxq}x � }αx}x � }βx}x ¤ c r�1 }αx}x � }βx}x .

Thus
}pdσr ^ α, βq}M ¤ c r�1 »M }αx}x � }βx}x ω,which tends to 0 as r Ñ8. �In particular, we have the Cauchy–Schwarz inequality

| 〈α, β〉M | ¤ }α}M � }β}M .
����»M 〈αx , βx〉x ω����2 ¤ »M }αx}2x ω �

»
M }βx}2x ω.With this the proposition immediately implies

Corollary 6.2.2. As before, let M be a connected complete Riemannian manifold.Let α P ΩqpMq and β P Ωq�1pMq be differential forms such that α, dα, β, δβ are square integrableon M . Then
〈dα, β〉M � 〈α, δβ〉M .Using the same kind of arguments as in the proof of proposition 6.2.1, one deduces the following
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Proposition 6.2.3. If α is a form on a complete Riemannian manifold, then
∆α � 0 ðñ dα � 0 and δα � 0 if α is square integrable.

This is originally due to Andreotti and Vesentini [AV65]; we follow [dR84, §35].
Proof. We use again lemma 6.1.3 and replace α with αr def� σ2r � α. Now αr has compact support, and

〈dα, dαr〉x � 〈δdα, αr〉x . (6.3)By the Leibniz rule,
dαr � dσ2r ^ α� σ2r � dα � 2σr � dσr ^ α� σ2r � dα.Hence 〈dα, dαr〉x � 〈dα, 2σr � dσr ^ α〉x � 〈dα, σ2r � dα〉x . (6.4)Now we have 〈dα, σ2r � dα〉x � 〈σr � dα, σr � dα〉x and 〈dα, 2σr � dσr ^ α〉x � 〈σr � dα, 2dσr ^ α〉x , soputting together (6.3) and (6.4),

〈σr � dα, σr � dα〉x � 〈δdα, αr〉x � 〈σr � dα, 2dσr ^ α〉x . (6.5)Similarly, we have
〈δα, δαr〉x � 〈dδα, αr〉x .We again apply the Leibniz rule, keeping in mind the definition of operator δ:

δαr � �� �d ��αr
� �� �dpσ2r ��αq
� ��pdσ2r ^�α� σ2r � d�αq
� ��p2 σr � dσr ^�αq � σ2r � δα.

〈δα, δαr〉x � � 〈δα, �p2 σr � dσr ^�αq〉x � 〈δα, σ2r � δα〉x .So
〈σr � δα, σr � δα〉x � 〈dδα, αr〉x � 〈σr � δα, �p2dσr ^�αq〉x . (6.6)Now summing (6.5) and (6.6),

}σr � dα}2x � }σr � δα}2x � 〈∆α,αr〉x � 〈σr � dα, 2dσr ^ α〉x � 〈σr � δα, �p2dσr ^�αq〉x . (6.7)If ∆α � 0, then 〈∆α,αr〉x � 0, and we will show that dα � δα � 0 if we show that }σr �dα}2x�}σr �δα}2xtends to zero as r Ñ 8. We use the Cauchy–Schwarz inequality combined with the inequality ofarithmetic and geometric means:
| 〈η, ζ〉x | ¤b〈η, η〉x � 〈ζ, ζ〉x ¤ 12 〈η, η〉x � 12 〈ζ, ζ〉x .
| 〈σr � dα, 2dσr ^ α〉x | ¤ 12 � }σr � dα}2x � 2 � }dσr ^ α}2x ,

| 〈σr � δα, �p2dσr ^�αq〉x | ¤ 12 � }σr � δα}2x � 2 � }dσr ^�α}2x .
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We put these inequalities together with (6.7) and get
}σr � dα}2x � }σr � δα}2x ¤ 4 � }dσr ^ α}2x � 4 � }dσr ^�α}2x .Now it remains to note that }dσr^α}2x and }dσr^�α}2x are bounded by }dσr}2x � }α}2x (cf. remark 5.1.5).Since }dσr}2x ¤ c r�2 for some constant c not depending on r, we conclude that }σr � dα}2x � }σr � δα}2xtends to zero as r Ñ8. �

6.3 Square integrable forms
We consider the following spaces:• Ωq

p2qpMq is the space of square integrable q-forms.
• Hq

p2qpMq � Ωq
p2qpMq is subspace of square integrable harmonic q-forms.

• HqdR,p2qpMq � HqdRpMq is the space of q-dimensional cohomology classes represented by squareintegrable forms.
Remark 6.3.1. Naturally, one has a cochain complex

0 Ñ Ω0
p2qpMq

d
ÝÑ Ω1

p2qpMq
d
ÝÑ Ω2

p2qpMq Ñ � � �

and its cohomology is called L2-cohomology of M . For this see a survey [Dai11].The space HqdR,p2qpMq should not be confused with L2-cohomology. For instance, in the easiest example M � R1it is not difficult to see that dimRpq-th L2-cohomology of R1q �
"
8, q � 1,0, q � 1,which differs radically from de Rham cohomology.Indeed, Ω1

p2qpR1q is a huge space, containing all 1-forms with compact support. Among them in the imageof Ω0
p2qpR1q Ñ Ω1

p2qpR1q lie just differential forms Bψ
Bx dx with ψpxq a square integrable function, and for themnecessarily ³R1 Bψ

Bx dx � 0. So we see that
dimR

Ω1
p2qpR1qimpΩ0

p2qpR1q Ñ Ω1
p2qpR1qq � 8.

There are natural maps
Hq

p2qpMq µ // HqdR,p2qpMq � � ν // HqdRpMq

The second map ν is just the inclusion. The first map µ is induced by the natural surjectionΩq
p2qpMq � HqdR,p2qpMq, and actually µ itself is a surjection by a theorem of Kodaira [Kod49, §4], whichsays there is an orthogonal decomposition

Ωq
p2qpMq � Hq

p2qpMq ` dΩq�1cpt pMq ` δΩq�1cpt pMq.Here “cpt” means “with compact support”, and � denotes the closure. It follows from the Kodairadecomposition that if α P Ωq
p2qpMq is a closed form, i.e. dα � 0, then α � Hpαq � dσ for someHpαq P Hq

p2qpMq and σ P Ωq�1pMq.If M is compact, then Hodge theory tells us that µ and ν are bijective; in general it is not true: µ isnot necessarily injective (different harmonic forms may represent the same cohomology class) and ν isnot necessarily surjective (not any cohomology class can be represented by a square integrable form).
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Here is a weak form of injectivity for ν:
Proposition 6.3.2. As before, let M be a complete Riemannian manifold.Let α P Hq

p2qpMq be an exact square integrable harmonic form such that α � dσ for someσ P Ωq�1
p2q pMq (N.B. σ being also square-integrable). Then α � 0.

In words: on a complete Riemannian manifold, a non-zero square integrable harmonic form isnot the differential of a square integrable form.
Proof. If α is harmonic and square integrable, then by proposition 6.2.3 one has also δα � 0. Soσ, dσ, α, dσ are all square integrable, and one has by corollary 6.2.2

}α}2M � 〈α,α〉M � 〈dσ, dσ〉M � 〈σ, δα〉M � 0.
�

Remark 6.3.3. In the view of proposition 6.2.1, instead of σ P Ωq�1
p2q pMq it is enough to assume that the functionx ÞÑ }σx}x � }αx}x is integrable.

6.4 A Stokes’ formula for complete Riemannian manifolds
Proposition 6.4.1. Let M be a complete Riemannian manifold. Let X be a vector field on M suchthat }Xx}x is bounded and LXpωq � 0.Let f : M Ñ R be a C1-function such that f and Xf are absolutely integrable. Then»

M Xf ω � 0.
Proof. The Cartan’s magic formula gives

LXpf ωq � d ιXpf ωq � ιX dpf ωqlooomooon
�0

.
On the other hand, because of the assumption LXpωq � 0, we have

LXpf ωq � LXfloomoon
�X f

ω � f LXpωqloomoon
�0

� X f ω.
Hence pX fqω � d ιXpf ωq. The idea is the same as already used before. If f has compact support, thenwe can use the Stokes’ formula. Let D be a bounded open regular domain containing the support of f .Then »

MpX fqω �
»
M dpιXpf ωqq � »D dpιX fωq �

»
BD ιX f ω � 0.

Otherwise, we use lemma 6.1.3 and replace f with σr � f , which has compact support, hence
0 � »MpX pσr � fqqω �

»
M f � Xpσrqω � »M σr � Xpfqω.

We need to show that
limrÑ8

»
M σr � Xpfqω � »M Xf ω and limrÑ8

»
M f � Xpσrqω � 0.

91



The first is clear. For the second one, observe that by the Cauchy–Schwarz inequality
|Xσrpxq| � | 〈Xx , dσrpxq〉x | ¤ }Xx}x � }dσrpxq}x ¤ }Xx}x � c r�1,so Xσr is bounded on M (we assume that }Xx}x is bounded). Now by Cauchy–Schwarz����»M f � Xpσrqω���� ¤ pmaxxPM }Xx}xq � c r�1 »M |fpxq|ω,and the latter tends to 0 as r Ñ8. �

Corollary 6.4.2. With the same assumptions on M and X, let f, g : M Ñ R be functions of class C1.Assume that the functionsh : x ÞÑ fpxq � gpxq, x ÞÑ Xfpxq � gpxq, x ÞÑ fpxq � Xgpxqare absolutely integrable on M . Then 〈Xf, g〉M � 〈f, Xg〉M � 0.Proof. We have the Leibniz rule Xpf � gq � Xpfq � g � f � Xpgq.Integrating this over M , we obtain»
MpXpf � gqqpxqω �

»
MppXfqpxq � gpxqqω �

»
Mpfpxq � pXgqpxqqω.But the integral on the left hand side satisfies the previous proposition, hence it is 0. �Note that in the case of compact support this follows immediately from the usual Stokes’ theorem,so the formula 〈Xf, g〉M � 〈f, Xg〉M � 0 can be viewed as some analogue of Stokes.

In particular, we record a special case of corollary 6.4.2:
Proposition 6.4.3. Let M be a complete Riemannian manifold. Let X be a vector field on M suchthat }Xx}x is bounded and LXpωq � 0. Let f, g : M Ñ R be functions of class C1. Assume thatf, g, Xf, Xg are all square integrable on M . Then〈Xf, g〉M � 〈f, Xg〉M � 0.(For this apply the Cauchy–Schwarz inequality | 〈f, g〉M | ¤ }f}M � }g}M .)
6.5 Garland’s theorem
Now we are ready to go back to Matsushima’s theorem 5.3.1. It was proved under assumption that ΓzXis compact. Note that most of the proof consists of formal manipulations with formulas; one importantpoint is the use of Stokes’ formula 〈x � f, g〉ΓzX � 〈f, x � g〉ΓzX � 0.As we just saw above, this can be recovered if we work with square integrable forms (the other as-sumptions are satisfied if we take X � G{K and the vector fields as in Matsushima’s theorem proof).In the proof of Matsushima’s theorem we made use of Lie derivatives “xi � ηI ”. This is problematic,since if we assume that ηI is square-integrable, then xi � ηI a priori is not square integrable anymore.To overcome this, one can replace η with convolution

ηα � η � α def� ¸
I pηI � αqωI ,where α P C8cptpGq a smooth function on G with compact support, that is invariant under the action ofK (recall that we work with complex Cqpg, k; C8pΓzGqq).
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Definition 6.5.1. For two smooth functions f, g : G Ñ R their convolution f � g : G Ñ R is given by
pf � gqpxq def� »

G fpx y�1qgpyqdy,
where dy is a Haar measure on G.Now if f P L2pΓzGq and α P C8cptpGq, then f � α is a smooth square integrable function. Moreover, ifwe act on this by elements D P Upgq, then D � pf � αq is square integrable as well. It remains to find asequence tαiu such that η � αi Ñ η. This is done using “Dirac sequences” [Lan75, §I.1], [HC66, §2].
Definition 6.5.2. A Dirac sequence on a Lie group G is a sequence of smooth functions δn : G Ñ Rsuch that

1. δn ¥ 0 for all n.
2. ³G δnpxqdx � 1 for all n.
3. For every neighborhood of identity V Q e and for every ε ¡ 0 one has»

GzV δnpxqdx   ε
for all n sufficiently large.

x

δn(x)

Example 6.5.3. For instance on G � R1 one can take functions δnpxq def� nπp1�n2x2q .The first and third conditions are clear; the second condition is a calculus exercise:
» 8
�8

δnpxqdx � 1π
» 8
�8

n1� n2x2 dx
�
� y � nxdy � ndx �

� 1π
» 8
�8

11� y2 dy
� 1π arctany|8y��8 � 1π π � 1.

N
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Dirac sequences exist, and one can replace the third condition with a stronger one:
31. For every neighborhood of identity V Q e the support of δn is contained in V for all n sufficientlylarge.
So one can make the Matsushima’s argument work for square integrable forms, and the result isthe following:

Theorem 6.5.4. Let Γ � G be a discrete torsion free subgroup. ΓzX is not assumed to be compactanymore. Let q ¤ mpGq and suppose that every class of Hqpg, k; C8pΓzGqq is representable by asquare integrable form. Then jqG : IqG Ñ HqpΓ,Rq is surjective.This is essentially due to Garland [Gar71, Theorem 3.5]. This result is crucial in Borel’s originalproof of theorem 4.7.2.
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Appendix A

Algebraic groups

Here we collect some rudiments of the theory of linear algebraic groups that are needed in the maintext. We also discuss very briefly arithmetic groups.
References. We relied mainly on the notes of J.S. Milne available at

http://jmilne.org/math/CourseNotes/ala.html

A nice survey for arithmetic groups is [Ser79].

A.1 Basic definitions
Let k be a commutative ring.
Definition A.1.1. An affine group G over k is a group object in the category of representable functorsk-Alg Ñ Set . If G is represented by a finitely generated k-algebra, then it is called an affine algebraic
group.

This means that one has a functor G : k-Alg Ñ Set which is isomorphic to the functor HompOpGq,�qfor some finitely generated k-algebra OpGq which we call the coordinate ring of G. Further, there isa natural transformation m : G �G ñ G, such that for any k-algebra R the multiplication morphism
mpRq : GpRq �GpRq Ñ GpRq

gives a group structure on GpRq. The latter is called the group of R-points.
Example A.1.2. Let G be an affine algebraic group over Q. Then GpRq is a Lie group. N

• A morphism of affine k-groups G Ñ H is just a natural transformation of functors G ñ H .
• The product of affine k-groups G � H is defined as the functor Rù GpRq � HpRq. It is repre-sentable, since

Homk-Alg pOpGq, Rq �Homk-Alg pOpHq, Rq � Homk-Alg pOpGq bk OpHq, Rq.
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Remark A.1.3. We recall that the Yoneda lemma tells us that the category of representable functors k-Alg Ñ Setis isomorphic to the opposite category k-Alg op. Recall that k-Alg op is isomorphic to the category of affine schemesover k. So affine groups over k are the same as group objects in the category of affine schemes over k, i.e. affine
group schemes over k.See [EH00, Chapter VI].
Example A.1.4. Let GLn be the functor which sends a k-algebra R to the set of invertible n�n matriceswith elements in R. In other words, GLnpRq are the matrices with determinant � 0. We see that GLnis an affine algebraic group, since this functor is isomorphic to HompA,�q with A given by

A def� krX11, X12, . . . , Xnn, Y sdetpXijq � Y � 1 .
Here detpXijq is the polynomial in n2 variables X11, X12, . . . , Xnn given by

detpXijq def� ¸
σPSn signpσqX1,σp1q � � �Xn,σpnq.

The group GL1 is usually denoted by Gm (multiplicative group), since GmpRq can be identified withthe multiplicative group R�. N

Example A.1.5. Let SLn be the functor which sends a k-algebra R to the set matrices n � n withelements in R having determinant 1. It is an affine algebraic group represented by
A def� krX11, X12, . . . , XnnsdetpXijq � 1 .

NWe say that H is an affine subgroup of G if H is a closed subfunctor of G such that HpRq is asubgroup of GpRq for all k-algebras R. The fact that H is a closed subfunctor of G means that H isrepresentable by a quotient of OpGq.
Example A.1.6. SLn is an affine subgroup of GLn. N

Definition A.1.7. An affine subgroup of GLn is called a linear algebraic group.
A.2 Extension and restriction of scalars
Let L be an algebra over k. Then• Starting from an affine algebraic group G over k, one can obtain an affine algebraic group GLover L. This is called the extension of scalars.Namely, for G � Homk-Alg pOpGq,�q we define a functor GL : L-Alg Ñ Set by

GLpRq def� HomL-Alg pOpGq bk L,Rq � Homk-Alg pOpGq, Rq.• Starting from an affine algebraic group G over L, one can obtain an affine algebraic group ResL{k Gover k. This is called the restriction of scalars.Namely, we define a functor ResL{k G : k-Alg Ñ Set by
ResL{kpRq def� GpR bk Lq.If ResL{k G is representable and gives an affine group, we say that the restriction of scalars exists.This was defined originally by André Weil in [Wei82, §1.3], and sometimes it is called Weil re-

striction.
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Proposition A.2.1. Assume that L is finitely generated and projective as a k-module. Then for anyaffine L-group G the restriction of scalars ResL{k G exists.The functors Gù GL and Gù ResL{k G are adjoint; namely, there is a natural bijection
HomLpGL, Hq � HomkpG,ResL{kHq.

(For this see e.g. [Mil12, §V.5].)
Proposition A.2.2. Let k1{k be a finite separable field extension and let K be a field containing allk-conjugates of k1; i.e. such that |Homkpk1, Kq| � rk1 : ks. Then

pResk1{k GqK � ¹
α : k1ÑKαG,where αG is the affine group over K obtained by extension of scalars with respect to α : k1 Ñ K.

(Again, we refer to [Mil12, §V.5].)
Example A.2.3. For instance, if we consider G1 � SLn{F over a number field F and then take itsrestriction G � ResF{QG1, then the real Lie group GpRq decomposes as

SLnpRq � � � � � SLnpRqloooooooooooooomoooooooooooooonr1
�SLnpCq � � � � � SLnpCqloooooooooooooomoooooooooooooonr2

,
where r1 is the number of real places on F and r2 is the number of complex places on F . N

A.3 Arithmetic groups
Definition A.3.1. Let G be a linear algebraic group over a number field F , i.e. a subgroup of GLn{F .Consider the group GOF def� GpFq X GLnpOFq. A subgroup Γ � GpFq is called arithmetic if Γ is
commensurable with GOF , that is, ΓXGOF has finite index both in Γ and GOF . In general, a group Γ iscalled arithmetic if it is an arithmetic subgroup in GpFq for some linear algebraic group G{F . Observethat any subgroup of finite index in Γ is also an arithmetic subgroup.
Example A.3.2. SLnpOFq is an arithmetic subgroup in SLn{F . N

Remark A.3.3. Let Γ be an arithmetic subgroup of a linear algebraic group G1{F � GLn{F . Take the restriction ofscalars G def
� ResF{QG1. Then it is naturally a subgroup of GLnd where d � rF : Qs. Note that under identification ofGpQq with G1pFq, the subgroup GZ � G1OF is of finite index. So one does not loose anything considering arithmeticgroups only for F � Q.

Arithmetic groups enjoy various nice finiteness properties.
Theorem A.3.4. Let Γ be an arithmetic group. Then

1. Γ is finitely presented. That is, Γ � 〈X | R〉, where X � Γ is a finite set of elements and R isa finite set of relations.
2. Any Γ-module M that is finitely generated over Z, the cohomology groups HpΓ,Mq are finitelygenerated.
This was proved in [Rag68].
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Further, we have the following useful fact:
Proposition A.3.5 (Selberg’s lemma). Let k be a field of characteristic zero. Let Γ be a finitelygenerated subgroup of GLnpkq (in particular, arithmetic groups satisfy these requirements). ThenΓ admits a torsion free normal subgroup Γ1 � Γ of finite index rΓ : Γ1s.This was proved by Selberg in [Sel60]. It follows immediately from the following:
Proposition A.3.6. Let A be a finitely generated integral domain of characteristic 0. Then the groupGLnpAq contains a torsion free normal subgroup of finite index.The elementary argument below is taken from [Alp87]. In fact, in the case of GLnpZq this was firstobserved by Minkowski.
Proof. The fraction field K def� FracA is a finite algebraic extension of degree d of a purely transcen-dental field k def� QpX1, . . . , Xmq. We fix a basis of K over k. We can express the generators of A interms of this basis, and it is clear that the coefficients lie in a finitely generated ring

B def� Z
�1s
� �X1, . . . , Xm, 1f

�
for some s P Z and f P ZrX1, . . . , Xms (this is exactly where we need to assume that A is finitelygenerated).A fixed basis of K over k gives an injective morphism ρ : GLnpKq ãÑ GLndpkq which gives a repre-sentation ρ : GLnpAq ãÑ GLndpBq.Now let x P GLndpBq be an element of finite order α. It satisfies the equation Xα � 1. The minimalpolynomial of x has distinct roots that are some roots of unity. The coefficients of the characteristicpolynomial of x are the symmetric functions in roots of unity, hence these are algebraic integers ink def� QpX1, . . . , Xmq. So the trace of an element of finite order in GLndpBq is an integer with absolutevalue ¤ nd. This means there are finitely many possible traces for elements of finite order; we denotethe corresponding finite set by T.Now let p be a prime number such that• p - s,• p does not divide the coefficients of f ,• p does not divide the nonzero integers of the form t � nd for t P T.We take a1, . . . , am P Fp so that fpa1, . . . , amq � 0. Consider a homomorphism

σ : AÑ Fp
given by reduction of the coefficients modulo p and evaluation pX1, . . . , Xmq ÞÑ pa1, . . . , amq.Now σpAq � Fppa1, . . . , amq is a finite field, hence m

def� ker σ is a maximal ideal of finite index in A.We consider the induced homomorphism
GLndpAq Ñ GLndpA{mq.

Let Γpmq denote its kernel and let Γ0 def� GLndpBq X Γpmq. The latter has finite index in GLndpBq.Every element of finite order x P Γ0 has trace trx P T and trx � nd pmod mq, hence p | ptrx�ndq.By our choice of p it implies trx � nd. Since the minimal polynomial of x has distinct roots, this meansthat x is diagonalizable. We must conclude that x � 1.So Γ0 is a torsion free subgroup of finite index in GLndpBq. �
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Appendix H

Homotopy theory

Here we collect some facts from algebraic topology that are used in chapters 2 and 3. By default allspaces are assumed to be pointed, having homotopy type of connected CW-complexes, with finitelymany cells in any given dimension. The base point is usually dropped from the notation.
References. For proofs of the basic facts we refer to the great J.P. May’s book [May99].The book on spectral sequences is [McC01].

H.1 Hurewicz theorem
Everyone knows the Hurewicz theorem, but it is so important that we state it for the record.
Theorem H.1.1 (Hurewicz). There is a well-defined natural homomorphism

h : πnpXq Ñ rHnpXq pn ¥ 1q,
rfs ÞÑ f�rSns,

where f : Sn Ñ X is a map representing a class in πnpXq, the map f� : rHnpSnq Ñ rHnpXq is the inducedhomomorphism of homology groups, and rSns is the generator of rHnpSnq.
• If X is a connected space, then h : π1pXq Ñ rH1pXq is the abelianization homomorphism.
• If X is a pn � 1q-connected space for n ¥ 2, then h : πnpXq � rHnpXq is an isomorphism andh : πn�1pXq� rHn�1pXq is an epimorphism.
See [May99, §15.1] for this.
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H.2 Fibrations and cofibrations

Definition H.2.1. A map i : A ãÑ X is called a cofibration, if given map f : X Ñ Y (for any Y ) andh : A� I Ñ Y such that the following diagram commutes
A � � i0 //
_�

i
��

A� I
_�

i�1
��

h
||zzzzzzzz

Y
X � � i0 //

f ??������� X � I
rhbbD

D
D

D

then there exists a map rh : X � I Ñ Y .
Definition H.2.2. A map p : E � B is called a fibration, if given a map f : Y Ñ E and h : Y � I Ñ Bsuch that the following diagram commutes

Y f //
� _i0
��

E
p
����Y � I h //

rh <<z
z

z
z B

then there exists a map rh : Y � I Ñ E.Having in mind the adjunction HompY � I, Eq � HompY,EIq, we can draw a diagram
B oooo p0
OOOO

p
BI
OOOO

pI
>>h

~~~~~~~

Y
E oooo p0
��

f �������� EI  
rh@

@
@

@

which is dual to the definition of cofibration.
Proposition H.2.3. 1. Let i : A ãÑ X be a cofibration. Then its pushout is again a cofibration.

2. Let p : E � B be a fibration. Then its pullback is again a fibration.
BYA X

I

Xoo

Bi
OO

Aoo

i
OO A�B E

A

//

p
��

E
p
��A // B

(This is deduced from abstract nonsense.)
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Definition H.2.4. For a fixed topological space A, the category of spaces under A consists of mapsi : AÑ X, and the morphisms are commutative diagrams
Ai

��������� j
��???????

X f // Y
Proposition H.2.5. If in the diagram above i and j are cofibrations and f is a homotopy equivalence,then it is actually a cofiber homotopy equivalence, meaning that the homotopy is given by

h : X � I Ñ I,hpipaq, tq � jpaq for a P A.
Definition H.2.6. For a fixed topological space B, the category of spaces over B consists of mapsp : X Ñ B, and the morphisms are commutative diagrams

X f //

p
��??????? Y

q
���������

B
Proposition H.2.7. If in the diagram above p and q are fibrations and f is a homotopy equivalence,then it is actually a fiber homotopy equivalence.
Definition H.2.8. Recall that for any continuous map f : X Ñ Y we can take the associated cofibrationor fibration as follows. Consider the mapping cylinder Mf and mapping cocylinder Nf given by

Mf def� Y Yf pX � Iq
I

X � Ioo

Y
OO

Xfoo

OO Nf def� X �f PY //

p
��

A

PY
p
��X f // Y

Here by PY we denote the path space Y I , and p : PY Ñ Y is the path space fibration ω ÞÑ ωp0q. Nowf can be factorized as
X

f
""jcofibration// Mf r // Y X

f
""ν // Nf ρfibration// YHere r and ν are homotopy equivalences (with inverses given by i : Y ãÑ Mf and p : Nf Ñ Xrespectively).

rpyq def� y on Y,rpx, sq def� fpxq on X � I.
νpxq def� px, cfpxqq,where cfpxq is the constant path.
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j is a cofibration: jpxq def� px, 1q.ρ is a fibration: ρpx, ωq def� ωp1q.
Definition H.2.9. Given a map of pointed spaces f : X Ñ Y , its homotopy cofiber and homotopy fiberare given by

Cf def� Y Yf CX
I

CXoo

Y
OO

Xfoo

i
OO Ff def� X �f PY //

��

A

PY
p
��X f // Y

Here CX is the (reduced) cone over X:
CX def� X � I

t�u � I Y X � t1u .The morphism p : PY Ñ Y is again the path space fibration.
Proposition H.2.10. Let p : E Ñ B be a fibration, let � P B be the base-point of B and let F def� p�1p�qbe a fiber. Then one has a long exact sequence

� � � Ñ πnpFq i�ÝÑ πnpEq p�ÝÑ πnpBq BÝÑ πn�1pFq Ñ � � � Ñ π0pFq Ñ π0pEq Ñ 0We refer to [May99, §9.3].
H.3 Leray–Serre spectral sequence
We make a brief summary of the needed facts about spectral sequences. The reference for everythingis [McC01].Recall that a (first quadrant) homological spectral sequence is a family of objects Erp,q (whereErp,q � 0 unless p, q ¥ 0), coming with differentialsdrp,q : Erp,q Ñ Erp�r,q�r�1.

E0
•• E1

•• E2
•• E3

••such that dr � dr � 0. The object Er�1p,q is given by the homology of Er at Erp,q :
� � � Ñ Erp�r,q�r�1 drÝÑ Erp,q drÝÑ Erp�r,q�r�1 Ñ � � �

Er�1p,q � kerdrp,qimdrp�r,q�r�1 .
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E2
0,0

E2
0,1

E2
0,2

E2
1,0

E2
1,1

E2
1,2

E2
2,0

E2
2,1

E2
2,2

E2
3,0

E2
3,1

E2
3,2

E2
4,0

E2
4,1

E2
4,2

page 2

Dually, a cohomological spectral sequence is a family of objects Ep,qr (where Ep,qr � 0 unlessp, q ¥ 0), coming with differentials dp,qr : Ep,qr Ñ Ep�r,q�r�1r .

E••0 E••1 E••2 E••3

� � � Ñ Ep�r,q�r�1r drÝÑ Ep,qr drÝÑ Ep�r,q�r�1r Ñ � � �

Ep,qr�1 � kerdp,qrimdp�r,q�r�1r .
Suppose F ãÑ E pÝÑ B is a fibration, where B is path connected and F is connected.

Theorem H.3.1 (The homology Leray–Serre spectral sequence). Let G be an abelian group. Thereis a first quadrant spectral sequenceE2p,q � HppB; HqpF ;Gqq ñ Hp�qpE;Gq.
Theorem H.3.2 (The cohomology Leray–Serre spectral sequence). Let R be a commutative ring.There is a first quadrant spectral sequence of algebrasEp,q2 � HppB; HqpF ;Rqq ñ Hp�qpE;Rq.The differentials satisfy the Leibniz rule:

u �2 v � p�1qp1q u! v for u P Ep,q2 , v P Ep1,q12 .For both theorems see [McC01, §5.1].
From the Serre spectral sequence one can deduce the following [McC01, Example 5.D]:

Proposition H.3.3 (Serre exact sequence). Let F ãÑ E Ñ B be a fibration with B simply connected.Suppose that HipBq � 0 for 0   i   p and HjpFq � 0 for 0   j   q. There is an exact sequenceHp�q�1pFq Ñ Hp�q�1pEq Ñ Hp�q�1pBq Ñ Hp�q�2pFq Ñ � � � Ñ H1pEq Ñ 0
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Example H.3.4. Let ιn P HnpKpQ, nq;Qq denote the “fundamental class” represented by the identitymap KpQ, nq Ñ KpQ, nq.The cohomology algebra HpKpQ, nq;Qq is the exterior algebra on ιn if n is odd, and the polyno-mial algebra on ιn if n is even.
For n � 1 we have KpZ, 1q � S1, and the statement is trivial.
For n � 2 a model for KpZ, 2q is the infinite-dimensional complex projective space CP8, and thecohomology ring HpCP8,Zq is known to be isomorphic to Zrι2s (see [Hat02, Theorem 3.19] and [May99,Chapter 23]).We proceed by induction on n using the Serre spectral sequence for the path space fibrationKpQ, nq Ñ PKpQ, n � 1q Ñ KpQ, n � 1q.

Ep,q2 � HppKpQ, n � 1q; HqpKpQ, nq;Qqq ñ Hp�qpPKpQ, n � 1q;Qq.
0 Ñ Ep,q2 Ñ Ep�2,q�12 Ñ Ep�4,q�22 Ñ � � � Ñ Ep�2k,q�k2 Ñ 0ιn transgresses via dn�1 to ιn�1.

If n is odd, then the Leibniz rule implies that
dn�1pιqn�1 ιnq � ιq�1n�1,and the spectral sequence is concentrated in 0-th and n-th rows (the picture shows n � 3).

If n is even, then the Leibniz rule implies thatdn�1pιqnq � q ιn�1 ιq�1n ,and the spectral sequence is concentrated in 0-th and pn � 1q-st columns (the picture shows n � 2).

page 3 page 2

N

Example H.3.5. Let us compute the cohomology of SUn. It naturally acts on Cn. The action restrictsto a transitive action on the unit sphere S2n�1 � Cn. The stabilizer of a point p0, . . . , 0, 1q P S2n�1 canbe identified with SUn�1, hence SUn{SUn�1 � S2n�1, and this gives a fibrationSUn�1 ãÑ SUn Ñ S2n�1.We know that SU2 � S3, hence the cohomology ring is HpSUn;Qq � Λpx3q, the free exterior algebraon one element of degree three. In generalHpSUnq � Λpx3, x5, . . . , x2n�1q.This is obtained by induction using the Leray–Serre spectral sequence—cf. [McC01, Example 5.F].
N
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H.4 Acyclic maps
Recall that a space X is called acyclic if rHpXq � 0. One has the following result [Spa66, 7.5.5]:
Fact H.4.1 (Whitehead theorem). A space X is contractible if and only if X is acyclic and it hastrivial fundamental group π1pXq � 0.If we drop the assumption that π1pXq � 0, then an acyclic space X is not necessarily contractible,but we can extract some information about π1pXq.
Proposition H.4.2. Suppose X is acyclic. Let π def� π1pXq. Then H1pπ,Zq � H2pπ,Zq � 0.Proof. Consider the classifying space Bπ and the fibration

rX Ñ X Ñ Bπ,
where rX denotes the universal covering space of X.We have the Leray–Serre spectral sequence

E2p,q � HppBπ,HqprXqq ñ Hp�qpXq.There is a short exact sequence
0 Ñ E80,1 Ñ H1pXq Ñ E81,0 Ñ 0

Observe that E81,0 � E21,0, since for r ¥ 2 there are no nonzero differentials involving E21,0.The only nonzero differential involving Er0,1 or Er2,0 is the knight move d2 : Er2,0 Ñ E20,1.We have a short exact sequence
0 Ñ E82,0 Ñ E22,0 d2ÝÑ E20,1 Ñ E80,1 Ñ 0

Putting all together, we have
0 Ñ H2pXq Ñ H2pBπ,H0prXqq Ñ H0pBπ,H1prXqq Ñ H1pXq Ñ H1pBπ,H0prXqq Ñ 0

Because of the assumption that X is acyclic, H2pXq � H1pXq � 0. Since rX is contractible, H1prXq � 0.
H2pπ,Zq � H2pBπ,H0prXqq,H1pπ,Zq � H1pBπ,H0prXqq.So the last exact sequence implies H1pπ,Zq � H2pπ,Zq � 0. �We will be interested in acyclic maps.

Definition H.4.3. A map f : X Ñ Y is called acyclic if its homotopy fiber Ff is acyclic, i.e. rHpFf q � 0.
Proposition H.4.4. Consider a pullback

X0 �Y X1 f1 //

f0
��

A

X0
f0
��X1 f1 // Y

Assume f0 or f1 is a fibration. Then fi is acyclic if and only if f i is acyclic.
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Proof. Consider a commutative cube
Ff1

%%KKKKKKKKKKK

��

FPpf1q // Ff0

��

""DDDDDDDD

X0 �Y X1 f1 //

��

X0

f0
��

PpX1q
πX1 %%KKKKKKKKKK Ppf1q // PpYq

πY
""DDDDDDDDD

X1 f1 // Y
πY is a fibration. πX1 is a fibration and f1 is a fibration, hence f1 �πX1 is a fibration as well. Ppf1q is ahomotopy equivalence (hence a homotopy equivalence over Y ), and FPpf1q is a homotopy equivalenceas well. �

Corollary H.4.5. Consider a commutative diagram
E f //

p
��??????? E1

p1��~~~~~~~

Bf is acyclic if and only if the induced map Fpfq : Fp Ñ Fp1 is acyclic.
Proof. Consider the cube

Fp Fpfq
  A

A
A

A

��

// PpBq

��

FFFFFFFF

FFFFFFFF

Fp1 //

��

PpBq
πB
��

E
f !!CCCCCCCC p // B

HHHHHHHHHH

HHHHHHHHHH

E1 p1 // B
Observe that the left side of the cube is a pullback square:

Fp def� E �B PpBq � pPpBq �B E1q �E1 E � Fp1 �E1 E.
Fp Fpfq //
��

A

Fp1
��E f // E1

Now Fpfq is acyclic if and only if f is acyclic. �
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The following is dual to proposition H.4.4:
Proposition H.4.6. Consider a pushout

Y0 YX Y1
I

Y0f1oo

Y1
f0
OO

Xf1oo

f0
OO

Assume f1 is a cofibration. Then fi is acyclic if and only if f i is acyclic.Here is a characterization of acyclic maps.
Proposition H.4.7. The following are equivalent.

(1) f : X Ñ Y is acyclic.
(2) For rY the universal covering space of Y the induced map f : X �Y rY Ñ rY

X �Y rY f //

��

A

rY
��X f // Y

gives an isomorphism f� : HpX �Y rYq Ñ HprYq.
(3) There is an isomorphism between homology groups with local coefficients

f� : HpX; f�Zrπ1pYqsq Ñ HpY ; tZrπ1pYqsuq.
(4) For any local coefficient system G of abelian groups on Y

f� : HpX; f�Gq Ñ HpY ; Gq
is an isomorphism.

Proof. For p1q ñ p2q, let Ff be the homotopy fiber of f : X Ñ Y . Then we have a homotopy fibration
Ff Ñ X �Y rY π

rYÝÑ rY
Applying the Serre spectral sequence

HpprY ; HqpFf qq ñ Hp�qpX �Y rYq,we see that if f is acyclic, then HpFf q � 0, and we get an isomorphism
HpX �Y rYq �ÝÑ HprYq.Conversely, p2q ñ p1q: if we have an isomorphism as above, then we can show that HqpFf q � 0. Useinduction on q. Assume it is true for q   n for some n ¥ 2. Then the spectral sequence gives an exactsequence Hn�1pX �Y rYq �ÝÑ Hn�1prYq Ñ HnpFf q Ñ HnpX �Y rYq �ÝÑ HnprYq Ñ 0
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so we should have HnpFf q � 0.
Next to get p3q ô p2q, observe that we have a local coefficient system Zrπ1pYqs and

HprYq � HpY ;Zrπ1pYqsq.
Now HpX �Y rYq � HpZrrXs bZπ1pXq Zrπ1pYqsq � HpX; f�Zrπ1pYqsq.Hence f is acyclic if and only if it induces an isomorphism

HpX; f�Zrπ1pYqsq � HpY ;Zrπ1pYqsq.
We have trivially p4q ñ p3q. We get the less trivial implication p1q ñ p4q. For the fibration Ff iÝÑ X fÝÑ Yconsider the Serre spectral sequence with local coefficients:

HppY ;HqpFf ; i�f�Gqq ñ Hp�qpX; f�Gq.
But i�f�G is a trivial local coefficient system, so if we assume that rHpFf q � 0, then the edgehomomorphism gives the desired isomorphism

HpX; f�Gq � HpY ; Gq.
�

Proposition H.4.8. If f : X Ñ Y is acyclic and f� : π1pXq Ñ π1pYq is an isomorphism, then f is ahomotopy equivalence.Proof. Consider the fibration long exact sequence
� � � Ñ πnpFf q Ñ πnpXq f�ÝÑ πnpYq Ñ πn�1pFf q Ñ � � � Ñ π1pFf q f�ÝÑ π1pXq Ñ π1pYq Ñ π0pFf q

We know that Ff is acyclic, so rHpFf q � 0. However, we should also have π1pFf q � 0, so Ff iscontractible (by the Whitehead theorem), and we have isomorphisms f� : πnpXq �ÝÑ πnpYq for all n.This means that f is a homotopy equivalence (Whitehead). �
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Appendix Q

Quillen’s Q -construction

Apart from the plus-construction (chapter 2), there is another definition of higher K-groups, which ismore natural and general, and often more useful for proofs. K-groups may be defined for a category
C , e.g. the category R-Proj fg of finitely generated projective R-modules. As in the plus-construction, theidea is to take homotopy groups of the classifying space, this time of a category. To obtain somethinginteresting, instead of taking the initial category C , one uses a modified category QC—the same way as inthe plus-construction one takes BGLpRq� instead of BGLpRq. This is called Quillen’s Q -construction.In order to define classifying spaces, first we review simplicial sets and their geometric realization.Then we review some results from [Qui73b] and prove one of them, namely π1pBQC , 0q � K0pC q, justto get some feeling of the Q -construction.
References. The review of simplicial sets and their geometric realization follows [May67] and [Wei94, Chapter 8].Definitions regarding classifying spaces of categories can be found in [Seg68]; what we call a “simplicial set” is a“semi-simplicial set” in the old terminology.The main reference for the Q -construction is Quillen’s paper [Qui73b]. The book [Sri96] has some details andbackground which may be useful to understand original Quillen’s texts.A definition of quotient category is from [Gab62], and a modern treatment can be found in [BK00, Chapter 6].
Q.1 K0 of a category
In everything what follows, we will need to make sure that the classes under consideration form sets:
Definition Q.1.1. Let C be a category such that the isomorphism classes of its objects (the skeletonof C ) form a set. We say in this case that C is skeletally small.Following Grothendieck (cf. [BS58, §4]), K0 can be defined for any skeletally small category C inwhich the notion of short exact sequence makes sense. For this it is enough to assume that C is anadditive category which lies in some ambient abelian category A .
Definition Q.1.2. Let C be an additive category embedded as a full additive subcategory in some abeliancategory A . Suppose that C is closed under extensions in A . That is, whenever in A there is an exactsequence 0 Ñ AÑ BÑ C Ñ 0with A and C isomorphic to objects of C , then also B is isomorphic to an object of C . We say in thiscase that C is an exact category.A sequence 0 Ñ AÑ BÑ C Ñ 0 in C is called short exact if it is short exact in the ambient abeliancategory A .
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Example Q.1.3. Consider the category R-Proj fg of finitely generated projective R-modules. It is a fullsubcategory of the abelian category of R-modules R-Mod , closed under extensions.The short exact sequences in R-Proj fg are the sequences that are split in R-Mod :
0 Ñ P Ñ P `Q Ñ Q Ñ 0

NNow the general definition of K0 is the following:
Definition Q.1.4. Let C be a skeletally small exact category. The group K0pC q is the abelian groupfreely generated by isomorphism classes of objects in C modulo relations

rBs � rAs � rCs for any short exact sequence 0 Ñ AÑ BÑ C Ñ 0
Example Q.1.5. For C � R-Proj fg any short exact sequence is split, so K0pR-Proj fgq is the same asK0pRq defined in section 1.1. N

Example Q.1.6. Grothendieck had in mind a generalization of the Riemann–Roch theorem, and thecategory C being VBpXq, vector bundles on a scheme X (that is, locally free sheaves of OX-modules offinite rank). Since in this text we are interested only in Spec OF , we do not deal with general K-theoryof schemes. N

Q.2 Simplicial sets and their geometric realization
Definition Q.2.1. The category of simpleces ∆ is given by the following data.

• The objects are finite ordered sets n def� t0   1   � � �   nu.• The morphisms f : mÑ n are non-decreasing monotone maps; that is, fpiq ¤ fpjq for i ¤ j .One counts that in category ∆ there are �m�n�1m�1 � morphisms mÑ n.
Definition Q.2.2. Let C be a category. A simplicial object in C is a presheaf with values in C on thecategory of simpleces. In other words, a simplicial object is a contravariant functor F : ∆op Ñ C . Amorphism of simplicial objects is a natural transformation of functors. So the category of simplicialobjects in C is the functor category C ∆op .In particular, a simplicial set is a simplicial object in the category of sets. A simplicial space is asimplicial object in the category of topological spaces.
Example Q.2.3. The standard n-simplex is a simplicial set ∆rns, which is defined as a contravariantfunctor Hom∆p�, nq : ∆op Ñ Set :`ù Hom∆p`, nq � tnon-decreasing maps ` Ñ nu.On an arrow ` Ñm the corresponding map of sets Hom∆pm,nq Ñ Hom∆p`, nq is defined as usual:

`
��

rf
��?

?
?

?

m f // n
Note that by Yoneda lemma, for a simplicial set F : ∆op Ñ Set we have a natural isomorphism

Fpnq � HomC ∆op p∆rns, Fq.
N
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There is also another description of simplicial sets by “generators and relations”. For each n onecan define the face maps

εi : n � 1 ãÑ n = the injection missing i,
εipjq def�

" j, if j   i,j � 1, if j ¥ i;and degeneracy maps

ηi : n � 1� n = the projection mapping two elements to i,
ηipjq def�

" j, if j ¤ i,j � 1, if j ¡ i.One has the following “simplicial identities”:
εj � εi � εi � εj�1, if i   j,ηj � ηi � ηi � ηj�1, if i ¤ j,
ηj � εi �

$&% εi � ηj�1, if i   j,id, if i � j or i � j � 1,εi�1 � ηj , if i ¡ j � 1.
Example Q.2.4. The names “face map” and “degeneracy map” come from the usual simpleces ingeometry. The standard geometric n-simplex is the set

∆n def� tpt0, . . . , tnq P Rn |¸ ti � 1, 0 ¤ ti ¤ 1u.Then one has obvious maps of face inclusion, and degeneration sending the vertices to the verticesan pn � 1q-simplex:

0 2

1

3

0

1

2
ε0 η2

0

1

2

0

1

2

0

1

2

3

0

1

2

NEvery morphism f : mÑ n has a unique epi-monic factorization
p
�� ε

��>>>>>>>

m f //

η ?? ??�������� n
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Where η and ε are factorized uniquely as
η � ηi1 � � � ηis , 0 ¤ i1   � � �   it  m,ε � εj1 � � � εjt , 0 ¤ jt   � � �   j1 ¤ n.

Indeed, let i1   � � �   is be the elements of m such that fpiq � fpi � 1q and let jt   � � �   j1 be theelements in n that are not in the image of f . Then for p � m � s � n � t we have the factorization asabove.It follows that for a simplicial object F : ∆op Ñ C , it is enough to give the values of F on the objects0, 1, 2, . . . P Obp∆q and the values of F on arrows εi and ηi. If we denote Bi def� Fpεiq and σi def� Fpηiq,then we get the following equivalent definition of a simplicial set.
Definition Q.2.5. A simplicial object F in a category C is given by a sequence of objects

F0, F1, F2, . . . P ObpC q
together with face operators Bi : Fn Ñ Fn�1 and degeneracy operators σi : Fn Ñ Fn�1 for i � 1, . . . , n,satisfying the following relations:

Bi � Bj � Bj�1 � Bi if i   j,σi � σj � σj�1 � σi if i ¤ j,
Bi � σj �

$&% σj�1 � Bi, if i   j,id, if i � j or i � j � 1,σj � Bi�1, if i ¡ j � 1.
Now from a simplicial set X : ∆op Ñ Set one can build a CW-complex |X| as follows.

Definition Q.2.6. Let X be a simplicial set given by a sequence of sets X0, X1, X2, . . . together withoperators Bi : Xn Ñ Xn�1 and σi : Xn Ñ Xn�1 as above.The geometric realization of X is given by
|X| def�

�º
n¥0Xn �∆n�O� .

Here ∆n � Rn�1 is the geometric n-simplex, and Xn � ∆n is the disjoint union of copies of ∆nindexed by the elements of Xn.The equivalence relation � is defined as follows. For any map f : m Ñ n look at the induced mapsf� : Xn Ñ Xm (keep in mind that the functor is contravariant). Further, there are continuous mapsf� : ∆m Ñ ∆n between geometric simpleces. We define them on vertices v0, . . . , vm by vi ÞÑ vfpiq, andthen by linearity this can be defined on all the faces of ∆m. We identify for each x P Xn and s P ∆m
pf�pxq, sq � px, f�psqq.Now |X| has a CW-complex structure, where the n-cells are given by elements x P Xn that are

nondegenerate, i.e. not of the form σipyq for some y P Xn�1.
Geometric realization enjoys certain properties one would expect from it:
• | � | is a functor Set ∆op Ñ Top. A morphism of simplicial sets f : X Ñ Y induces a continuous map
|X| Ñ |Y |. Indeed, f is a natural transformation of contravariant functors X ñ Y : ∆op Ñ Set :
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n Xn
��

fn // Yn
��m

OO

Xm fm // Ym
And we can define a map

Xn �∆n Ñ Yn �∆n,
px, sq ÞÑ pfnpxq, sq.

• If X and Y are simplicial sets, then one can form a simplicial set X�Y with simpleces Xn�Yn andthe obvious maps. If |X�Y | is a CW-complex, then the natural continuous map |X�Y | Ñ |X|�|Y |is a homeomorphism [May67, Theorem 14.3]. This happens e.g. when X and Y are countable, orwhen either |X| or |Y | is locally finite.
We refer to [May67, Chapter III] for proofs and further properties. Probably the most importantfact, explaining the point of geometric realization, is the following.

Fact Q.2.7. Let Y P ObpTopq be a topological space. The singular complex for Y is a simplicial setSY : ∆op Ñ Set , given by
nù HomTopp∆n, Yq � tcontinuous maps from the standard geometric n-simplex to Yu.

Then the geometric realization functor | � | : Set ∆op Ñ Top is left adjoint to the singular functorS : Top Ñ Set ∆op : HomTopp|X|, Yq � HomSet ∆op pX,SYq.
The adjunction maps are the ones that come first to mind:

X ÞÑ S|X|,Xn Q x ÞÑ p∆n s ÞÑpx,sqÝÝÝÝÝÑ Xn �∆n �ÝÑ |X|q P S|X|n;
|SY | ÞÑ Y,SYn �∆n Q py, sq ÞÑ ypsq P Y.

Example Q.2.8. For a group G consider a simplicial set BG given by a sequence of sets BG0 def� 1,BG1 def� G, BG2 def� G �G, BG3 def� G �G �G, . . . Define the face and degeneracy operators by
Bipg1, . . . , gnq def�

$&% pg2, . . . , gnq, if i � 0,
pg1, . . . , gigi�1, . . . , gnq, if 0   i   n,
pg1, . . . , gn�1q, if i � n;σipg1, . . . , gnq def� pg1, . . . , gi, 1, gi�1, . . . , gnq.

The geometric realization |BG| is an Eilenberg–Mac Lane space KpG, 1q. See e.g. [May99, §16.5]. N
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Q.3 Classifying space of a category
Similarly to the last example, one can start from a small category C and then build a CW-complex BCwhich is called its classifying space. It enjoys some expected properties, e.g. equivalent categorieshave homotopy equivalent classifying spaces.
Definition Q.3.1. Let C be a small category. The nerve of C , denoted by NC , is a simplicial setconstructed as follows. Consider a sequence NC0, NC1, NC2, . . ., were NCn is the set of diagrams of nconsecutive morphisms

NCn def� tA0 f1ÝÑ A1 f2ÝÑ A2 f3ÝÑ � � � fnÝÑ An | Ai P ObpC qu.
Face and degeneracy operators are given by composition and by insertion of the identity morphism:

BipA0 Ñ A1 Ñ � � � Ñ Anq def� A0 Ñ A1 Ñ � � � Ñ Ai�1 fi�1�fiÝÝÝÝÑ Ai�1 Ñ � � � Ñ An.
σipA0 Ñ A1 Ñ � � � Ñ Anq def� A0 Ñ A1 Ñ � � � Ñ Ai�1 fiÝÑ Ai idÝÑ Ai fi�1ÝÝÑ Ai�1 Ñ � � � Ñ An.Now the classifying space of C is the geometric realization of the nerve:

BC def� |NC |.
It is clear that a functor between two small categories C Ñ D induces a map between nervesNC Ñ ND , and hence a continuous map BC Ñ BD .For the product of categories C � D one has a homeomorphism BpC � Dq � BC � BD underassumption that BpC �Dq is a CW-complex (cf. [May67, Theorem 14.3]).

Example Q.3.2. A group G can be viewed as a category G with one object � and all arrows HomG p�, �qbeing isomorphisms. The arrows correspond to the elements of G and the composition correspondsto multiplication. In this case definition Q.3.1 gives the same as example Q.2.8, i.e. BG � BG . NAn important property is the following.
Proposition Q.3.3. Let F,G : C Ñ D be functors between small categories, such that there is anatural transformation η : F ñ G. Then the induced maps BF,BG : BC Ñ BD are homotopic.Proof. A natural transformation corresponds to a functor H : C � I Ñ D , where I is the ordered set
t0   1u regarded as a category:

0 //:: 1 ddThe correspondence is the following:
η : F ñ G Ø H : C � I Ñ D,FpXq � HpX, 0q,GpXq � HpX, 1q,ηX � HpidX, 0 Ñ 1q.

Now H induces a continuous map BH : BC � BI Ñ BD . The space BI � r0, 1s is the unit interval,hence BH gives a homotopy between BF and BG. �

Corollary Q.3.4. Let F : C Ñ D be a functor between small categories. If F has a left adjoint orright adjoint, then BF is a homotopy equivalence.In particular, if C and D are equivalent categories, then there is a homotopy equivalence ofspaces BC � BD .
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Example Q.3.5. Consider a small category C and the category � having one object � and one identitymorphism � Ñ �. There exists a unique functor F : C Ñ �.
• If C has an initial object I P ObpC q, then the functor �ù I is left adjoint to F :

HomC pI, Xq � Hom�p�, �q.
• If C has a terminal object T P ObpC q, then the functor �ù T is right adjoint to F :

Hom�p�, �q � HomC pX,Tq.
This means that a small category having either initial or terminal object is contractible, i.e. itsclassifying space is homotopy equivalent to a point. N

Q.4 Coverings
We are going to look at the fundamental group π1pBC q of the classifying space of a category C , andto study it, we need a notion of covering in the simplicial setting. For the usual theory of coverings oftopological spaces and groupoids see [May99, Chapter 3].
Definition Q.4.1. A morphism of simplicial sets p : E Ñ X is called a covering of X if for any commu-tative diagram as below in the category of simplicial sets (where ∆rns is the standard n-simplex) thereis a unique morphism ∆rns Ñ E making the diagram commute:

∆r0s //

��

E
p
��∆rns //

==|
|

|
| XAll coverings of a simplicial set X form a category Cov{X, where the morphisms are given bycommutative diagrams

E f //

p
��??????? E1

p1~~~~~~~~~

XAs one can guess, the main point of this definition is the following [GZ67, Appendix I, §3.2]:
Fact Q.4.2. The geometric realization p : |E| Ñ |X| of a simplicial covering p : E Ñ X is a usualcovering of a topological space.The following characterization of coverings of BC will be useful [Qui73b, Proposition 1]:
Theorem Q.4.3. Let C be a small category. The category Cov{BC of coverings over the classifyingspace of C is equivalent to the category of morphism-inverting functors F : C Ñ Set , i.e. functorstaking each arrow AÑ A1 to a bijection of sets FpAq Ñ FpA1q.In one direction, if we have a covering p : E Ñ BC , then for an object A P ObpC q, which can beviewed as a point in BC , we consider its fiber EpAq def� p�1pAq. A morphism f : AÑ A1 in C determinesa path Bf : AÑ A1 in BC .Fix a point y P EpAq. Then by the unique path lifting property (see e.g. [May99, §3.2]) we have acorresponding path �Bf in E starting in y and ending at a point y1 P EpA1q. This gives a bijection

115



pBfq� : EpAq Ñ EpA1q,y ÞÑ y1.

Bf

B̃f

A A′

y y′

E(A) E(A′)

BC

E

Hence each covering p : E Ñ BC defines a morphism-inverting functor Fp : C Ñ Set :
A ù EpAq,A fÝÑ A1 ù EpAq pBfq�ÝÝÝÑ EpA1q.

Now assume we are given a morphism-inverting functor F : C Ñ Set . We need to construct acovering from F . Let FzC denote the category of pairs pA, xq where A P ObpC q and x P FpAq, and amorphism pA, xq Ñ pA1, x1q is an arrow f : AÑ A1 in C such that Fpfq maps x to x1.
Fpfq : FpAq Ñ FpA1q,x ÞÑ x1.

The forgetful functor FzC Ñ C induces a map of classifying spaces p : BpFzC q Ñ BC . For A P ObpC qthe fiber of this map over A is FpAq. We claim that p : BpFzC q Ñ BC is a covering. For this recall thatthis map comes from the corresponding morphism of nerves NpFzC q Ñ NC . In the view of fact Q.4.2,it is enough to check that NpFzC q Ñ NC is a simplicial covering in the sense of definition Q.4.1. Namely,we should check that for each commutative diagram
∆r0s σ0 //
i
��

NpFzC q
��∆rns σ //

rσ ::u
u

u
u

u
C

there exists a unique arrow rσ : ∆rns Ñ NpFzC q making all commute.This amounts to checking that if we are given an n-simplex σ P NnC and σ0 P N0pFzC q is a simplexlying over the i-th vertex of σ , then there is a unique simplex rσ P NnpFzC q lying over σ and having σ0as its i-th vertex.
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σ̃

σ

σ0

σ P NnC is given by a diagram in C

σ : A0 Ñ A1 Ñ � � � Ñ Ai Ñ � � � Ñ An.
The i-th vertex of σ is the object Ai P ObpC q. Over Ai in N0pFzC q lie all pairs pAi, xiq with xi P FpAiq.The functor F maps the diagram above to a chain of bijections (we assumed that F is morphism-inverting) FpA0q Ø FpA1q Ø � � � Ø FpAiq Ø � � � Ø FpAnq.Hence if we specify xi P FpAiq, the bijections determine uniquely elements x0 P FpA0q, x1 P FpA1q,. . ., xn P FpAnq, and the simplex σ lifts uniquely to rσ given by

rσ : pA0, x0q Ñ pA1, x1q Ñ � � � Ñ pAi, xiq Ñ � � � Ñ pAn, xnq.
This finishes our check that NpFzC q Ñ C is a simplicial covering, hence BpFzC q Ñ BC is a covering.
It is immediate that the two constructions provide an equivalence of categories

Cov{BC � morphism-inverting functors F Ñ Cp : E Ñ BC ù Fp,BpFzC q Ñ BC ø F.
Q.5 Exact categories
Let C be an exact category (definition Q.1.2). Let us write down some properties of C that also give anaxiomatic definition of “exactness”. Let E denote the class of sequences in C

0 Ñ A iÝÑ B pÝÑ C Ñ 0 (Q.1)
which are exact in A . If a morphism i : A Ñ B in C occurs as a morphism in a short exact sequence(Q.1), then we say that it is an admissible monomorphism. We write in this case “A � B”. If amorphism p : BÑ C in C occurs as a morphism in a short exact sequence (Q.1), then we say that it isan admissible epimorphism. We write in this case “B� C”.
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The class E satisfies the following properties:
a) Any exact sequence in C which is isomorphic to a sequence in E , is in E .For any A,C P ObpC q the “split exact” sequence

0 Ñ A pid,0qÝÝÝÑ A` B pr2ÝÝÑ BÑ 0
is in E . For any sequence (Q.1) in E one has i � kerp and p � coker i in the additive category C .b) The class of admissible epimorphisms is closed under composition and pullbacks (base change)and the class of admissible monomorphisms is closed under composition and pushouts (cobasechange):

B1 //

p
����

A

B
p
����C1 // C

B1
I

Boo

A1OO
i
OO

Aoo
OO
i
OO

c) Let B Ñ C be a map possessing a kernel in C . Suppose there exists a map B1 Ñ B in C suchthat the composition B1 Ñ B Ñ C is an admissible epimorphism. Then B Ñ C is an admissibleepimorphism.Let A Ñ B be a map possessing a cokernel in C . Suppose there exists a map B Ñ B1 in C suchthat AÑ BÑ B1 is an admissible monomorphism. Then AÑ B is an admissible monomorphism.
All these properties follow easily from our assumptions on C . For instance, for b) let B � C bean admissible epimorphism. Let C1 Ñ C be any morphism. We can take the pullback of B � C overC1 Ñ C in the category A .

0 // A // B // C // 0
0 // A // B1 //

OO

G C1 //

OO

0But C is closed under extensions, so B1 is isomorphic to an object of C . Hence B1 Ñ C1 is anadmissible epimorphism.
Definition Q.5.1 (Quillen). An exact category C is an additive category C with a family E of sequencesof the form (Q.1), called the short exact sequences in C , such that the properties a), b), c) hold.A functor F : C Ñ C 1 between exact categories is called exact if it carries each short exact sequencein C to a short exact sequence in C 1:

0 Ñ AÑ BÑ C Ñ 0 ù 0 Ñ FpAq Ñ FpBq Ñ FpCq Ñ 0
Remark Q.5.2. Just to prevent confusion, this is not the same as “exact categories” in the sense of Barr [Bar71].

Given any exact category C defined axiomatically as above, one can embed it in the category A ofadditive left exact contravariant functors F : C op Ñ Ab . I.e. A consists of contravariant functors F thattake a short exact sequence 0 Ñ AÑ BÑ C Ñ 0 in C to an exact sequence of abelian groups
0 Ñ FpCq Ñ FpBq Ñ FpAq
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The category A is abelian, and C ãÑ A is given by Yoneda:
h : C ãÑ A ,Cù HomC p�, Cq.

This embeds C as a full abelian subcategory of A closed under extensions. A sequence
0 Ñ AÑ BÑ C Ñ 0

is in E if and only if h carries it to an exact sequence in A .
Q.6 The category QC
Now for an exact category C we define a category QC as follows.The objects in QC are the same as in C , but a morphism X Ñ Y is a diagram of the form

V
������� ��

��???
0 // V 1 // V // // X // 0

X Y 0 // V // // Y // Y 1 // 0
where V � X is an admissible epimorphism in C and V � Y is an admissible monomorphism in C .Moreover, we take isomorphism classes of such diagrams: we identify two morphisms as above ifthere is an isomorphism V �ÝÑ V 1 making the diagram commute:

V
~~~~}}}}   

  AAAA

�

��

X Y
V 1

````AAA >>
>>}}}

We assume that such isomorphism classes of diagrams form a set, so that QC is a small category.The composition of two such morphisms in QC is defined by taking a bicartesian square
V �Y W

zzzzttttt %%
%%KKKKK

V
����~~~

%%

%%JJJJJJ W
yyyyssssss   

  BBBB

X Y Z
This indeed exists in C , since C is closed under extensions, and we have a short exact sequence

0 Ñ kerp Ñ V �Y W pÝÑ V Ñ 0
Observe now that kerpV �Y W pÝÑ Vq � kerpW pÝÑ Yq.The associativity of composition is verified by the universal property of pullbacks. Finally, one cancheck that the composition depends only on isomorphism classes of diagrams.
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Definition Q.6.1. Let i : A� B be an admissible monomorphism in C . This gives a morphism i! : AÑ Bin QC represented by a diagram Aid
������� �� i

��???

A BAll morphisms of the form i! are called injective. Similarly, if p : B� C is an admissible epimorphismin C , then we define a morphism p! : C Ñ B in QC :
Bp

����~~~ �� id
��???

C B
All morphisms of the form p! are called surjective.
Remark Q.6.2. To prevent confusion, the terms “injective” and “surjective” do not imply “monomorphism in QC ”and “epimorphism in QC ”.

By definition, every morphism f : X Ñ Y in QC factors uniquely (up to a unique isomorphism) intoa surjection and injection i! � p!: Vid
����� id

��???

Vp
����~~~ id

��??? Vid
����� �� i

��???

X V YOn the other hand, there is also a unique factorization (up to a unique isomorphism) into an injectionand surjection p! � i! given by a bicartesian square
Vp

zzzzvvvvvv $$ i
$$HHHHHH

Xid
������

## i
##HHHHH Yp

{{{{vvvvv id
��????

X X �V Y Y
The operations i ÞÑ i! and p ÞÑ p! have the following properties:

a) If i and j are composable admissible monomorphisms, then
A i B j C
pj � iq! � j! � i!

Aid
����� �� i

��???

Aid
����� �� i

��??? Bid
����� �� j

��@@@

A B C
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Dually, if p and q are composable admissible epimorphisms, then
pp � qq! � q! � p!.

Also one has
pidAq! � pidAq! � idA.

b) Suppose one has a bicartesian square
Z

I

Ypoooo

XOO
i
OO

VOO
i
OO

poooo
I

where i and i are admissible monomorphisms, p and p are admissible epimorphisms. Then
i! � p! � p! � i!.

Vid
����� id

��???

Vp
����~~~ id

��??? Vid
����� �� i

��???

X V Y

Vp
����~~~ �� i

��???

Xid
��~~~ �� i

��@@@ Yp
������� id

��???

X Z Y
This leads to a certain characterization of the category QC :

Proposition Q.6.3. Let C be an exact category and let D be a category. Assume that the followingdata is given:
• for each object A P ObpC q, an object FpAq P ObpDq,
• for each admissible monomorphism i : A� B in C , a morphism i!! : FpAq Ñ FpBq in D ,
• for each admissible epimorphism p : B� C in C , a morphism p!! : FpCq Ñ FpBq.

C Ñ D,A ù FpAq,
pi : A� Bq ù pi!! : FpAq Ñ FpBqq,
pp : B� Cq ù pp!! : FpCq Ñ FpBqq,

Further, require that properties a) and b) as above hold for the arrows i!! and p!! in D , that is,
a) for admissible monomorphisms pj�iq!! � j!!�i!! and for admissible epimorphisms pp�qq!! � q!!�p!!,whenever the compositions make sense.
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b) suppose one has a bicartesian square
Z

I

Ypoooo

XOO
i
OO

VOO
i
OO

poooo
I

where i and i are admissible monomorphisms, p and p are admissible epimorphisms. Then
i!! � p!! � p!! � i!!.

This data uniquely defines a functor F : QC Ñ D .
Proof. The functor F on the arrows of QC is given by

Vp
����~~~ �� i

��???

X Y ù i!! � p!!

We need to check that this depends only on the equivalence class of the diagram. Suppose we haveanother diagram, which is equivalent to the above via an isomorphism φ : V Ñ V 1.
Vp

~~~~}}}}   i
  AAAA

�φ
��

X Y
V 1p1````AAA >> i1>>}}}

We have p � p1 � φ and i � i1 � φ. Since φ can be viewed as both admissible monomorphism andadmissible epimorphism, this gives
p!! � φ!! � pp1q!!, i!! � i1!! � φ!!.

From a bicartesian square
V 1

I

V 1idoooo

V 1OO
id
OO

VOO
φOO

φoooo
I

we deduce φ!! � φ!! � id!!V 1 � pidV 1q!! � idFpV 1q.And therefore i1!! � pp1q!! � i1!! � φ!! � φ!!loomoonid
�pp1q!! � i!! � p!!.
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Further, we need to check that the definition of functor respects composition in QC . A compositionis represented by a bicartesian square
V �Y Wq

zzzzttttt %% i
%%KKKKK

SVp
����~~~

%% i
%%JJJJJJ Wq
yyyyssssss   j

  BBBB

X Y Z
From which

pj � iq!! � pp � qq!! � j!! � i!! � q!! � p!! � pj!! � q!!q � pi!! � p!!q.
�In particular, an exact functor F : C Ñ C 1 between exact categories induces a functor

QC Ñ QC 1,A ù FpAq,i! ù Fpiq!,p!
ù Fppq!.

Proposition Q.6.4. One has an isomorphism of categories
Q pC opq � QC ,

such that injective arrows in QC correspond to surjective arrows in QC op and vice versa.Proof. If we have a bicartesian square in C , then we have a bicartesian square in C op:
Z

I

Ypoooo

XOO
i
OO

VOO
i
OO

poooo
I

ùñ

Z
Aiop

����

// pop
// Y

iop
����X // pop // VA

Consider a functor which is identity on objects and defined on arrows by
i! � p!

ù ppopq! � piopq!.
This is full and faithful: HomQC pX,Yq � HomQC oppX,Yq.

�

Q.7 Higher K-groups via the Q -construction
The following is [Qui73b, Theorem 1, p. 102]:
Theorem Q.7.1. Let C be a skeletally small exact category. Let 0 be a zero object in C . Then thereis a natural isomorphism π1pBQC , 0q � K0pC q.
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This motivates the following definition [Qui73b, p. 103]:
Definition Q.7.2. For a skeletally small exact category C its K-groups are given by

KipC q def� πi�1pBQC , 0q,
where 0 refers to the point 0 P BQC corresponding to the zero object.

This is related to the K-groups of a ring defined by the plus-construction as follows.
Theorem Q.7.3. Let R-Proj fg the the category of finitely generated projective R-modules. There is ahomotopy equivalence (natural up to homotopy)

BGLpRq� Ñ ΩpBQR-Proj fg , 0q,
where Ω is the loop space functor (taken at the point 0).Hence there is a natural isomorphism

KipR-Proj fgq � πipBGLpRq�q, i ¥ 1.
Remark Q.7.4. It is important that we defined KipC q for any skeletally small exact category C . E.g. for a schemeX we can take C � VBpXq, and this defines the K-groups KipXq. See [Qui73b, §7].

Discussing a proof of BGLpRq� � ΩpBQR-Proj fgq would lead us a bit too far. It can be found in[Ada78, Chapter 3] or [Sri96, Chapter 7]. We are going to see at least a proof of π1pBQC q � K0pC qjust to understand better the Q -construction. In fact, all the needed machinery was already introducedabove.
According to the theorem Q.4.3, the category of covering spaces of BQC is equivalent to the categoryof morphism-inverting functors F : QC Ñ Set . Let us denote the latter by F . Similarly, the category ofcovering spaces of BK0pC q is equivalent to the category of morphism-inverting functors K0pC q Ñ Set ,i.e. the category of K0pC q-sets.Recall that for a space X its fundamental group π1pXq can be identified with the automorphismgroup of the universal cover AutprXq. So π1pBQC q � K0pC q will follow once we show an equivalence ofcategories F � K0pC q-Set .
• First observe that F is equivalent to its full subcategory F 1, which consists of morphism-invertingfunctors F 1 : QC Ñ Set such that

F 1pBq � F 1p0q and F 1piX!q � idF 1p0q for all X P ObpC q,
where iX denotes the admissible monomorphism 0� X.Note that for an admissible monomorphism i : A� B holds i � iA � iB:

0 // iA //
''o j d _ Z U OA // i // B

From this we deduce idF 1p0q � F 1piB!q � F 1pi! � iA!q � F 1pi!q � F 1piA!q � F 1pi!q. That is, for anyadmissible monomorphism i : A� B we automatically have
F 1pi!q � idF 1p0q.
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If we have an arbitrary morphism inverting functor F : QC Ñ Set , then we can define a functorF 1 in the category F 1 by
Vp

����~~~ �� i
��???

X Y ù FpiV !q�1 � Fpp!q � FpiX!q

0
||||zzzzz "" iX

""EEEEE Vp
||||xxxxx ""

""FFFFF 0
||||yyyyy "" iV

""DDDDD

0 X X V 0 V
Fp0q FpiX!q // FpXq FpXq Fpp!q // FpVq FpVq FpiV !q�1

// Fp0q
Now consider a natural transformation of functors F 1 ñ F given by X ÞÑ FpiX!q. Since FpiX!q is thebijection in the category Set , this gives an isomorphism F 1 � F . Hence any object in the category
F is isomorphic to an object in the category F 1.• If S is a K0pC q-set, we define a morphism inverting functor FS : QC Ñ Set which belongs to thecategory F 1. Using proposition Q.6.3, we see that it is enough to give the following data:

FSpAq def� S,FSpi!q def� idS ,FSpp!q def� the action of rkerps on S.
Here by rkerps we denote the class of the object kerp in K0pC q.• In the other direction, for any given morphism inverting functor F : QC Ñ Set which belongs tothe category F 1, we describe a natural action ofK0pC q on Fp0q, i.e. a morphismK0pC q Ñ AutpFp0qq.For rAs P K0pC q we take Fpp!Aq P AutpFp0qq, where pA denotes the obvious admissible epimorphismA � 0. We have to check that this is indeed a homomorphism on K0pC q. For a short exactsequence in C 0 Ñ A� B� C Ñ 0we should have Fpp!Aq � Fpp!Cq � Fpp!Cq � Fpp!Aq � Fpp!Bq.For this look at the bicartesian square

C
I

Bpoooo

0OO
iC
OO

AOO
i
OO

pAoooo
I

From this we deduce i! � p!A � p! � iC!.
Since Fpi!q � FpiC!q � idFp0q, we conclude that Fpp!Aq � Fpp!q.
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Further, pB � pC � p:
B p // // $$r l e _ Y R LC pC // // 0

So we have
Fpp!Bq � FpppC � pq!q � Fpp! � p!Cq � Fpp!q � Fpp!Cq � Fpp!Aq � Fpp!Cq.

We claim that also Fpp!Aq � Fpp!Cq � Fpp!Cq � Fpp!Aq. For this in the argument above we replace Bwith A`C and consider split exact sequences
0 // A // // A`C // // C // 0
0 // C // // A`C // // A // 0

From the trivial fact kerpA � A, one readily sees that the constructions S ÞÑ FS and F ÞÑ K0-set Fp0qare mutually inverse. This finally shows that π1pBQC , 0q � K0pC q. �

Q.8 Quotient categories
We recall what a quotient category of an abelian category is. The reference for this is [Gab62, Chapitre III].Let us ignore set theoretical issues and from now on we denote by A and B abelian categories whoseobjects lie in some “universe” U. We have in mind only one particular example, when the categoriesare skeletally small.
Remark Q.8.1. Although for us it is enough to work with concrete categories, recall how in general one can usethe notion of subobjects. For any object A P ObpAq its subobjects are isomorphism classes of monomorphismsB� A. The isomorphism of subobjects is given by a diagram

B %%
%%KKKKKK

�

��

A
B1 99

99tttttt

For two subobjects i1 : A1 � A and i2 : A2 � A we say that i1 � i2 if there is a commutative diagram ofmonomorphisms A1 %% i1
%%JJJJJJ��

��

A
A2 99 i2

99tttttt

This is a partial order on the set of subobjects of A.
Definition Q.8.2. Let A be an abelian category and let B � A be a full additive subcategory of A(so that the abelian group structure on Hom-sets is the same). We say that B is a Serre subcategory(sometimes called catégorie épaisse) if the following holds
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1. Any object of A isomorphic to an object of B lies in B .2. B is closed under taking subobjects, quotients and extensions in A . That is, if one has a shortexact sequence in A 0 Ñ AÑ BÑ C Ñ 0then B P ObpBq if and only if A,C P ObpBq.
Example Q.8.3. Let R be a Noetherian commutative ring and let S � R be a multiplicative subset.Let A � R-Mod fg be the category of finitely generated R-modules and let B � S-Tors fg be the fullsubcategory of S-torsion modules. In other words, R-modules M such that s �M � 0 for some s P S.Then S-Tors fg is a Serre subcategory of R-Mod fg . N

Definition Q.8.4. If B � A is a Serre subcategory, then one can construct the quotient category(sometimes called localization) A{B as follows. The objects of A{B coincide with the objects of A . IfA,B are two objects, then consider their subobjects A1 � A and B1 � B. The morphisms i : A1 � Aand p : BÑ B{B1 induce Z-linear maps
HomApA,Bq Ñ HomApA1, B{B1q.Assume now A{A1 P ObpBq and B1 P ObpBq. The abelian groups HomApA1, B{B1q form a directed systemwith obvious maps

A2 � A1 and B2 � B1 ñ HomApA2, B{B2q Ñ HomApA1, B{B1q.Then one puts HomA{BpA,Bq def� limÝÑ
pA1,B1qA{A1, B1PObpBq

HomApA1, B{B1q.
One checks that this gives a Z-bilinear composition

HomA{BpA,Bq �HomA{BpB,Cq Ñ HomA{BpA,Cq.Then A{B is again an additive category, and the canonical functor T : A Ñ A{B is exact. For detailsand proofs we refer to [Gab62, Chapitre III]. In particular, one has the following: for a morphismf P HomApA,Bq the corresponding morphism Tpfq P HomA{B is an isomorphism if and only if ker fand coker f lie in ObpBq.
Example Q.8.5. Consider as above A def� R-Mod fg and B def� S-Tors fg . We claim that the quotientcategory A{B is equivalent to the category of finitely generated S�1R-modules.We have the localization functor

L : A � R-Mod fg Ñ S�1R-Mod fg
and the quotient functor T : A Ñ A{B .We claim that there is an equivalence of categories U : A{B Ñ S�1R-Mod fg such that U � T and L areisomorphic functors.

For any R-Mod fg -module M , the set HomR-Mod fg pR,Mq carries structure of a module over the ringHomR-Mod fg pR,Rq � R (where multiplication is given by composition), and it is naturally isomorphic toM . One has a homomorphism of commutative rings
R � // HomR-Mod fg pR,Rq T� // HomA{BpTpRq, TpRqq
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Now let φ define a map R Ñ HomR-Mod fg pR,Rq that takes an element r P R to a multiplication by rmap x ÞÑ r x. For any s P S the map φpsq : R Ñ R has its kernel and cokernel in B , hence T� � φpsq isan isomorphism (invertible element in HomA{BpTpRq, TpRqq). Therefore by the universal property oflocalization, the map T� � φ factors uniquely through S�1R:
R T��φ //

!!CCCCCCCCC HomA{BpTpRq, TpRqq
S�1R D!

66mmmmmmm

One checks that this is a ring isomorphism S�1R � HomA{BpTpRq, TpRqq.
Now for any module M P ObpR-Mod fgq we get a module HomA{BpTpRq, TpMqq over the ringHomA{BpTpRq, TpRqq � S�1R. There is an R-module homomorphism

M � // HomR-Mod fg pR,Mq T� // HomA{BpTpRq, TpMqq

By the universal property of localization, the map above factors uniquely through S�1M :
M //

''OOOOOOOOOOOOO HomA{BpTpRq, TpMqq

S�1M � S�1R bR M D!ψM 44iiiiiiii

One can check that ψM is an isomorphism of S�1R-modules.
Now the desired functor U is given by

U : A{B Ñ S�1R-Mod fg ,TpMq ÞÑ HomA{BpTpRq, TpMqq.
On arrows U is given by the composition of arrows in A{B .The morphism ψM gives a natural transformation of functors ψ : Lñ U�T which is an isomorphism.

M
f
��

S�1M
��

ψM
�
// HomA{BpTpRq, TpMqq

��N S�1N ψN� // HomA{BpTpRq, TpNqq
N

Remark Q.8.6. One can show that taking the quotient category satisfies a universal property similar to theuniversal property of localization and work out the last example using this. See [BK00, §6.3.8 + exercise 6.3.2].
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Q.9 Quillen’s results
Now we mention some important results of [Qui73b]; proofs can be found in the original paper, or in[Sri96, Chapter 6]. The following is [Qui73b, §4, p. 108]:
Theorem Q.9.1 (Resolution theorem). Let M be an exact category and let P � M be a full additivesubcategory which is closed under extensions in M , such that P is an exact category and P ãÑ Mis an exact functor.

1. Assume that if
0 ÑM 1 ÑM ÑM2 Ñ 0

is exact in M and M 1,M2 P ObpP q, then M P ObpP q.
2. Assume that for each object M P ObpM q there is a finite length resolution in M

0 Ñ Pn Ñ Pn�1 Ñ � � � Ñ P0 ÑM Ñ 0
with Pi P ObpP q (where the resolution length n may depend on M).

Then BQP Ñ BQM is a homotopy equivalence, hence KipP q � KipM q.
Example Q.9.2. Let A be a Dedekind domain. Then any finitely generated A-module M P ObpA-Mod fgqhas projective dimension ¤ 1 over A (cf. e.g. [Wei94, Chapter 4]), and so by the resolution theorem

KipA-Mod fgq � KipA-Proj fgq � KipAq.
N

The following is a corollary from the so-called “dévissage theorem” [Qui73b, Corollary 1, p. 112]:
Theorem Q.9.3. Let B be a (skeletally small) abelian category such that every object B P ObpBq hasa finite filtration by subobjects 0 � B0 � B1 � � � � � Bn � B.Let tXαu be the set of representatives of the isomorphism classes of simple objects of B . Then

KipBq �ºα KipDαq, where Dα def� EndpXαqop.
Example Q.9.4. Let A be a Dedekind domain and let B be the category of finitely generated torsion
A-modules (modules M such that M bA k � 0). Such modules are of the formà

1¤j¤nA{Ij
for some ideals Ij � A (see e.g. [IR05, §8.8]), so we deduce

KipBq � º
p�A

KipA{pq,
where p runs through the maximal ideals. N
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The following is [Qui73b, Theorem 5, p. 113]:
Theorem Q.9.5 (Localization theorem). Let A be a (skeletally small) abelian category and let B beits Serre subcategory. Then the natural exact functors

B ãÑ A Ñ A{B

induce a homotopy fibration BQB Ñ BQA Ñ BQ pA{Bq,and hence a long exact sequence
� � � Ñ Ki�1pA{Bq δÝÑ KipBq i�ÝÑ KipAq p�ÝÑ KipA{Bq Ñ � � � Ñ K0pBq Ñ K0pAq Ñ K0pA{Bq Ñ 0

Let’s deduce from the cited theorems the following result [Qui73b, Corollary p. 113]:
Proposition Q.9.6. Let A be a Dedekind domain with field of fractions F . Then there is a long exactsequence

� � � Ñ Ki�1pFq Ñ º
p�A

KipA{pq Ñ KipAq Ñ KipFq Ñ � � �

where p runs through maximal ideals.
Proof. We apply the localization theorem to the category A def� A-Mod fg of finitely generated A-modulesand B def� A-Tors fg its full subcategory of finitely generated torsion A-modules. As we observed in exam-ple Q.9.2, one has KipA-Mod fgq � KipAq. By example Q.8.5 the localization A{B can be identified withthe category of finite dimensional F -vector spaces, hence KipA{Bq � KipFq. Finally, by example Q.9.4we identify KipBq with ²p�AKipA{pq. �
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