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Introduction

Let k be a perfect field of characteristic p > 0 and let W := W (k) be its ring of
Witt vectors. We consider a totally ramified extension K of degree e of the field of
fractions Ky := W[1/p]. Fix a uniformizer 7 € K and denote by E(u) its minimal
polynomial. The aim of this mémoire is to present a classification of Barsotti-Tate
groups over the ring of integers Ok of K, following Marc Kisin’s paper Crystalline
representations and F-crystals [Kis].

Fix a positive integer h. A Barsotti-Tate group (or p-divisible group) over a
scheme Sy is an inductive system G = {(G,,i,)}n, such that for each n:
(1) G, is a finite commutative group over Sy of order p"”
(2) there is an exact sequence

in p’!L
0— Gn - Gn+1 - Gn+1-

Barsotti-Tate groups over a scheme Sy form a category BT (Sy). One should keep in
mind the following example as an important motivation for the study of p-divisible
groups. Given an abelian scheme X, the inductive system {(X(p"),X(p") —
X(p™*1))}n gives a Barsotti-Tate group X (p™), where X (p") denotes the kernel
of the multiplication by p® on X. The group X (p*) encodes a lot of information
about the abelian scheme X and has additional structures with respect to regular
formal groups, such as a notion of duality.

A first classification of Barsotti-Tate groups was given by Jean Dieudonné [Dieu]
in the case Sy = Speck. To each Barsotti-Tate group G, we can associate a
Dieudonné module, that is, a module D(G) over W, endowed with a Frobenius and
a Verschiebung maps. In the paper Groupes p-divisible sur les corps locauzr [Fon2],
Jean-Marc Fontaine generalizes the theory by Dieudonné, obtaining a classification
of p-divisible groups over Spec Ok in the case e <p—1.

Moreover, Alexander Grothendieck ([Grol], [Gro2]) suggests that there should
be a crystalline Dieudonné theory in order to classify p-divisible groups over any
base scheme. Through the theory of fundamental extensions, Grothendieck points
out that the Lie algebra of a Barsotti-Tate group provides a generalization of the
notion of Dieudonné module. The fundamental observation is that one can associate
to a p-divisible group G a crystal D(G), that is, a sheaf on the crystalline site
which satisfies some rigidity conditions. The deformation theory by William Messing
([Mess]) provides a classification of p-divisible groups in terms of crystals.

In his paper Schémas en groupes et groupes des normes [Brl], Christophe Breuil
suggests, conjecturally, a new classification for p-divisible groups over Spec O, for
any ramification index e. Denote by & = W{[u]] the ring of formal series in the
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indeterminate u and equip this object with a W-semi-linear Frobenius ¢. Define
the category BT“/D6 of finite free G-modules M, equipped with an injective semi-

linear map ¢ : 9t — M such that M/(1 ® ¢) (M) is killed by E(u).
THEOREM 0.0.0.1 (Breuil-Kisin). There is an exact contravariant functor

When p > 2 this functor is an equivalence of categories, when p =2 it is an equiva-
lence up to isogeny.

The strategy of Kisin in order to prove this result is to describe G-modules in
terms of other, better known objects.

Consider the natural surjection W{u] - Ok: this extends to a surjection W{u] [E(;f)] -
’ >1

Ok, and finally to a surjection
S - ﬁKa

where S denotes the p-adic completion of W[u][w] . Denote Fil'S = Ker(S -
>1

al
Or) and by ¢ the extension of the Frobenius of W on S. We define the category
BT“/DS, of finite free S-modules M, equipped with an S-sub-module Fil* M such that

Fil'S - M c Fil' M, the quotient M/Fil' M is a free Ox-module and there exists a
@-semilinear map 5 : Fil' M - M such that ¢*(Fil'M) - M is onto.

THEOREM 0.0.0.2 (Kisin). There is an exact contravariant functor
BT(Okx) — BTfs
G — D(G)(S)

For p > 2 this is an equivalence of cateogories, for p = 2 it is an equivalence of
categories up to isogeny.

The proof uses a deformation argument and it holds consistently on the theory
by Grothendieck-Messing. The map

& = S

w — uP

defines a functor
BT7 — BT¥
& /s
M — Mg, S

and hence a functor

/
In order to construct an inverse, Kisin describes the category Modf@, containing

BT?_ — BT(6x).

BTfG, of finite free G-modules M, equipped with an injective semi-linear map
© 9 - M such that NM/(1® p) (M) is killed by a power of E(u). The first step is

to relate the category Modf6 to algebraic objects over the field K.
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THEOREM 0.0.0.3. There is a fully faithful functor
MEEM 0ot — Modf Y @Q,,

where MF}’}’N’FHZO’ad denotes the category of effective, admissible (@, N')-modules with
a filtration over K (see (4.0.5) for the definition).

The proof is obtained by relating effective, filtered (¢, NV)-modules over K with
modules over the ring & c Ky[[u]] of rigid analytic functions on the unit disk with
indeterminate u. In particular, the notion of admissibility is characterized through
the theory of slopes by Kedlaya ([Ked1] and [Ked2]). By restricting the result to
BT“/D67 we obtain

ProproOSITION 0.0.0.4. There is an equivalence of categories
{admissible p-modules of BT-type} — BTf6 ®Q,,
where an admissible module D over Ky is said to be of Barsotti-Tate type if griDy =
0 fori¢{0,1}.
The second step is to relate Modf6 to Galois representations by constructing

an analogue of Fontaine’s theory of (y,I')-modules [Fonl], where the cyclotomic
extension is replaced by Breuil’s extension Ko, := Ups1 K( /7).

THEOREM 0.0.0.5. There is a fully faithful functor
Modfg ®Qp Sfully faithful Repr(GKoo )’

where Repg,(Gk.,) denotes the category of p-adic representations of the absolute
Galois group Gk = Gal(K/Ko).

We obtain hence also a proof of a conjecture by Breuil [Br2]:

ProprosITION 0.0.0.6. The functor
Repg*(Gx) — Repg,(Gr..),
obtained by restricting the action of Gk to Gk, is fully faithful.
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CHAPTER 1

Divided powers and the crystalline site

1.1. Grothendieck topologies, sheaves and sites

It is often useful to have a notion of sheaf on a given category . This is a
particular contravariant functor from % to other categories such as Sets or Ab. The
fundamental notion is that of Grothendieck topology, through which we interpret the
objects of € as open sets of a topological space. It is useful to keep in mind, as a
motivation, the category Tx ,with objects the open sets of the topological space X
and morphisms the inclusions.

DEFINITION 1.1.0.7. Fiz a category €. A Grothendieck topology T' on € con-
sists of the following data:
(1) A category € (T),
(2) A set Cov(T) of families {¢; : U; > U | U,U; € Ob(€)}: of morphisms in
€ (T), called coverings satisfying:
o If ¢ is an isomorphism, {¢:U - U} € Cov(T),
o If {U; » U} e Cov(T) and {V;; » U;}; € Cou(T) for each i, then the
composed family {V;; - U}i; € Cov(T),
o [f{U; > U}; e Cov(T) and V - U is any morphism in € (T'), then the
product U; xg V' exists Vi and {U; xy V -V}, € Cov(T).

DEFINITION 1.1.0.8. Let T be a Grothendieck topology and & a category with
products (we will mainly consider Sets and Ab). A pre-sheaf on T with values in
2 is a contravariant functor F T — 9. A sheaf F is a pre-sheaf such that for
{U; > U} € Cou(T), the following sequence is exact

DEFINITION 1.1.0.9. A category € with a choice of a Grothendieck topology is
called a site. The category of sheaves on a given site is called topos.

The fppf site. On the category Sch/S of schemes over S we define the fppf
site (fidélement plate de présentation finie). For any U a scheme over S, define the
coverings as the sets of families { f; : U; > U}; such that f; is flat and locally of finite
presentation and U; f;(U;) = U.

1.2. Divided powers

In the following section we define and list some results on divided powers, follow-
ing as a reference [BO], Chapter 3. Fix A a commutative ring and I ¢ A an ideal.
The notion of divided powers structure on A is introduced to give mathematical
meaning to the symbol %, even when n! is not invertible in A. The main result is
the construction of the P.D. envelope of an ideal.
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DEFINITION 1.2.0.10. By divided powers on I we mean a collection of maps
{ni: I — A}iso satisfying the following properties:
(1) for x el we have yo(z) =1, i(x) =z and Vi> 1, v;(x) el
2) if w,y €1 then yi(z +y) = Eijvi(2)7;(y),
3) for Ae A, v;(Az) = Ny (),

4) forxel, vi(z)y;(x) = (ZZT;.) Virj (2,

|
5) 1(vq(2)) = p(!ijjl))p-
We call (I,7) a P.D. ideal, (A,I,v) a P.D. ring and v a P.D. structure on I.

AA/—\/—\

Note that by points (a) and (d), we have nly,(z) = y1(z)” = 2", and by point
(c) we have v;(0) = 0, for i > 0. These observations lead to uniqueness of divisible
powers in many cases.

DEFINITION 1.2.0.11. Let (A,1,7) and (B,J,6) be P.D. rings. A morphism of
P.D. rings f: (A, I,v) —» (B, J,0) is a ring homomorphism f : A - B such that
f(I) < J and such that f(v,(x)) =6,(f(x)), Vx e [,neN. We say that J is a sub
P.D. ideal of I if v(x) € J for every x € J.

Some examples. 1. Any Q-algebra A has a (unique) natural structure of P.D.
ring, given by y,(z) = L1,z € A.

2. [Important] Consider a discrete valuation ring (A, m, k) of mixed characteristic
(0,p). It is not always true that m admits a P.D. structure (though, if it exists, it is
unique). Denote by e the absolute ramification index, that is, the integer e such that
p =mu (u an invertible). Then (7) admits a P.D. structure if and only if e <p - 1.
This is true since v, (7) = 7%/n! € (7) for all n > 1 if and only if v(~v,(7)) > 1, that
is, if and only if p—1-€ > 0.

3. Suppose mA = 0, for m € Nyo. If a P.D. structure exists on an ideal I < A,
then z™ = nly,(x) = 0 for n > m, that is I is a nil ideal. On the other hand, if (m—1)!
is invertible in A and mA = 0, then [ has a (not unique) P.D. structure given by
Yn(z) =2 /n! if n <m and v, (x) =0 for n > m. In particular if /2 =0, it has a P.D.
structure, with 7, (z) =0 for n > 2.

1.2.1. Some results on P.D. rings.

The graded algebra T 4(M). We define a functor "4 : Moda — {A-algebras} such
that for an A-module M, (I'a(M),I',(M)) has a divided powers structure, where
', (M) denotes the augmentation 1deal

DEFINITION 1.2.1.1. Given an A-module M ,we define ' 4(M) to be the A-algebra
generated by elements x["1 with relations

(1 -1,

()()\a:) 1 for Ne A and x € M,

(3) z = glrm] for:zeM

()(:c+y) ]+y + X telnd + gyl for x iy e M.

To see the construction in a more concrete way, one can see I'y(M) as the
quotient G 4(M)/14(M) where G 4(M) is the graded polynomial algebra of indeter-
minates {(z,n)|z € M,n € N} and I4(M) is an ideal realizing the relations above.
This shows in particular that I'4 (M) is graded, since both G 4(M) and 14(M) are.
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In particular, I'4 (M) ~ A and '}, (M) ~ M. There are several compatibilities and
functorial properties characterizing this object.

PROPOSITION 1.2.1.2. (1) The functor I' is compatible with base change
A - A, that is

A @sTA(M) T4 (A' @4 M).
(2) If {M,} is a direct system of A-Modules, then
Hm Ty (My) = Fa(lim My).
(3) For M,N A-Modules, we have
CA(M)®TA(N)~T4(MeaN).

THEOREM 1.2.1.3 (P.D. structure). There is a unique structure of divided powers
on the augmentation ideal T+(M) ~ @, (M) such that v,(z) = z["1, for every
x e M and for every n > 1.

Proor. [BO, Appendix]. O
The structure of a P.D. ring.

LEMMA 1.2.1.4. Let (A, 1,7) be a P.D. ring, J an ideal of A. There is a (unique)
P.D. structure % on I ¢ Al J, together with a P.D. morphism (A,I,v) - (A/J,1,7)
if and only if Jn 1 is a sub-P.D. ideal of I in A.

LEMMA 1.2.1.5. Let (A,I,v) be a P.D. ring, let S € I be a subset. The ideal
J generated by S is a sub-P.D. ideal if and only if for every n, v,(s) € J for every
ses.

The direct limit is defined in the category of P.D-rings. If {A;, I;,v;} is a direct
system of P.D. rings, then {lim A;,lim I;} has a unique P.D. structure v such that
for every i there is a P.D. morphism {A;, I;,v;} - {lim A;, lim I;,v}.

PROPOSITION 1.2.1.6. Let I,J be ideals of A with P.D. structures, respectively,

v and 0. Then IJ is always a sub-P.D. ideal of both I and J and the two P.D.
structures v and 6 agree on I.J.

COROLLARY 1.2.1.7. In particular we have that for every n, I™ us a sub-P.D.
ideal of I.

DEFINITION 1.2.1.8. Let (A,1,7) be a P.D. ring and N > 1. We define I'V] as
the ideal generated by {~;, (z1),-, Vi, (zx)|Xi; > N and z; € I'}.

Note that IV] c [ is a sub-P.D. ideal and I[NVI[[M] c JIN+M]

DEFINITION 1.2.1.9 (P.D. Nilpotent ideal). I is nilpotent if TN = 0 for some
N.

DEFINITION 1.2.1.10 (Extension of a P.D. structure). Let (A,1,7v) be a P.D.
ring and f: A — B be an A-algebra. We say that v extends to B if there is a P.D.
structure (B,IB,7%) such that (A,I,v) - (B,IB,7) is a P.D. morphism, that is
fm(2)) =7, (f(2)) for every x € I,n eN.

3



Note that if the extension exists, this is unique. Moreover the definition is
equivalent to the following statement: there is a P.D. structure on B with a P.D.
morphism (A, 1,7v) - (B, J,0), indeed IB is a sub-P.D. ideal of J.

Note that the extension does not exist in general. There is however a particular
case in which it always.

ProPOSITION 1.2.1.11. If I is principal, v does always extend.

PRrOOF. If I = (t), we can define 7, (tb) = b"y,(t), and this satisfies f(7y,(at)) =
flay,(t)) = f(a)"f(1(t)) =7(f(a)t), hence the conclusion. O

DEFINITION 1.2.1.12 (Compatibility). Let (A, 1,7) be a P.D. ring and B with a
P.D. structure (J,8). We say that v and § are compatible if the following equivalent
conditions hold:

(1) v extends to § and 5 =0 on IBNJ.

(2) The ideal K = IB+.J has a (unique) P.D. structure 6 such that (A,1,7) —
(B,K,0) and (B, J,0) - (B, K,0) are P.D. morphisms.

(3) There is an ideal K 2 IB+ J with a P.D. structure §' such that (A,1,v) —
(B,K'",¢") and (B, J,0) - (B, K',d") are P.D. morphisms.

1.2.2. The P.D. envelope of an ideal. We fix a P.D. algebra (A, 1,~) and
consider compatible P.D. structures.

THEOREM 1.2.2.1. Let (A,I,v) be a P.D. algebra, B an A-algebra and J an
ideal of B. There exists a B-algebra Dy (J) with a P.D. ideal (J,[ ]), such that
JDp(J) € J and satisfying to the following universal property: for any B-algebra
C with a P.D. ideal (K,0) such that K contains the image of J and § is compatible
with 7y there exists a unique P.D. morphism (Dp.,J,[ ]) = (C,K,d) making the
following diagram commutative:

(DB,ijv[ ])

)/
i

(B,J (C,K,0)

A

(A, 1,7)

SKETCH OF PROOF. The proof is constructive and consists in generalizing the
following first case:
Suppose f(I) c J, that is the map f o1 is P.D. compatible. We may consider
the P.D. algebra (I'z(J),I'5(J),[ ]) and the ideal J generated by elements of type:
(1) ¢(x) —x for z € J,
(2) o(fyNM = f(yly)) for y e I.
The key point is that J nI';(J) is a sub P.D. ideal of I';,(J). This tells us that the
image J of T'5(J) in the quotient Dp., = T'p(J)/J has P.D. structure (by abuse of
notation we will denote this [ ] as well). In particular, condition (a) for J tells us
that JD c J, while condition (b) tells us [ ] is compatible with .

4



The general case is proved by setting J, = J+IB, D (J) = Dp(J1) and JcJ,
the sub P.D. ideal generated by J. See [BO, Theorem 3.19] O

REMARK. 1. If the map of A-algebras A - B factors through some A’ and ~y
extends to some ', then Dp,(J) = Dp(J).

2.|Extension of scalars| Suppose that (A,I1,v) — (A", I',v") is a surjective P.D.
morphism and B'= A" ®4 B, J' = JB. Then we have a canonical isomorphism

A’ ® 4 DB,'y(J) - DB’,'y’(J/)~

3. If v extends to B].J we have that B/J ~Dpg_(J)/J.
4. If B~ B’ is flat, then Dy (JB') ~ B'® Dp.(J).
5. If B is a flat A-algebra, v extends to B.

1.2.3. P.D. ringed spaces.

DEFINITION 1.2.3.1 (P.D. sheaf). Let X be a scheme, A a quasi-coherent Ox-
algebra and T a quasi-coherent ideal. We say that (A,T) is a P.D. sheaf if there is
an affine covering {U;}; of X such that {A(U;),Z(U;)} is a P.D. ring for every i.

This construction is preserved by the meaningful maps of sheaves: given a map
of topological spaces f: X - Y, (f. A, f.Z, f.v) is a sheaf of P.D. rings on Y and
given a P.D. sheaf on Y, (B,J,6), we have that (f~1(B), f~(J), f(d)) is a P.D.
sheaf on X.

DEFINITION 1.2.3.2. A P.D. ringed space is a pair (X, (A,Z,v)) where (X,Ox)
is a ringed space and (A,Z,7v) is a P.D. sheaf. Given two P.D. ringed spaces
(X, (A, Z,v)) and (Y,(B,J,0)) a map P.D. ringed spaces is a map of topological
spaces

[ X =Y,
together with a map of sheaves

(B, J,0) = (f. A fZL, foy)-

Let (A,1,7) be a P.D.-algebra. By Remark (1.2.2) v extends to any flat A-
algebra, therefore, for any element f € A, the localization (Ay, I;) has P.D. structure
and the localization map (A,1) - (A, 1) is a P.D. morphism. We obtain hence
a sheaf of P.D. rings on Spec A. Moreover, If X = Spec A and Z ¢ Oy is a quasi-
coherent sheaf of ideals, we have that P.D. structures on Z correspond to P.D. struc-
tures on the global sections H°(X,Z). Similarly, P.D. morphisms Spec(A,Z,~) —
Spec(B,J,d) can be identified with P.D. morphisms (B, J,§) - (A,I,v). All this
follows from the fact that the functor™: A-modules - {Quasi-Coherent sheaves of Spec A}
is an equivalence of categories.

The P.D. envelope structure extends to the schematic case.

PROPOSITION 1.2.3.3. Let S be a scheme with P.D. structure (Os,Z,v) and let
X be an S-scheme. If B is a quasi-coherent Ox-Algebra and J < B is a quasi-
coherent ideal, then Dg,(J) is a quasi-coherent Ox-Algebra.

Let now (S,Z,7) be a P.D. scheme and consider a closed immersion of S-schemes
1: X »Y,
5



defined by the ideal J of Oy. We may define hence Do, ,(J) and finally a scheme
Dx,(Y) = Spec(Do, ).

Moreover if v extends to X, that is, to Ox (fgr example if Oy is flat over Og),
it follows by Remark (1.2.2) that Ox ~ Do, ,/J. This means in particular that ¢
factors through a closed immersion

j:X%‘-)DXﬁ,

with kernel J, a P.D. ideal (j is a P.D. immersion). Moreover j is universal in the
following sense:

if o/ : X’ > Y’ is a P.D. immersion which is compatible with v and following
diagram holds, we get a unique map:

X —X

17

Y —Y ~—— DXW(Y)

= I =

FExample. Let k be a prefect field of characteristic p > 0 and consider the ring
of Witt vectors W = W (k). This admits a P.D. structure, since it is an absolutely
unramified discrete valuation ring of characteristic (0,p). Consider now a totally
ramified extension

(1.2.1) Ox K

W ——WT[1/p]

and fix a uniformizer 7 € K, with minimal Eisenstein polynomial F(u) € W[u] and
uniformizer 7. We have a closed immersion

Spf(Ok) + Spf(Wu]).
Take now the P.D. envelope of W[u] with respect to the ideal (E(u)), W{u] [M]
i>1

7!

and denote by S its p-adic completion. Hence the closed immersion above factors

through the diagram
Spf(é%zl\\\\ Spf(Wlu])

Spf(S)

1.3. The crystalline site

P.D. schemes are the fundamental notion in order to define the crystalline site,
which is the good environment for introducing the notion of crystal. The idea is to
replace Zariski open stes over a scheme S with infinitesimal thickenings of Zariski
open sets, equipped with divided powers structures. As a working assumption, we
suppose that all schemes are killed by a power of a fixed prime p.

6



Fix a base P.D. scheme (S,Z,7) and consider a scheme X to which 7 extends.
This means explicitly that the Og-algebra Oy has a P.D. structure 7 such that

(057-’2’-77) - (Osz-OXvi)

is a P.D. morphism.

The objects of the Crystalline site Cris(X/S) of X over S are pairs (U < T.,6)
such that U is an open subset of X, U < T is a closed immersion defined by an
ideal J and ¢ is a P.D. structure on J compatible with . The working assumption
implies that the ideal J is nilpotent and therefore U < T' is a homeomorphism. We
call the object (U € T,0) a S-P.D. thickening of U. The assumption "~ extends
to X7 tells us that given a Zariski open set U, the set of thickenings of U is never
empty. Indeed, for T'=U and J = (0) we have that 7 is compatible with the trivial
P.D. structure.

A morphism T — T" of the Crystalline Site is a a commutative diagram

U——T

L

Ul N Tl

where U < U’ is an inclusion in the Zariski sense and T — 7" is an S-P.D. morphism

(T,7,6) = (T",J',d").

A covering family of an object (U < T,9) of the crystalline site is a collection
of morphisms {7; - T'}; such that for all ¢ € I, T; - T is an open immersion and
UL =T.

One standard situation to keep in mind is S = S,, = Spec(W (k) /p"W (k)), where
k is a perfect field and X a scheme over k. Note that the nilpotency assumption
implies that X is an S,, scheme for some n.

Ezample. As in the example above, we consider the field extension (1.2.1), and
surjections

Wlul/ut - Ok[xi

u g ™

for 1 <7 < e, where e is the ramification index of 7 in K. These maps have kernel
p-Wu]/u' equipped with divided powers. Therefore the inclusion

Spec(Ok [m") + Spec(W[u]/u)

is a P.D. thickening in the crystalline site Cris((Ok /7?)/W).

A sheaf of sets .# on the crystalline site can be described as the data of: for
every element (U,T,0) € Cris(X/S), a sheaf F 1) on T (where .# 1,5y denotes

7



the evaluation of .7 at (U — T,0)) and for every map in the crystalline site
U —1T'
7
a morphism of sheaves
v P wrsy — Fwres
where v~! is the pull-back of a sheaf of sets, together with the cocycle condition.

Ezamples. 1. The structural sheaf Ox ;g on Cris(X/S) is defined by: for every
(U.T,0),

(Oxs)wrs) = Or
2. The sheaf i,(Og) defined by
(1.(Os))wrs) = Ov.
3. The sheaf #x g defined by
(Ix5)w,rs) = Ker(Or — Oy).
There is an exact sequence

0- fX/S g ﬁX/S g Z*(ﬁs) - 0.

The notion of crystal was introduced by Grothendieck as a sheaf on the crys-
talline site, which is "rigid” and "grows”, as he explains in a letter to John Tate.
Even though the definition is more general, we give here the definition of crystal
only for sheaves of &x/g-modules.

DEFINITION 1.3.0.4. A crystal of Op-modules is a sheaf F of Oxs-modules such
that for every morphism on Cris(X/S) the map of Op-modules

uw* (Fwrs)) — F sy
s an isomorphism, where u* is the pull-back of O -modules.

The structural sheaf is a crystal.



CHAPTER 2

Barsotti-Tate groups and deformation theory

2.1. Group schemes

DEFINITION 2.1.0.5. Fix a base scheme S. We say that G - S is an S-group
if it has group structure as an object in the category Sch/S. Explicitly, this means
that there are S-maps

m : G xg G - G multiplication,
1: G - G inversion,
e:S = G neutral element,
satisfying the group azxioms. We say that a group scheme is commutative if the
commutativity is satisfied by these maps.

Namely, a group scheme over S corresponds to a contravariant functor from the
category of schemes over S to the category of groups.

Basic examples. 1. The additive group scheme G,, corresponding to the additive
group structure underlying the affine line.

2. The multiplicative group scheme G,,, corresponding to the multiplicative
group structure underlying the affine line without the origin.

REMARK. We will always use commutative groups schemes and therefore all the
results will refer to these (even though some of them might be true in general).

A fundamental role in the construction of p-divisible groups is played by the
multiplication by n map. For a group scheme GG - S we denote this map

[n]¢:G— G,
and denote its kernel by G(n).

DEFINITION 2.1.0.6 (Cartier dual). Let G be a commutative group. We define
its dual as the group of characters

G* = HomGrSch/S(G> Gm)

DEFINITION 2.1.0.7. A finite flat group scheme is a commutative group scheme
f:G — S, such that the structural morphism is finite and flat and such that f.(O¢g)
is a locally free Og-module of locally constant rank r >0 (note that if S is noetherian
this condition is always verified).

Examples. 1. The p™-th roots of unity pym = {x € Gy, | 2P" =1} € Gyy,.
2. Its dual Z/p"Z.

3. The p"-th roots of zero ayn = {x € G, | 27" = 0}.



Immersion in the fppf topos: Recall that we may interpret the notion of group
scheme a la Yoneda, that is, as a functor F': Sch/S — Groups. Consider the fppf
site over S defined above. Note that for G a group scheme over S, the coverings
{G, - G}, such that the G, are group schemes, respect the group structure. If
the functor F' is representable and the map [[, G, — G is faithfully flat, of finite
presentation and quasi-finite, then the sequence of groups

F(G) = [[F(Ga) 2 [[F(Gs % G,)
o By

is exact. That is, an abelian group scheme G over S can be seen as a sheaf of groups
on the fppf site Sch/S.

2.1.1. The Frobenius and Verschiebung maps. Fix S a scheme of char-
acteristic p > 0. The Frobenius on SpeclF, induces on S a Frobenius Fg: S — S,
which is the identity topologically and which sends a section s to sP. Consider now
an S-scheme X; clearly we have also a Frobenius Fiy : X - X. We define a scheme
X @ through the cartesian diagram

X(p) _— X

b

Fg

Note moreover that the Frobenius morphisms Fix : X - X and Fg: S — S commute
through the structural map X — S. Therefore we may define a map Fy g : X - X®),
called the relative Frobenius, making the following diagram commutative

]

Fs

|

REMARK. This diagram respects the structure of group schemes, that is, if X is
a group scheme, then Fxs: X — X®) is a morphism of group schemes.

We define now a map Vx;s : X® — X, with the same functorial property
described in the previous Remark. This is not trivial and it follows from a theorem
by Lazard under some non-restrictive hypotheses on X. In this case we obtain
commutative diagrams

X X @)
(Pl v
e N0 e
X — o~ X X0 X
Vx/s Fxs

10



2.2. Barsotti-Tate groups

Fix a base scheme S and consider a commutative fppf sheaf of groups G on
the site Sch/S such that p"G = (0). For the following results we will follow [Mess],
Chapter 1.

LEMMA 2.2.0.1. The following conditions are equivalent:

(1) G is a flat Z[p"Z-module,
(2) fori=0,...,n-1 we have Ker([p]%™) = Im([p],).
ProOOF. [Mess, Lemma (1.1)]. O

The first condition tells us in particular that, with respect to the filtration ” pow-
ers of p”, we have

(Z[p"Z)* ®r, (G)" = (G)".
DEFINITION 2.2.0.2 (Truncated Barsotti-Tate group). For n > 2 a truncated
Barsotti-Tate group of level n is an S-group such that
(1) G is a finite, locally-free group scheme,
(2) G satisfies one of the equivalent conditions of Lemma (2.2.0.1).
We define a Barsotti-Tate group of level 1 as a group G satisfying:
(1) G is finite, locally free and killed by p,
(2) if So = Var(p-1s) and Gy = G x5 So, Im(Vigys,) = Ker(Fg,/s,) and
Im(Fgys,) = Ker(Viyys, ), where Feyis, : Go = G((]p) and Vi, /s, - G(()p) - G
are the Frobenius and the Verschiebung maps respectively.

Recall that for G a group scheme, we denote G(p") = Ker([p]%). We have the
following results for the groups G(p™):

LEMMA 2.2.0.3. (1) If G(p™) is a flat Z]p"Z-module, then it is finite, locally-
free if and only if G(p) is, and then consequently every G(p*) is.
(2) If G(p) is finite, locally-free then [p]L : G(p*) - G(p™™t) is an epimor-
phism if and only if it is faithfully flat.

PROOF. [Mess, Lemma (1.5)]. O
DEFINITION 2.2.0.4. o We say that G is of p-torsion if imG(p") = G.
o We say that G is p-divisible if p-idg : G - G is an epimorphism.
DEFINITION 2.2.0.5 (Barsotti-Tate group). We say that G is a Barsotti-Tate
group if it satisfies the following conditions

(1) G is of p-torsion,

(2) G is p-divisible,

(3) G(p) is a finite, locally-free group scheme.

Denote by BT(.S) the category of Barsotti-Tate groups over S with morphisms
the homomorphisms of S-groups.

LEMMA 2.2.0.6. Let G be a Barsotti-Tate group. Forn >2 the G(p") are trun-
cated Barsotti-Tate groups and we have an eract sequence

[P n)

(2.2.1) 0— G("") — G(")

11

G(p') — 0.



PROOF. Note that G(p") = G(p"*!)(p™) and that for any 0 < ¢ < n the map [p]™
[p]Tk;n .

induces an epimorphism G(p™) —q (p'), hence the exact sequence (2.2.1). This

tells us that the equivalent conditions of Lemma (2.2.0.1) are satisfied. Moreover,

G(1) is by definition finite and locally-free, hence we conclude by Lemma (2.2.0.3).

O

REMARK. We point out that the definition after Tate [Tate| given in the In-
troduction coincides with Definition (2.2.0.5), after Grothendieck. Indeed, suppose
that there is a directed system of groups {G(p™)} such that
a) the G(p") are finite and locally-free,

b) G(p*) = G(p™1)(p"),
c) there exists a locally constant function h of S such that the rank of the fiber of
G(p™) at se S is pnh(s),

Then, by [E.G.A.IV, Criterium for flatness by fibers], we have that G(p") LR
G(p?) is faithfully flat, hence an epimorphism, that is, there is an exact sequence

0~ G - GR") = G(p') >0,
and hence G :=lim G(p") is a Barsotti-Tate group.

On the other hand, nby [GA] we have that, given a Barsotti-Tate group (a la Grothendieck),
there exists a locally constant function h on S such that the rank of G(p") at s € S

is p"M) | for every n > 1. By this consideration, together with Lemma (2.2.0.6), we
conclude.

LEMMA 2.2.0.7 (Functoriality properties). If f : S - S is a morphism of
schemes and G € BT(S) then f*(G) e BT(S").

Note that BT(.S) admits a notion of duality. Consider G' a Barsotti-Tate group.
From the exact sequence (2.2.1) we see that the family of Cartier duals G(p™)* of
G(p™), together with maps [p]* : G(p")* - G(p™*1)* give us a Barsotti-Tate group
G* of G.

Ezxamples of p-divisible groups. 1. piye :=lim p,m, where p,» denotes the group

of p"-th roots of unity.

2. Its dual Q,/Z, =lim Z/p"Z.

3. Let X be an abelian scheme. If we denote by X (p™) the multiplication by p»
in X we have that X(p>) =lim X(p") is a p-divisible group.

Fix a field K of characteristic 0 and let K be its algebraic closure. Denote by
G the absolute Galois group Gal(K/K). The following definition is a fundamental
step for linking representations of the Galois group G to p-divisible groups.

DEFINITION 2.2.0.8. Given a p- divisible group G over K, we define the Tate
module

T,(G) = lim G(p") (K),
where the limit is taken over the projective system
n+1y _LP] n

G = G-

12



The Tate module encodes somehow all the knowledge about the generic fiber
G ® K. Note that Gk acts on the Z,-module 7,,(G).The following functoriality
property is proved in [Tate].

THEOREM 2.2.0.9 (Tate). If G and G'are p-divisible groups over Spec Ok. Then
there is a bijection

Hom,,_g;/6, (G, G") = Hom,, 4,k (G® K,G'® K).
COROLLARY 2.2.0.10. There is a bijection
Homy,_givjoy (G,G) — HomZp[GK](Tp(G)>Tp(GI))‘
REMARK. Another way to see the Tate module is through the equality
lim G(p") (K) = lim Hom (Z/p"Z, G(K)) = Hom(Q,/Z,, G(K)).

2.3. The classification by Dieudonné

Fix k a perfect field of characteristic p > 0. We define W = W (k) the ring of
Witt vectors of k and o : W — W the induced Frobenius map.

DEFINITION 2.3.0.11. We define the Dieudonné ring © as the (non commutative)
polynomial ring W[F, V], where F' and V satisfy to the relations

F-V=V-F=p,
F-X=0()\)-F,
V-dx=ot(\)-V.

Any element of ® can be written uniquely as a finite sum

ag+ Y (b;V"™ + ¢, F™), for ag,b;,c; e W.
=1

THEOREM 2.3.0.12 (Dieudonné 1). There is an anti-equivalence of categories

{p-gp sch [k} Do, {Dieudonné modules of finite W -length}
G > Homk,gpgch(G, W) = 1£I)1n HOIIlk,GpSCh(G, Wn)

Note that Dy;,(G) is a module over the Witt vectors. Moreover, the Frobenius
and the Verschiebung maps on the group scheme G induce maps

F]Dfm(G) —>]D)fm(G)(p), V]Dfm(G)(p) —>]Dfm(G)

That is, Dy, (G) has a module structure of the ring ®; we call it a Dieudonné mod-
ule. For the proof of the theorem see [Dem, p. 65].

Examples. 1.) We have Dy;,,(Z/p"Z) =D [(F —1,p™). Indeed, the multiplication
by p" is clearly zero, while the Frobenius map is the identity. From the relation on
® it follows that V = p.

2.) In the dual case, we have Dy;, (pipn) = D/ (F - p, p").

By passing to the limit we obtain
13



THEOREM 2.3.0.13 (Dieudonné 2).

BT (k) —— {W-free Dieudonné modules}

The Dieudonné functor satisfies to the following properties (see [Fon2, chapter
3] for the proofs).

(1) The Dieudonné functor is exact and it commutes with Cartier duality.

(2) It compatible with base change, that is, if k& - &’ is an extension of finite
fields, then D(G x; k') = D(G) ®w ) W(K'); it follows that D(G®P)) =
D(G)®,

(3) D(G)/FD(G) is naturally isomorphic to the cotangent space of G.

2.4. Formal Lie groups

In this section we establish the relation between Barsotti-Tate groups and formal
Lie groups. Let S be a base scheme.

DEFINITION 2.4.0.14. Let XY be fppf sheaves of groups over S such thatY —
X. We define for every k > 0 a subsheaf Inf¥(X) of X whose I'(T,Inf% (X)) on
an S-scheme T are those sections t € I'(T, X) such that there exists a covering
{T; - T}; and for every T; a subscheme T}, defined by a (k+1)-nilpotent ideal, such
that tp € (T}, X) is an element of I'(T},Y').

Inf} (X) is compatible with base change. When a sheaf X over S is provided
with a section ey : S — X, that is, (X,ex) is a pointed sheaf, we get a particular
case of the definition and we write Inf*(X) := Inf%(X).

DEFINITION 2.4.0.15 (Formal Lie Variety). A pointed sheaf (X,ex) over S is
said to be a formal Lie variety if

(1) X = 1imk inf*(X) and the Inf*(X) are representable for every k> 0,

(2) wy = e}Qﬁ(/s = e}Qllnfk(X)/S is locally free of finite type,

(3) denoting by grinf(X) the unique graded Os-algebra such that gr™ (X) =

gri(Inf'(X)) holds for all i > 0, we have an isomorphism Sym(wy) ——
gr™ (X)) induced by the canonical mapping wy — gri (X).

DEFINITION 2.4.0.16 (Formal Lie group). A formal Lie group (G, eq) over S is
a group in the category of formal Lie varieties.

There is a good characterization of formal Lie groups in the case S of charac-
teristic p > 0. Moreover one can extend some of the properties to the case p locally
nilpotent over S and these will give us a relation between p-divisible groups and
formal Lie groups.

Let S be a scheme of characteristic p and G an fppf sheaf of groups over S. In
this case we have a Frobenius and a Verschiebung morphisms:

Fg/SZGﬁG(p), Vg/siG(p)ﬁG.

We denote by G[n] the kernel of the n-th iterate (Fg s)™.
14



DEFINITION 2.4.0.17. We say that G is of Fgys-torsion if G =lim G[n]. We say
that G is Fgs-divisible if Fgg is surjective.

THEOREM 2.4.0.18 (Characterization of formal Lie groups in char p). G is a
formal Lie group if and only if

(1) G is of Fgyg-torsion,
(2) G is Fgyg-divisible,
(3) The G[n] are finite and locally free S-group schemes.

PROOF. [Mess|, chapter 2, Theorem (2.1.7). O

Suppose now p is locally nilpotent on S.

THEOREM 2.4.0.19. If G is a p-divisible group, then G := lim Inf*(G) is a formal
Lie group.

PROOF. [Mess|, chapter 2, Theorem (3.3.18). O

2.5. Grothendieck-Messing theory

In this section we associate to any p-divisible group a universal extension by
a vector group. Several crystals arise from this construction and this observation
leads to the deformation theory by Grothendieck and Messing. Let S be a scheme
on which p is locally nilpotent.

2.5.1. Universal extensions. Let £ be a quasi-coherent Og-module. We may
regard this as a sheaf on the fppf site over S in the following sense

L(T)=H(T, f*(L)),

where T % S is an fppf S-scheme. If £ is locally-free of finite rank, we call it a
vector group over S. In this case, it is representable by a group scheme which is
locally isomorphic to a finite product G, x --- x G,. Recall that a group scheme G
over S corresponds to a sheaf on the fppf site over S.

We are looking for a solution to the following two universal problems: let G be
a finite, flat group scheme.

(1) There exists a map
a:G-V(G),

where V(G) is a vector group over S such that given a map to any other
vector group G — M there is a unique map V' (G) - M making the following
diagram commutative:

—V(G)

%



(2) Assuming Hom(G, V') = (0) for any vector group V, there is an extension
of group schemes over S

()  0->V(G)—E(G)—>G~0,
which is universal, that is, given any extension
(¢" 0-M->e—-G—-0
by another vector group, there is a unique map ¢ : V(G) - M such that
¢«((€)) = (¢).
Define
W 1= € Qg @ Homgsehemes(GT, G,
where e: S & G* and G* denotes the Cartier dual.
PROPOSITION 2.5.1.1. Let G be an abelian group scheme over S such that G* is

representable. The functor M — Homg_,,.(G, M) is represented by we.. That is, in
the notation of Universal Problem (a), V(G) = wg., where

a:G - wes
[ i
where f e G =(G*)* =Hom(G*,G,,).
Proor. [MM, Prop. 1.4]. O

Note that this construction is functorial, that is, if v : G - H is a map of
locally-free, finite groups, then there is a commutative diagram

G— - fH

QG* —— gH*

Problem (b) is interesting not only for Barsotti-Tate groups, but we will present
two ’ad hoc’ solutions for this case.

PROPOSITION 2.5.1.2. Suppose S is a scheme such that pN = 0 for some N,
G € BT(S). There is a universal extension of G by a vector group, namely we have:

pN

0

G(p") G G 0
0—V(G) = WepNys — E(G)—G—=0
Proor. MM, 1.8]. O
Since of course w. = W (N if pV =0 on S, the universal extension is
0->we = E(G)>G-0.

COROLLARY 2.5.1.3. Since Cartier duality commutes with base change, also the

universal extension does. More precisely, if f:S" - S is a morphism of schemes
and G € BT(S), then f*(G) e BT(S"). Moreover f*(E(G)) = E(f*G).

16



Moreover, it has the following functorial property: if u: G - H is a morphism of
BT-groups over S, then there is a map E(u): E(G) - E(H), which is a morphism
of extensions:

(2.5.1) 0—V(G)—E(G) —G——=0
lm) lE(u) lu
0—V(H)—=FH)—H—0
We apply to the construction the Lie algebra functor
{Lie groups} — {Lie algebras},
which associates to a Lie group its Lie algebra. We dispose of a canonical Lie group.
LEMMA 2.5.1.4. Given a universal extension E(G), we have that
E(G) = lim Inf*(E(Q@))
s a formal Lie group.
DEFINITION 2.5.1.5. We define
Lie(B(G)) = Lie(E(G)).
This is a locally-free sheaf of Os-Modules.
LEMMA 2.5.1.6. We have the two following exact sequences:
0—V({@GE — EG — G — 0,
0 —V(G) — Lie(E(G)) — Lie(G) — 0.
Proor. [MM, Chapter 4, Prop. 1.21, Prop 1.22]. O

2.5.2. The crystals associated to Barsotti-Tate groups. Let S be a base
scheme with p locally nilpotent. We define a full subcategory BT'(.Sy) of BT(Sy)
with objects those p-divisible groups G over Sy such that there exists an affine open
cover {Up} of Sy such that for any nilpotent immersion Uy — U (this is a special
element of the site) there is a BT-group G on U such that G|y, = Go|y,-

We associate a crystal to a p-divisible group G in this sub-category. Since fppf
groups form a stack with respect to the Zariski topology, it suffices to specify the
values of the going to be defined crystal on elements (Uy = U) € Cris(Sp) such that
Up is affine in Sy and Go|y, can be lifted to U.

THEOREM 2.5.2.1. Consider for a ring A, schemes S = Spec(A) and Sy =
Spec(A/I), where I is a P.D.-ideal of A. Consider G,H € BT(S), their restric-
tions Go = Gls,, Hy = H|s, € BT(Sp) and a map

Ug - G(] — H().
By diagram (2.5.1) there is a unique morphism of extensions E(ug) : E(Gy) —
E(Hy).
Then there ezists a unique morphism of groups (not necessairly of extensions!)
Es(uo) : E(G) — E(H),
such that Es(ug) is a lifting of E(ug). Note that there is not necessairly a map
G- H.

17



PRrOOF. [Mess, Chapter 4, Thm. 2.2]. O

COROLLARY 2.5.2.2. Given a third p-divisible group K in the notation above,
with a map g : Hy - K,

Es(to) o Es(uo) = Es(1p o ug)

COROLLARY 2.5.2.3. If, in the notation above, uy is an isomorphism, then
Eg(ug) 1s an isomorphism.

COROLLARY 2.5.2.4. Suppose we have a diagram

nilpotent

Spec(A/I) = Sg——— S =Spec(A)
T fTP.D.mm"phism
Spec(A'/I") = S g — S’ = Spec(A")

Consider G, H € BT(S) and a morphism ug : Gy — Hy as in the theorem. Recall that
by Corollary (2.5.1.3), universal extensions are compatible with base change. Then

Egi(f*(u0)) = (Es(uo))s-
This statement can be applied in particular to morphisms on the crystalline site

Uy——U

1| T?

We——V

Consider now a p-divisible group Go € BT'(Sy), (Uy = Spec(R) = U) € Cris(Sp)
such that G|y, can be lifted to U. We define E(Gy) as the sheaf on Cris(Sy) with
value E(G) on (Uy = U) for G a lifting of Gy|y, to U.

This is a crystal according to the definition. Indeed, by the definition of BT'(.Sy)
there exists a p-divisible group G over U such that G|y, = G|iy,. Consider the
universal extension F(G). By Corollary (2.5.2.3) this is independent of the lifting
G of G up to isomorphism. Indeed, given H another lifting, we have an isomorphism
Glv, = H|v,, which extends to an isomorphism E(G) — E(H). Moreover, suppose
we are given a morphism f:V — U on the crystaline site. Then for a lifting Gy of
Golv, and a lifting Gy of Gyly, there is an isomorphism by Corollary (2.5.2.4)

(2.5.2) F(E(Gy)) = E(Gy),

hence the conclusion.
Note that given a morphism on the crystalline site

Uy——U
1 s
WV
and a lifting G of Gy|y, to U, the functoriality of universal extensions gives us

F(E(@)) = BE(Gv) = E(f*(Go)) v
18



that is,
f*(E(Go)) = E(f*(Go)).

Finally, for Gy as above, we define

E(GO)(UOQU) = E(Go)(UOQUy
D(Go) ooy = Lie(E(Go) 1y orry-

That is, if Sy = S is a P.D.-immersion and G € BT'(Sy) can be lifted to a p-divisible
group on S, then

E(Go)(so-s) = E(G),

E(Go)(so-s) = B(G),

D(Go)(so-5) = Lie(E(G)).

These equalities are meaningful since we are interested in some particular values of
the crystals on objects on the crystalline site over S of type Sy = S. We therefore
re-define the category BT'(Sy) to be the subcategory of BT (Sy), whose objects can

be lifted to a G € BT(S). We denote respectively by E(G)(S), E(Go)(S) and
D(Gp)(S) the values of the crystals on (Sy = S) € Cris(.Sp).

REMARK. We have constructed the crystals under the hypothesis p locally nilpo-
tent on the base scheme Sy. However, we can evaluate the crystal on p-adic P.D.
thickenings Sy = S by passing the construction to the limit. The same holds for the
results in the following section.

2.5.3. The theorem of Grothendieck-Messing. Let (Sy = S) € Cris(5) as
above. Denote by D(Gy)(.S) the evaluation of the Dieudonné crystal on (Sy < .5).

DEFINITION 2.5.3.1 (Admissible filtrations). We say that a filtration Fil'D(Gy)(S) ¢
D(Go)(S) is admissible if Fil'D(Gy)(S) is a locally-free vector sub-group with locally-
free quotient, which reduces to V.(Gy) < Lie(E(Gy)) by restricting to Sy. Define
the category

€ = {(Go,Fil'D(Gy)(9)) | Gy e BT'(Sy),Fil'D(Gy)(S) € D(Go)(S) is admissible},
with morphisms the pairs (ug,€), ug : Gy - Hy, & : FiI'D(Go)(S) - Fil'D(H,)(S)

making the following diagram commutative
Fil'D(Go)(S) = D(Go)(5S)
| o
Fil'D(Hy)(S)— D(Ho)(S5)
which of course, restricting to Sy, becomes
V(Go)— Lie(E(Go))
K(uO)l lM(E(UO))
V(Hy)— Lie(E(Ho))
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THEOREM 2.5.3.2 (Grothendieck-Messing). There is a contravariant equivalence
of categories

BT(S) — %
G — (Go=5xsG V(G) = Lie(E(G)) = D(Go)(5))

2.5.4. Comparison with the theory by Dieudonné. Suppose S = Speck
for k a perfect field of characteristic p > 0. The classifcation by Messing agrees with
the classification by Dieudonné in this case ([MM], Section 15).

THEOREM 2.5.4.1. Recall that for S = Speck we are given an equivalent functor
DDiew: BT(k) —— {W-free Dieudonné modules}
G — lgDﬁf“(G(n))
There is a canonical isomorphism of functors

D —s ]D)Dieu'

20



CHAPTER 3

The first classification

Consider a W-scheme Ty where p = 0 and consider a P.D. thickening in the
crystalline site Cris(7'/W)

Ty———1T

|

Spec(W)

where p is locally nilpotent. Since p =0 on Tj, it is endowed with a Frobenius map
@ from W. Recall that we can see any p-divisible group Gq over T as a sheaf over
Ty and hence we can pull-back the Frobenius and consider the map Gog - ¢*Gj. At
the level of crystals we get by functoriality

¢*(D(Go)) = D(*(Gy)) — D(Go),
(the map on the left is an isomorphism by (2.5.2)).

Consider G € BT'(T) and a lifting G € BT(T'). Note that by the considerations
of section (2.5.2)

D(Go)(T) —— D(G)(T),

where D(G)(T') denotes the value of the crystal in 7. With this notation, we get
by Lemma (2.5.1.6) an exact sequence

(3.0.3) 0— V(G) — D(G)(T) — Lie(G) — 0.

DEFINITION 3.0.4.2. We say that a ring A is special if it is a p-adically complete,
separated, p-torsion free local Z,-algebra with residue field k, and endowed with a
lifting p : A - A of the Frobenius on the quotient A/pA. A map of special rings is
a map of Zy-algebras, compatible with the action of ¢.

LEMMA 3.0.4.3. Let A be a special ring and (I,7y) a P.D. ideal. Then ¢(I) c pA.
In particular it makes sense to consider o1 = ¢/[p on I, since A has no p-torsion.

PROOF. If a € I, then ¢(a) = a? mod pA, and hence ¢(a) = vy(a)p! mod (pA),
so p(a) € pA. O

7!

Consider W[u][E(u)] the P.D. envelope of W [u] with respect to (E(u)). There

is a surjective map

], - o
u g T
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E(u)'
T

Denote by S its p-adic completion and Fil'S ¢ S the ideal generated by all the
The ring (S,Fil'S) is a P.D. ring. The above map induces an isomorphism

S/Fil'S — 0.
We extend to S the Frobenius on W by putting

s 2, 8

u +—  uP

(3.0.4)

S is a special ring. It is by definition a p-adically complete, separated, p-torsion
free Z,-algebra. By Lemma (3.0.4.3), we get a map ¢; = ¢/p on Fil'S.
DEFINITION 3.0.4.4. Denote by BT“/DS the category with objects the finite free

S-modules M together with an S-submodule Fil'M and a p-semilinear map o1 :
Fil' M - M such that

(1) ppr =@ on Fil' M,
(2) Fil'S- M c Fil' M and the quotient M[Fil' M is a free Ox-module,

(3) the map *(Fil' M) O M s surjective.

THEOREM 3.0.4.5. The Dieudonné crystal defines an exact contravariant functor

BT(0x) —2- BTY
G — D(G)(S)

For p > 2 this is an equivalence of categories; for p = 2 this is an equivalence of
categories up to isogeny.

In order to define the functor M and construct an inverse we will go through
some technical lemmas.

LEMMA 3.0.4.6. Consider a surjection A - Ay of special rings whose kernel
Fil'A is equipped with divided powers. This gives us in particular an element of

Cris(So/Zy):
Spec(Ag) » Spec(A).
Suppose the following hypotheses are satisfied
(1) A is p-torsion free and has a Frobenius ¢ : A - A lifting that of A/pA,
(2) the induced map (Lemma (3.0.4.3)) ¢*(Fil' A) LA surjective.

Let Gy be a p-divisible group over Spec(Ag) and G a lifting of this to Spec(A).
Denote by Fil'D(G)(A) the preimage of V(Go) in D(G)(A): by (3.0.3) there is
an injection V(Go) = D(Gy)(Ag) and, following the notation of Theorem (2.5.3.2)
there is a lifting

Fil' (D(G)(A)) = D(G)(A) = D(Go)(A)

| |

V(Go)© Lie(E(Go))
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The restriction of ¢ : D(G)(A) - D(G)(A) to FiI'D(G)(A) is divisible by p and the
mduced map
o (Fil'D(G)(4) =5 D(G) (4)
18 surjective.
PROOF. Note first that ¢|gip(g)a) is divisible by p. Indeed there is an equality
(3.0.5) Fil'D(G)(A) = V(G) + Fil'A-D(G)(A),

(the reduction mod Fil'A on both sides is precisely V(Gy)) and by the fact that
e(V(@)) c pD(G)(A) we conclude.
Since A has no p-torsion, also D(G)(A) doesn’t, hence we consider the map

o/p: Fill]D(G)(A) - D(G)(A).
By hypothesis (b) of the statement we get
Ap(D(G)(A)) = Ap/p(Fil' A) Ap(D(G)(A)) € Ap/p(Fil'D(G)(A)),
the last inclusion being true because of equality (3.0.5).
Therefore, the statement o/p(Fil'D(G)(A)) generates D(G)(A) is equivalent to
the statement o/p(Fil'D(G)(A) + pD(G)(A)) generates D(G)(A).
There is a unique ¢-compatible map A — W (A) and, by functoriality, a diagram

A k

L

W(A) — W (k)

Hence we get a unique map A — W (k), compatible with the Frobenius action. Define
hence H := G®, W (k) and H := H ®w (k) k. In this case Messing’s theory coincides
with the classical theory by Dieudonné by Theorem (2.5.4.1), that is, D(H)(W (k))
is naturally, (-compatibly isomorphic to the Dieudonné module associated to H,
that is, it is given a Frobenius map ¢ and a Verschiebung morphism V. By restricting
to W (k) we get

V(H) =V (e/p)V.(H)c VD(H)(W(K)).

By restricting again to k we get an inclusion V (¢/p)V (H) ¢ VID(H)(k). This is in
fact an isomorphism, since the two terms have the same k-dimension, being both
isomorphic to D(H)(k)/eD(H)(k). Lifting the equality to the Witt vectors we get
that Fil'D(G)(W) + pD(G)(W) = VD(G) (W), that is

p/p(FI'D(G) (W) + pD(G)(W)) = D(G) (W),
since V- p/p = 1. Since D(G)(A) is a finitely generated module we obtain the

equality we are looking for by Nakayama’s lemma. O

For a special ring A, we define the category C4 with objects finite free A-modules

M, with a Frobenius semilinear map ¢ : M — M and an A-submodule M; c M

such that ¢(M;) c pM and the induced map ¢*(M;) LA VEN surjective.
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Given a map of special rings A - B there is a functor

CA — CB
M — MesB

Indeed M ® 4 B inherits a Frobenius in the obvious way and we define (M ®4 B); as
the image of M; through the natural map M - M ®4 B. Clearly p((M®4 B);) c
p(M®4 B). Moreover, the right exactness of tensor product gives us the surjectivity

of o* (M @4 B)1) 2% (M @4 B).

LEMMA 3.0.4.7. Let h : A = B be a surjection of special rings with kernel J.
Suppose that for i > 1, p*(J) c p™iiJ, where {j;}i»1 1S a sequence of integers such
that lim, .. j; = co. Let M and M’ be objects in the category C4 and 0g: M @4 B =
M'®4 B be an isomorphism in Cg. Then there exists a map 0 : M — M’ such that
f®s B=205.

Construction of the functor M. Let G be a p-divisible group over Ok, then
D(G)(S) belongs to the category BTfS. Indeed there is a natural map

S

/N

and hence we may evaluate the crystal D(G) on the formal scheme Spf(S). More-
over, the P.D. couple (S,Fil'S) satisfies the hypotheses of Lemma (3.0.4.6) and
hence (D(G)(S),Fil'D(G)(S)) ¢ BTY .. We define M(G) :=D(G)(S).

w

Ok

PROOF OF THEOREM (3.0.4.5). We wish to construct a quasi-inverse

Fix (M,Fil'M) ¢ BTfS. Note first that M € Cs. Indeed, M is by definition

a finite free S-module, with a Frobenius endomorphism. Moreover, by point (b) in

1
the definition of the category BTfS, there is a surjection p*(M;) ®—Wp> M.

For i =1,..., e define the algebra R; := W{u]/u'. It has a Frobenius
Wlu]/u' — Wlu]/u',

induced by the Frobenius
:Wlu] — W[u]

U — uP

By the universal property P.D. envelopes there is a diagram

/\

where f; is the map sending u ~ u and (uj;,)] 0, for j > 1.

/uz _. z'
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Put M, := M ®g R;. Note that f;: S - R; is a map of special rings and M, € Cp,
with Fil' M, := ¢;(Fil'M), where g; : M - M, is the obvious map. In particular
there is a surjective map

For every 7 there is a surjective map

RZ‘ = VV[U]/UZ —>> ﬁK/T{'i
u = s
with kernel pR;. This tells us in particular that (Spec(Ok/m?) < Spec(R;)) €
Cris(Spec(Ok [n?) /W) and hence, given a p-divisible group H; over Ok /n?, we may
evaluate the Dieudonné crystal D(H;)(R;). In particular, there is a diagram

(3.0.6) Fil'D(H,)(R:) — D(H;)(R:)

V(H;) D(H;)(Oxk /)
We want to construct inductively p-divisible groups G; over Ok /nt for i =1,... e,
such that

D(G;)(R;) = M,.

Suppose first ¢ = 1. We have that Ry = W{u]/u ~ W and that M; and

@*(Fil' M;) are WW-modules of the same rank, that is,
1® - QO*(FlllMl) — M.
This allows us to define a Vershiebung map, namely
My = pFIM) ZEh oMy 2 M,
a®@m +— pl(a)m

This makes M; into a Dieudonné module and therefore by classical Dieudonné
theory ((2.3)) it is uniquely associated to a p-divisible group G over R;.

Suppose now 2 <i < e and assume there exists G;_; over Ok /m'~! such that
(307) D(Gi—l)(Ri—l) ;) Mi—l

in Cg, ,. Note that (Spec(O /') < Spec(R;)) is an element of the crystalline site
Cris((Ok [mi=1) /W) as well, since there is an obvious map

RZ’ —>> ﬁK/ﬂ'ii1
with kernel the P.D. ideal (u’~!,p). Hence we may consider the evaluation of the
crystal D(Gy-1)(R;).

Put Fil'D(G,_1)(R;) the pre-image of V/(Gi-1) € D(Gy-1)(Ok [ni1). By Lemma
(3.0.4.6), D(Gi-1)(R;) € Cr, and hence the isomorphism (3.0.7), being a map of Z,-
algebras, respecting the Frobenius map, is an isomorphism in Cp, ,. Hence, applying
Lemma (3.0.4.7) to the obvious surjection R; - R;_;, we get an isomorphism in Cg,

By the definition of BT“DS, we have that Fil'’ M; is admissible, and hence we
can apply Grothendieck-Messing’s theorem to (M;, Fil' M;). The natural surjection
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Ok |nt > O [m=! gives us a P.D.-immersion Spec(Ok /mi~1) + Spec(O/n?). Hence
we may define a unique p-divisible group G; over O/t lifting G;_;. The structure
of diagram (3.0.6) provides the map

M; = D(Gi1)(Ri) » D(Gi1)(Ok[7') = D(G) (O 7").

Through this last morphism Fil' M; maps to V(G;). Hence the induction gives us
an isomorphism

D(Gi-1)(Ri) = D(Gy)(R;) — M, I<i<e,

which is compatible with filtrations and the action of ¢.
Suppose i = e. We have defined a p-divisible group G, over O [m¢ = O [p and
we have, by the considerations written above, an isomorphism in Cp,

(3.0.8) D(G.)(R.) ~ M..

Note that the kernel (pS+Fil'S) of the surjection S - Ok /p admits divided powers,
hence we may evaluate the crystal D(G,) associated to G., which by Lemma (3.0.4.6)
is an object D(G.)(S) of the category Cg. Therefore we may apply Lemma (3.0.4.7)
to the surjection S - R, and obtain from the isomorphism (5.1.1.4) in Cg, an
isomorphism in Cg

D(Ge)(S) — M.

Suppose now that p > 2. In this case, the kernel of the surjection Ok - Ok/[p
is a P.D. ideal. By Grothendick-Messing theorem we define G(M) as the unique
lifting of G, to Ok such that V(G) c D(G.)(Ok) ~ D(G)(Ok) is the image of
Fil' M through the map

M — D(G)(S) — D(G)(Ok).

By this map moreover, it is obvious that M — M(G(M)). In order to see
that G — G(M(G)), note that at every step of the induction we used Messing’s
theory, and by unicity of the p-divisible group we obtain for every i =1,... e

Gi;(M(G)) ~ G modulo 7,
and
GIM(G)) =G,

and hence we conclude.

Suppose now p = 2. In this case the problem is that the kernel of the surjection
O — Ok [p does not have divided powers. This case requires therefore a little more
work. We may give to the kernel of Ok [/p? - O [p a P.D. structure (*) by putting
plil = 0 for ¢ > 2. Therefore we may lift the p-divisible group G, to a p-divisible
group Ga. over O [p?* such that the image of Fil' M through the map

M —D(Ge)(S) — D(Ge)(Ok[p?) = D(Gae) (O [p%)

is V(Gsge). Finally we may lift Gy, to a p-divisible group G over Ok such that the
image of Fil' M through

M > D(G.)(S) — D(Ge)(ﬁK/p2) = D(G2e)(ﬁK/P2) = D(Gae)(Ok) = D(G)(Ok)
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is equal to V(Ga.). As in the case p > 2, the isomorphism M(G(M)) ~ M holds.
Given G a p-divisible group over 0k we obtain as above an isomorphism

G.(M(G)) ~ G modulo p.

On the other hand though, we do not always have an isomorphism between G, and
G modulo p?. This happens because the P.D. structure (*) on the kernel p c Ok /p?
is not compatible with the divided powers (p) c S. Since both Gs. and G mod p?
lift G, by [Katz], we get maps between the two in both directions

Gse 5 G mod p?.
Moreover, since G and G(M(G)) are both obtained by lifting the image of Fil' M
in D(Ga.)(Ok) ~ D(G mod p?)(Ok), we obtain two maps
GM(G)) sG.
Both composites are the multiplication by p*, hence we conclude.
O

REMARK. As already pointed out before, deformation theory holds in the case p
18 locally nilpotent on the base scheme. We use Messing theorem at every step of
the induction, however p is not nilpotent on S. In the proof we pass implicitly to
the limit at every step of the induction.

3.0.4.1. Ezamples. We would like to see how the functor

BT(0x) 2 BT

s
G —  D(G)(5)
works. The universal extension of G gives us a sequence

0 —> wge — Lie(B(G)) —> wg — 0

1. Consider G = pipe = lim prn. We have

M(pp=) =S,  Fil' M(p,~) = Fil'S.

Indeed wg. = 0 and hence D(G)(S) equals the evaluation in S of w,, that is,
D(G)(S) = S% ~ S. Moreover we have D(G)(S)/Fil'D(G)(S) = Ok (evaluation
of wg and hence Fil'! M(G) ~ Fil' S, since O ~ S/Fil'S.

2. For the dual Q,/Z, we have

M(Q,/Zy) = S, FﬂlM(Qp/Zp) =S.
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CHAPTER 4

Categories of semi-linear algebra data

Let k be a perfect field, W := W (k) the ring of Witt vectors, Ky := W([1/p]
its field of fractions. We denote by ¢ the Frobenius endomorphism on W, and by
extension, on K. We consider a totally ramified extension

Ox —K

W ——K,

with fized uniformizer 7, of minimal Eisenstein polynomial Efu] € Ko[u]. We fix

moreover an algebraic closure K of K. Define a sequence of elements m, € K such

that

p

T =T sl = Ty

and hence a tower of fields

In this chapter we define several categories of semi-linear algebra data, that is,
categories of algebraic objects over K. The aim is to give a description of a certain
category of W[[u]]-modules in terms of modules over K equipped with additional
structures, such as a Frobenius map, a differential operator and a filtration.

4.0.5. ¢-modules over K.

DEFINITION 4.0.5.1 (Etale p-modules). Consider a W-algebra A, together with
a W-linear Frobenius p. A p-module over A is a finite free A-module M, together
with a p-semilinear endomorphism, that is, a map @y : M — M, such that
em(z+y) = om(@) +ou(y),
pr(Az) = o(N)par (),
forx,ye M and X € A.

A p-module M s said to be étale if the A-linearization
(M) — M
A@xr  — Aop(w)

is an isomorphism (x € M, X € A). We will often write pp = p. We denote by DM
the category of étale p-modules.

DEFINITION 4.0.5.2. A (¢, N)-module over Ky is a Ky-vector space D, equipped
with two maps
o, N:D—>D
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such that

(1) D is étale,

(2) N is a Ky-linear map,

(3) the relation N o =p(po N) holds.
A morphism of (¢, N)-modules n: D1 - Dy is a Ky-linear map commuting with N
and ¢. We denote by Modf’;jo the category of (v, N)-modules over K.

The category of (¢, N)-modules is abelian and Tannakian.

DEFINITION 4.0.5.3. A filtered (@, N)-module over K is a (v, N)-module D
over Ko, together with a filtration on the K-vector sapce Dk = K ®x, D, which is
decreasing, separated and exhaustive, that is, the Fil' Dy satisfy

Fil'"' Dy c Fil' Dy, (Fil'Dg = 0, UFil'Dk = D.
€7 €7
A morphism of filtered (¢, N')-modules is a morphism of (¢, N')-modules n: D1 — Dy
such that g : D1 @, K - Dy xy, K satisfies ng(Fil'D; ® K) c Fil'( Dy ® g, K) V1.
We denote by MF?N the category of filtered (p, N)-modules over K

This is an additive, non-abelian, Tannakian category.

Suppose now dimg, D < co.

e Suppose first dimg,D = 1, that is, D = Kj - d for some non zero d € D.
Since ¢ is bijective, we have ¢(d) = ad, with o € Ky — 0. Note that the
p-adic valuation v,(«) is independent of the choice of the basis {d}, hence
it makes sense to give the following definition:

tn(D) = vy(a).
o If dimg,D = k > 1, then the exterior product /\]}(O D has dimension 1 and
hence we define ty(D) =ty (Af, D).

PROPOSITION 4.0.5.4. If D is a (¢, N)-module such that dimg,D < oo and ¢ is
bijective, then N is nilpotent.

For any finite-dimensional filtered K-vector space A we may give the following
definition

o If dimygA =1, we define
tg(A) = max{i € Z|Fil'A = A},
e if dimyxA = h, then we define

£a(A) = tu(A D).

DEFINITION 4.0.5.5 (Admissible (i, N)-modules). A filtered (¢, N)-module is
said to be admissible if dimg,D < oo and

(1) tu(Dxk) =tn(D),
(2) for any sub-object D', ty(D%) <tn(D’).

The category of admissible filtered (¢, N')-modules, denoted by MF?N’“CZ, is abelian,
see [Fon3|.
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DEFINITION 4.0.5.6. A filtered (@, N')-module is said to be effective if FiI°D = D.
We denote by MFZN0 the full sub-category of MF%, of filtered w-modules which
are effective.

4.1. A geometric interpretation of MF}D{’N
Put & = W{[u]]. We have the following strict inclusions:
S = Wlul] > W{lull[1/p] > W[1/p][[u]] = Ko[[u]].

—_—

Define moreover G,, = G @y K,, and denote by &,, its completion at the maximal
ideal (u—m,).

Consider the open rigid analytic disk D[0,1) over K, with coordinate u and for
I an interval in [0,1) the admissible open subspace D(I) c D[0,1). Define the rings
of rigid analytic functions
Or=T(D(I),0pm));
this is a Ky-subalgebra of Ko[[u]]. Put & = 01y the ring of rigid analytic function
on the disk. In particular we have
S[1/p] = O = Ko[[u]].

4.1.0.1. The Frobenius map. All these objects are endowed with an action by a
Frobenius map. The Frobenius map ¢ on W extends to a Frobenius
p:6 — 6
U —  uP.
Together with the regular Frobenius we may define the two following endomor-
phisms on &:
the Z,[[u]]-linear map w6 > 6, x 2P for xeW,
the W-linear map vew 6 > 6, u— ub.
Through these we may induce maps on O7:
ow: 01> 01 pew:0 —> Oy,
and consider
P = Pw o Ps/w - Or — Opay.
In particular on the ring & there is a Frobenius map
p:0 - 0.
4.1.0.2. The differential operator Ny.

NOTE. The definitions which follow depend all on the choice of the uniformizer

Since E(u) € & we have that E(u) € €. Define the element
A= [Te"(E(w)/E(0) €O
n>0

and a derivation on O J
Ny :=-uA—:0 - 0.
du
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We have of course an induced derivation "Ny’ on every 0.
The operator Ny satisfies the following monodromy relation on O

(1.1.1) Ny o ¢ = pE(u)/E(0) (0 Ny).
Indeed, for ¥, qa,u € O
Ne oo anu") = Ne(E pla)u™) = - ¥ p(anpnuA,

oo Ne(E anu) = (Y agu EQ) E()N) = - ¥ p(a )nE(0)/E(u)u A,
Note that if we evaluate in 0 the equation (4.1.1), we get the classical relation
(4.1.2) Nop=ppoN.

4.1.1. (¢, Ny)-modules over ¢ of finite E-height.

DEFINITION 4.1.1.1. A p-module over @ is a finite free O-module M, equipped
with a p-semilinear map ¢ : M — M such that the linearlization p*(M) 284 M s
injective. A (p, Ny)-module over € is an p-module M over O, with a differential
operator N over Ny. Namely, we have the relation

Ng'(fm) = Ng(fym+ fNg'(m),  for fe O meM,
and ¢ and Ny are related by the formula
Ng" o9 =pE(0)/E(u)(p o Ng").

DEFINITION 4.1.1.2. We say that a ¢-module M over O is of finite E-height if
the cokernel of the linearization 1®p : p* (M) - M is killed by some power of E(u).
We denote by Modfﬁ the category of w-modules over O that are of finite E-height.

In particular a (@, Ny)-module over O is of finite E-height if it is of finite E-height
as p-module. We denote by ]\/foal“féNv the category of such objects.

NOTE. One can see M as a coherent sheaf on the unitary disk. It will often be
useful to study p-modules in a neighborhood of a point of Dyg ).

THEOREM 4.1.1.3 (Kisin). There is an ezact, quasi-inverse equivalence of cate-
gories

(4.1.3) M MFEN TR0 =, 1 d%vv'

We show now, how the functor M and its quasi-inverse D are defined.

Define the ring &[l,], where [, is a formal variable. For every natural n there
is a natural map
slifp] » 0 ~ &,
u U e U

extending to a map

—_—

ofl.) — S,
l, +— log [% + 1]
where log[% + 1] =Y (F1) () e S...
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Consider D an effective, filtered (¢, N)-module over K. We may consider the
tensor O[l,] ®k, D and define for any n a map

P ®p™"

Lniﬁ[lu]®KOD ﬁ[lu]®KgD_>é\n®KgD:é;®KDK-

The last equality is true, since G,, := & @y K, is a K-algebra and therefore é\n K,
D=6,k Di. We can extend ¢,, to

tn: O[ly, 1N — &o[1/(u-m,)] ®k Dx = Fr(&,) ®x D.

Indeed, the Frobenius on &[l,] extends to O[l,, A] (we have o(1/A) =TT, o™ (E(u)/E(0)) =
E(u)/E(0)-1/X). Note that in &[l,,1/A] has a differential operator Ny induced by
Ny ® 1. Define finally

M(D) = {z € (O[l,,1/\] ®K, D)V | V1, 1, (x) € Fil*(&,[1/(u - 7n)] ®k Di)}.

LEMMA 4.1.1.4. The module M(D) has a structure of (p, Ny)-module. More-
over it is of finite E-height, that is, M(D) € Mod“/o’;vv.

Proor. [Kis, Lemma 1.2.2]. O

Let’s define now a quasi-inverse

D : Mod? ™Y — MF#NFilo,
/o K

Consider M ¢ Mod“/";vv. We define a ¢p-module D(M) as the object M/uM with

operator ¢ induced by the Frobenius on M. This is given an operator N by reducing
Ny modulo uM.

LEMMA 4.1.1.5. The (¢, N)-module D(M) defined above has an effective filtra-

tion.

4.1.2. Kedlaya’s theory of slopes. We give now a characterization of admis-
sibility in the equivalence of categories (4.1.3). Following a very original idea by L.
Berger ([Ber]) we can describe this notion in terms of Kedlaya’s theory of slopes.
This is a generalization of the classification (Dieudonné-Manin) of the filtrations of
finite free ¢o-modules over a complete discrete valuation ring with algebrically closed
residue field. This classical result is no longer true under more general hypotheses
and two papers by Kedlaya ([Ked1] and [Ked2]) provide a universal filtration (slope
filtration) on étale p-modules over the Robba ring Z.

DEFINITION 4.1.2.1. We define the following rings of functions:
e The Robba ring
K = TIE{I_ ﬁ(r,l%
with a Frobenius map induced by the Frobenius maps on the rings O 1y;
e the bounded Robba ring

R = lim O°

ro1- (1)
where ﬁé’r 1 i the set of bounded functions' in O.1y. The Frobenius on #
induces a Frobenius on .

'Rings of bounded functions: note that & n %" = 6° = &[1/p].
The inclusion &[1/p] c &° is clear. We have that the uniform norm is equivalent to the Gauss
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We define a category M odf% of finite free Z-modules equipped with an isomorphism
1®p: " (M) —> M.
This is a Tannakian category. We define the category M od}f%b analogously.

We state now the results by Kedlaya. Namely, we can associate to any object M €
M oal“/i/2 a finite set of rational numbers {sy,...,s,} c Q. Its existence is guaranteed

by the following result:

THEOREM 4.1.2.2 (Kedlaya). There exists an %-algebra %9 which contains
W (k) and has a lifting of the Frobenius on %, such that for any M € Modf@ there
exists a finite extension W (k)[1/p] = E such that the tensor product

M &z B @y )1y B

admits a basis of eigenvectors vy, ..., v, for o, with eigenvalues belonging to E. The
p-adic valuations of these eigenvalues are called the slopes of M. If the set of slopes
contains only an s € Q, then we say that M is pure of slope s. Moreover for any
M there exists a canonical filtration

slope filtration 0O=MoycMjc---cM, =M
by p-stable submodules such that the quotient M;/M;_1 is finite free over % and
pure of slope s;, for sy <--- < s,.

Proor. [Ked1] O

We denote by M od% the full sub-category of modules M ¢ M od“;% that are pure

of slope s € Q. Analogously we define M odf;b. We have the following result.

THEOREM 4.1.2.3 (Kedlaya). There is an equivalence of categories

M od%‘fb — M odﬁg

M — Meu X
Proor. [Ked2] O
Define a differential operator Ny := —u)\% on Z.

DEFINITION 4.1.2.4. We define the category Moal“/Z’?Nv of modules M € Modf%
equipped with an operator NX' = Ny over Ny on Z satisfying the relation

Ny o =pE(u)/E(0)(p o Ny).
We define a functor

N
Modfﬁ vVo— Modf%
M — My =M®es A

norm. Hence, given f € O°, we have that | f|e < C a constant and hence we may find (through the
properties of the Gauss norm, a non-zero scalar A such that |Af|gauss = |Aflle = 1, and therefore

fe8[1/p].
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REMARK. In order to show that the tensor product is well defined we need to
show (according to the definition of Mod” ) that the map ¢*(Mg) - Mgy is an

isomorphism. Note that the modules M are free and hence injectivity is preserved
after tensoring. Moreover, E(u) is a unit in Z. Since p*(M) - M has cokernel
killed by a power of E(u) we obtain also the surjectivity of the map in Modf@.

For any subinterval I c [0,1) there is a natural map
O—0Cr > XA.

In particular, given M as in the statement, the O;-Module M; = M®4 Oy is given a
differential operator (that we’ll call again Ny ) induced by Ny on M. Passing to the
limit we get an operator Ny on Mg. Hence the functor above extends to a functor

Modf;" — Mod?"™.

We show now that the slope filtration of My is induced by the filtration on M.
In order to do this, we will state some technical lemmas. For the proofs, see [Kis|

DEFINITION 4.1.2.5 (Saturated module). Let M be a finite free Z-module (for
example M € Mod}’f%,). We say that an Z-submodule N ¢ M s saturated if it is
finitely generated and M N is torsion-free. We may define the saturation of N' ¢ M
as the smallest saturated %-submodule N' ¢ M containing N.

LEMMA 4.1.2.6. Let M be a finite free O-module equipped with a @-semilinear
map ¢ : M - M such that ¢*(M) - M is injective. Let Ny ¢ My be a saturated
submodule which s stable under ¢. Then there is a unique saturated submodule
,/\/’(071) c M(O,l) such that ./\/-(071) ®07(0,1) X = Na] and ./\/’(071) 18 gp—stable.

LEMMA 4.1.2.7. Let M be a finite free O-module equipped with a differential
operator & over —u-L, and suppose that the operator N : M u~M[uM induced by
0 is milpotent. If N1y € M(oq) is a saturated O 1y-submodule which is stable under
0, then No,) extends uniquely to a saturated, 0-stable O-submodule N c M.

Proor. [Kis, Lemma 1.3.5]. O

PROPOSITION 4.1.2.8. Let M € Modf[’ﬁNV and My = M ®y Z. Given My's
slope filtration
0=MozcMigc-cM,z=Mazg,

for every © = 0,1,...,r, we have that M, 4 extends uniquely to a saturated O-
submodule M; ¢ M which is stable under ¢ and Ny.

SKETCH OF PROOF. Note that for every ¢, the modules M, , of the slope
filtration are obviously saturated according to the definition. Hence by Lemma
(4.1.2.6) we may find a saturated, ¢-stable module M; 1) ©¢ M) such that
Mi o1 ®0 o1 K = M; . We have in particular that My is Ng-stable. Then by
Lemma (4.1.2.7) it extends to a unique Ny-stable saturated &-Module M; c M. [

THEOREM 4.1.2.9 (Characterization of admissibility). Let D be an effective fil-
tered (@, N)-module. Then D is admissible if and only if M(D) € Modfgvv is pure
of slope 0 (that is if M(D) ®s Z is pure of slope 0).
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SKETCH OF PROOF. Note that the functor M is compatible with tensor product
and preserves the rank, from which it follows that

(4.1.4) det M(D) = M(det D).

We focus first on the case D of rank 1, with basis e € D. Put Dy = (O[l,] ®k, D)V,
then we have, by the definition of the functor M

M(D) = At Dy

Consider the eigenvalue o € Ky—{0} of e, with respect to ¢. Recall that by definition
its p-adic valuation is ¢ty (D). We have

PN 1D)e) = (E(w)/E(0))ParnPe,

Now E(u) is invertible in Z and E(0) € pZ we have that the p-adic valuation of
(E(u)/E(0))P) is —t5 (D). We conclude hence that M(D) has slope ty(D) -
ty (D), hence the conclusion in the case D has rank 1.

Consider now the general case. By (4.1.4) and by

tN(D) =tN(detD), tH(D) =tH(detD),

we have that if M(D) has slope 0, then D is admissible. Conversely, suppose that
D is admissible and consider the Z-module M(D)4 = M(D)®4s%. By Proposition
(4.1.2.8) the slope filtration on M(D)z is induced by a filtration of M(D) by
saturated (y, Ny)-modules over &

0=MocM;c---cM,=M(D).
Moreover we have that M;/M; ;| € Modf’;\[v is pure of slope s;. By results by
Kedlaya [Ked1] we obtain that r =1 and s; = s = 0. Hence the conclusion. O

4.2. G-modules and the category MF}D{’N’FHZO’“CI
4.2.1. (p,N)-modules over 0.

DEFINITION 4.2.1.1. A (¢, N)-module over O is a p-module M over O together
with a Ky-linear map

N: M/uM - M[uM
satisfying to the relation
Nop=p(poN),
where ¢ is the reduction modulo uM of p: M - M.
We denote by M od“/%,N the category of (¢, N)-modules over & of finite E-height,

and by ModZ’N’O the subcategory of modules of slope 0 (that is, according to
Theorem (4.1.2.9)., the subcategory corresponding to admissible, effective, filtered
(¢, N)-modules over Kj).

LEMMA 4.2.1.2. We define a functor
Mod?™ - Mod#®
/16 o
M > M

by taking M = M equipped with the operator ¢ and taking N to be the reduction
modulo uM of Ny. We have the following facts:
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(1) M[1/A] is canonically equipped with an operator Ny such that Nyy =
(p/E(0))E(u)pNy and Nglu-o = N,

(2) the functor ~is fully faithful, with essential image the modules M, stable
under the operator Ny on M[1/A],

(3) any M which has O-rank 1 is in the image of the functor .

Proor. [Kis, Lemma 1.3.10]. O
4.2.2. (p,N)-modules over G.

DEFINITION 4.2.2.1. A (¢, N)-module over & is a finite free S-module I,
equipped with a semilinear Frobenius ¢ : M — MM and a linear endomorphism
N : M/uM @z, Q, > M/uM ®z, Q,. We say that M is of finite E-height if the
cokernel of ©*(IM) — M is killed by some power of E(u). We denote by ModféV
the category of (v, N)-modules over & of finite E-height.

LEMMA 4.2.2.2. The functor

. o, N N »,N,0
@.Mod/6 ®Q, Mod/ﬁ

om — gﬁ@gﬁ

s an equivalence of Tannakian categories.

PrRoOOF. We show that © is fully faithful and essentially surjective. Take M ¢
Modf?’o and fix an @-basis for this module. We have maps

Mod?™ —  Mod?®  —~» Mod?”’
/o Y i
M — My =MoX
M ® gpb 4 D M
therefore, given M € Modf’N’0 we get a module M € Modf;;b. We have the

following diagram:
S[l/p] — 0

|

R —— R

By results of Kedlaya, we may choose a Z*-basis for M coinciding with the
fixed basis for M. Define hence M? to be the &[1/p]-span of this basis. We have
hence defined a p-stable module of finite E-height. Since &[1/p] = & n %#* we have
that

MP = M M.

Full faithfullness: Note that if M e Modfév’o comes from a G-module M €

Mod“/oév, that is, M@ Q, € Mod“/oév ®Q, is such that M ®g & = M, then clearly

(Mee )" = (M)’ =m[1/p],
hence we conclude.

Essential surjectivity: Suppose M € Mod“/oév’0 and consider , Mz, M? as above.
We need to show that such a module comes from an G-module 91 € Modfév. Note
that, by the definition of slope, all eigenvalues of the Frobenius acting on M 4 have
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p-adic valuation 0, that is, they are invertible, hence the matrix of the linearization
of the Frobenius is invertible. This implies in particular, that there exists a -stable
O p-lattice L ¢ Myp, where Oz denotes the ring of integers of %#°. Define

M= Op ®s (MPNL)N (MO L)[1/p].

This is a finite, free ¢-stable module of finite E-height. The fact that it is finite
and p-stable comes from the fact that 9t ¢ My . On the other hand, for every
finite G-module, there exists a finite free module F' such that 9t c F', hence we can
assume 9t = F. For the last assertion, note that if d is the rank of the finite free
module M, then AL M is an SG-module of rank 1. Choose a basis {w € M - {0}}.
Then p(w) = p"E(u)*w, with r,s > 0. But since M = M @s Z° and /\Z?b M is
of pure slope 0, we conclude that r = 0, hence the conclusion. U

From Theorem (4.1.2.9) it follows, as a corollary, the fundamental result of this
section.

COROLLARY 4.2.2.3. There exists a fully faithful functor
MEEM R0t — Modf Y Q.
ProOF. We have indeed the functors

: ~ 1l ith ful ~
MFSD,NFllzo,ad Mod%Nv,O fully faithfu MOd%N’O MOd%N ®@ '
K /o /6 /s P
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CHAPTER 5

Integral p-adic Hodge theory

5.1. Some p-adic Hodge theory

We keep the notation of the previous sections. We consider the extensions of
fields

K, K K

W Ok O

We present now some notions on p-adic Hodge theory. We put G = Gal(K/K).
The general motivation for this theory comes from the fact that the category Repg, (G k)
of p-adic Galois representations is extremely big and very hard to study. The idea
is to establish equivalences between sub-categories of Repg,(Gx) and more ”treat-
able”, well-behaved abelian categories of semi-linear algebra data.

DEFINITION 5.1.0.4 (p-adic representations). A p-adic representation of Gk, or
a p-adic Galois representation of K, is a finite dimensional vector space V over Q,,
together with a linear continuous action of Gg. In other words, it is a continuous
linear map
p:Gg - GL(V).
We denote by Repg,(Gk) the category of p-adic representations of Gg. A Z,-
representation of G is a free Z,-module of finite rank, together with a linear con-

tinuous action of Gg. We denote by Repy, (G ) the category of Z,-representations
Of GK

Note that given 1" € Repz, (Gk) we have T ®z, Q, € Repg,(Gk). On the other
hand, given a representation V' € Repg, (G ) one can construct a Z,-representation
T such that T'®z, Q, = V. Indeed, given a free sub Z,-module T of V' of full rank,
we have that g(7p) is still a free sub Z,-module of V' of full rank. Moreover, the
stabilizer H of T} is an open subset of the profinite group Gk and hence the sum

T= Z Q(To)
geG/H

is finite. This is a Z,-representation and a basis of 7" over Z, is also a basis of V'
over Z,. Hence the conclusion.

The idea by Fontaine to obtain sub-categories of Repg,(Gk ) relies on the defini-
tion of rings of periods, that is, topological Q,-algebras, equipped with a continuous
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linear action of Gx. The ring of periods B might have in general additional struc-
tures compatible with the action of G, such as a Frobenius map, a filtration, a
differential operator.

Fix B a topological Q,-algebra with a continuous linear action of G.

DEFINITION 5.1.0.5. A B-representation V' of Gk is a free B-module of finite
rank equipped with a semi-linear' and continuous action of Gx. If Gk acts trivially
on B, we have that V' is just a representation of Gx. We say that a B-representation
V is trivial if V ~ B? for some d, with the natural action of G.

Suppose B« is a field. If F is a subfield of B6x and V is an F-representation
of Gk, then the tensor B®p V' is equipped with a Gk-action g(A®z) = g(\) ® g(«)
(forz e V,ge G, e B) and B®p V is a B-representation of G.

DEFINITION 5.1.0.6. We say that V' is B-admissible if B ®p V is a trivial B-
representation of Gi. The category of B-admissible representations is denoted by
RepSP(GK)-

Given the B¢%-vector space
(5.1.1) Dp(V) = (B®p V)%
we obtain a B-linear map

ay B®BGK DB(V) — BepV
A®T — AT

Note that Gk acts on B ® gax Dp(V') through g(A® z) = g(A\) ® z, for A € B,z ¢
DB(V)ag €G.

DEFINITION 5.1.0.7. We say that B is is (F,G)-regular if the following condi-
tions hold

(1) B is a domain,

(2) B = (FrB)°x,

(3) every mon-zero b € B, such that Vg € Gk there exists X\ € F such that
g(b) = Ab, is invertible in B.

A field always satisfies the three conditions.

PROPOSITION 5.1.0.8. Suppose B is (F,G)-regular. Then for any F-representation
V' the map oy is injective and it is an isomorphism if and only if V' is B-admissible.

ProOF. [Fon3, Theorem 2.13]. O

5.1.0.1. Some rings of periods - the example of crystalline representations. As a
useful example for what follows, we define the ring of periods B,,;s.

1By semi-linear we mean:

g(x1 +x2) = g(x1) + g(22), g(Az) = g(N)g(x), for N\e B,ge G,x1,22€ V.
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The ring R. Let A be a ring such that the map on the quotient
p: AlpA—> AfpA
is surjective. We can associate canonically to A/pA a perfect ring, defined as
R(A/pA) := lim A/pA,
a—aP
where the limit is taken over the projective system with rings (A/pA), = A/pA for

every n and transition maps the Frobenius ¢ : A/pA — A/pA. The elements of
R(A/pA) are the sequences x = (x,,)neny such that a? | =x,, x, € A/pA for every n.

n+1

PROPOSITION 5.1.0.9. The ring R(A/pA) is perfect of characteristic p.

PROOF. For every element x € R(A/pA), we have zP = x and 2P = 0 if and only

if 22, = x, = 0 for every n, that is x = 0. O

Note that for every n € N there is a map
0,: R(A/pA) - AlpA
€T = (xn)nEN = Tp
Moreover an element = = (x,)neny € R(A/pA) is a unit if and only if zy is a unit in
A/pA.
Suppose now that A is a separated, complete ring, with respect to the p-adic
topology. We have the following characterization for the ring R(A/pA).

LEMMA 5.1.0.10. The ring R(A/pA) is isomorphic to the set
{(Sc(”))neN | 2 p _ x(”)}.

PRrOOF. Consider an element = = (z,),n. For each n, we can choose a lifting
T, € A of x, € A/pA. We obtain a sequence & = (I, )neny With relations

AD _

Z,,1 = &, mod pA.

In particular, for m,n € N we have the relation

m+1

A

N m+1
i1 = Tpem mod pTTAL

Under the hypotheses on A, for every n, this sequence converges to the limit

lim, o0 24 .., in A, and it doesn’t depend on the choice of the lifting. This defines
hence a sequence in (z(™ ),y € A

n o . /\p’!n
2™ = lim 2.

From the definition it is clear that z("*1? = 2(") and this defines hence a map
R(A/pA) — {(x(n))neN | r(n+)p = x(")}
x = (x(n))nEN
]

We study now the introduced object in the case A = O=. Put R := R(0%/[p0%) =
R(O=[p0=).

PrRoPOSITION 5.1.0.11. The ring R is a complete valuation ring and its fraction
field FrR is algebrically closed.
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PROOF. Define a valuation on R by

vr(x) = vy ().

From the surjectivity of the map
R > O=

(xn)nEN = I(O

we deduce that
vr(R) = Qs U {+00}.
Note that vg(z) = 0 = v,(2(®) < 2(0 =0 < z = 0 and by multiplicativity of v,
we obtain right away the multiplicativity of vg. Moreover, for x # 0 we have the
relation vg(x) = v,(2(®) = p"v,(2(™) < 0o and hence there exists a positive integer
n such that v,(2(™) < 1. Since by definition, (z +y)™ =2 + ¢ mod p, we have
(@ +1)™) > min{v, (2), v, (y™), 1} 2 min{u, (z), v,(y ™)}

Hence vy is a valuation. Moreover, R is complete since the topology of the inverse
limit is the same as the topology induced by the valuation. Indeed by vg(z) > p" <
vp(z(™) > 1 < x, =0 we get

{zreR|vp(z)2p"} =Ker{f,: R~ O=[pO=}.

FrR is algebrically closed: see [Fon3, Prop. 4.8]. O

Note that Gk acts on R and FrR in the natural way. As a significant example
of element in R, take € € R, such that €¢© =1 and e # 1. It is invertible in R.
Moreover, by definition of the sequence 7 := (7, )nen, We have that T € R.

Consider now the ring of Witt vectors W(R). An element a € W(R) is by
construction a sequence a = (ag,ai,...,0ny,...) with a, € R. In particular a,,
corresponds to a sequence (@, )inen Such that an,; € Ox/pOx and @), ;.| = @y, ;, for
every i. We define a map

(5.1.2) 0:W(R)~ O=

by 9((@0,@1, s )) = an(]pnagln)'
LEMMA 5.1.0.12 (Structure of the map 6). The map 0 is a ring homomorphism.

PRrRoOOF. Note first that for every n there is a map
W(R) —  Wu(Og/pOF)

a — (aO,TH A1py--- 7an—1,n)
obtained through the diagram
W(R) —— W, (0= [p0O=)

Tn l T Wi (00)

W,(R) ——— W,(R)

where 7, is the projection on the first n components and the map ™" is
W, (R) - Wa(R)
((ao,i)i, (al,i)i> ) (an—l,i)i) = ((ao,z'+n)i, (al,i+n)ia S (Cln—l,z'+n)i)
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Moreover the diagram

Wn(ﬁ?/pﬁ?)

/

W(R) fn

™~

is commutative, for f,((ao,a1,...,a,)) = (af,...,a’_;). By the universal property
of inverse limits, we obtain a map

fn

which is actually an isomorphism (injectivity and surjectivity can be checked on the
elements).
On the other hand, there is a natural map

This is obtained by composing the quotient map ﬁ? - ﬁ?/ p ﬁ? after the map

Wp1 - Wn+1(ﬁ?) - ﬁ?

p" P n
(ap,a1,...,a,) ~ ag +pay +---+pta,
Moreover, the surjective map

Wwi(Oz) - Wi(0z/p0%)
(ao,...,an) = (60,...,6n_1)

has kernel I = {(pag,pay,...,pa,-1,a, | a; € ﬁ?}. Since

W1 (Pag, pas, .-, pan-1,a,) = (pag)”" + p(par P~ +--- +play € p" O=,
there is a unique morphism
0, : Wn(ﬁ?/pﬁﬁ) — ﬁﬁ/p"ﬁ?

_ _ 1
(a'0> o >a'n—1) = ZZO pla’f

making the following diagram commutative

Wit (O=) —"— 0=

| |

07L n
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Moreover, there is compatibility with the projective system {Wn(ﬁﬁ/pﬁﬁ), fatn

On+1

Wn+1(ﬁ?/pﬁ?) —_— ﬁ?/pm—lﬁ?

l l

97l
W (O0=[p0z) —— O=[p"O=
Now, consider = € W(R) and its image (Zon, T1n,---,Tn-1n) € Wn(ﬁ?/pﬁ?). Each

Tin € ﬁ?/pﬁ? corresponds to a lifting [L’En) € 0= and hence

n-1 —— n-1 ——
e(ffo,m Tiny--- >xn—1,n) = Z pl(xgn) )pﬁhZ = Z pz%@-
i=0 =0

Therefore, by passing the morphism of projective systems 6,, to the limit we obtain
the homomorphism 6. O

Consider an element p € R such that p(® = p and put £ = [p] - p € W(R), where
[-] is Teichmiiller map.

PropPOSITION 5.1.0.13. The map
15 surjective and its kernel is the principal ideal generated by .

PROOF. For any element a € 0= there exists a sequence x € R such that 2(*) = a.

Consider hence [z] € W(R). We have that 6([z]) = 2(%) = a, hence the surjectivity
of the map.

To see that Kerf = (), note first that (p-p) =0(p) -0(p) =p-p=0. To prove
the result it is enough to verify that Kert c (¢, p), since W (R)/Kerf = 0= has no
p-torsion and W (R) is complete and p-adically separated (the topology on W (R)
is the product topology).For any = = (x¢,x1,...) € Kerf), we have

0=60(x)= [L’(()O) +p Y. P,

n>1

and hence Up(:cgo)) > 1 = v,(p) and hence vg(xg) > 1 = vg(p). Hence there exists
bo € R such that xg = bpp. Put b= [bo], then

x - b€ = (xo,21,...)—(b,0,...)
= (o —bop,...) =(0,91,92,...)
=p(y1, Y3, ---) = pW(R),
where (y/)" = y. -
Consider now the ring of fractions W(R)[1/p] = Ko ®w W(R). There is an
identification
W(R)[1/p] = UOW(R)p*" = lim W (R)p™,
n> neN

and hence, by extension of scalars on 6, we can consider the morphism of Ky-algebras

—

W(R)[1/p] - K,
with kernel the ideal (§).
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DEFINITION 5.1.0.14. We define the Kerf-adic completion of W(R)[1/p],
Bjg =1m W (R)[1/p]/(§)";
neN
it is a complete valuation ring, with maximal ideal Kerf and valuation field

Bar = Bip[1/£].

The Galois group G i acts naturally on B}, and Bygr. There is a natural filtration
on Byr indexed by Z, '

Fil' Byg = (€)', i €.

An issue regarding the newly defined ring is that it does not admit a canonical ex-
tension of the Frobenius map on W (R)[1/p], ¢((ag,a1,...)) = (af,a¥,...). Indeed,
[p'/P]+p ¢ Kerd, that is, [p'/P]+p is invertible in B}, but on the other hand, if there
was a Frobenius extension ¢ on Bj,, then one would have <p( W) =1ly¢ Bl

The next goal is to define a ring of periods B.,;s € Bgr endowed w1th a natural
Frobenius. Considering the element € € R defined above, we have that [e]—1 € W(R)

belongs to Kerf. Indeed 0([e] - 1) = ¢ —1=0. Then the element (-1)n+1{=D"
W(R)[1/p]€™ and hence

t _lOg( Z( 1 n+1([ ] ) c B;ER
n>1
DEFINITION 5.1.0.15. Consider the P.D. envelope of W (R) with respect to Ker6,
W(R)[%] . We denote by Acris € By its p-adic completion.

m>1
Note that the element ¢ € B}, belongs to A.. Indeed [e]-1 belongs to Kerf) and

hence [e]-1 = b for some b € W (R). It follows that the fraction ([ = (n- 1)'b"§
and we conclude, since (n —1)! - 0 with the p-adic topology.

DEFINITION 5.1.0.16. Define the G -stable ring
Bcris = Acms[l/t] c BdR-

Note that since W c A..;s, we have that Ky c B..;,. The Frobenius map ¢ :
W(R) - W(R) extends to a Frobenius on A..;s and Be.s (see [Fon3] for details).
Note moreover that the Ky-algebra B.,;s ® x, K inherits the filtration on Byg. This
comes from the following result.

THEOREM 5.1.0.17. The G-map
(5.1.3) K ®k, Beris — Bar
15 an injection. Hence we can put on K ®, Beris the sub-space filtration
Fil'B.yis = Beris N Fil' Byg, ieZ.
PROOF. See [Fon4| O

PROPOSITION 5.1.0.18. The domain Be.s is (Qp, Gk )-reqular. In particular
BOE = K.

Cris

PROOF. See [Fon4|. O
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DEFINITION 5.1.0.19 (Crystalline representations). We say that a representa-
tion V' of G is crystalline if it is Be.is-admissible. The set Repgjj of crystalline
representations is a sub-category of Repg,(Gk).

Recall that (5.1.1) gives us a functor
Deyis = D, : Repg)*(G) — Ko = Vect.

From (5.1.0.8) and (5.1.0.18) we get that, for V' a crystalline representation, the
map

a: ch’s ®K0 Dcris(v) g Bcris ®Qp V

is an isomorphism. Moreover we have the following result.
ProPOSITION 5.1.0.20. The natural map
K ®K0 Dcris(v) - DdR(V) = DBdR

1s an 1somorphism of filtered K -algebras. Moreover, the isomorphism « is such that
its scalar extension ay is a filtered isomorphism.

A result by Colmez and Fontaine ([CF]) describes precisely the relation between
crystalline representations and p-modules over K.

THEOREM 5.1.0.21 (Colmez-Fontaine). The functor D..;s induces an equivalence
of categories
Repa;fs(GK) — MFf(’ad

with, inverse Vepis(D) = Fil"(Bepis® g, D ) 771, for D € MF{;’ad. There is a contravari-
ant version of the theorem, with functors:

DZm’s(V) = Home[GK](Va Bcr’iS)a Ve Repazs(GK)a
V2,(D) = Homgy o (D, Beyis), D e MFZ™,

DEFINITION 5.1.0.22. We define the Hodge-Tate weights of the representation
V' as the integers i € Z such that griD..;s(V )k # 0.

5.1.0.2. Etale p-modules over Og. Consider 7 € R; by taking its Teichmiiller
representative [7] € W(R), since 6([(7,)]) =7, we get a map, compatible with the
Frobenius

(5.1.4) & - W([R) — 0Ok

w e 7] e

where 6 is the restriction of @ to the image of &.

Define 0¢ = G[1/u], where the completion is taken with respect to the p-adic
topology. This is a complete discrete valuation ring with residue field k((u)). The
ring O¢ admits an endomorphism ¢ : ¢ - Op lifting the Frobenius map on k((u)).
By fixing a separable closure k((u))* of k((u)), we may define the maximal unrami-
fied extension Ognr of O¢ with residue field k((u))*. There is a lifting ¢ : Ognr - Ognr
of the Frobenius on O¢. The ring O¢ can be seen as a Cohen ring of the field k((u)).
Define respectively the fraction fields & = O¢[1/p] and E" of O and Ogn:.
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Note that the Galois group Gal(£™/€) acts on the p-adic completion &7 of Enr
and by construction we have an isomorphism

Gal(E™[€) = Gy,

where G, ((v)) is the absolute Galois group of £((u)). In his paper Représentations p-
adiques des corps locaur [Fonl], J.-M. Fontaine describes the categories Repz, (Gr((u)))
and Repg, (Gr(())) of p-adic representations of the group Gal(€""/€) establishing
equivalences with categories of linear algebra data over Ok.

DEFINITION 5.1.0.23 (Etale ©-Modules over O¢). We say that a @-module I
over Og 1is étale the Og¢-linear map

OIM —— M
s an isomorphism. Denote by Modfﬁ the category of finite free étale p-modules
£

over Og. Denote by Modfg)r the category of torsion étale p-modules over Of.
£

To any p-torsion Z,-representation V' of Gj()) Wwe can associate a p-torsion
p-module
Dz (V) =Homg, ,,(V,E" [ Ognr).
To any torsion-free representation V' we may associate the torsion-free p-module
Dz(V):= HOmGk((u))(V’ Ogwr).

THEOREM 5.1.0.24 (Fontaine). For V' € Repz, (G (w))) p-torsion (resp. torsion-
free), we have that D(V') is étale and D} defines a tensor-preserving anti-equivalence
of categories

(5.1.5) Dz : Repz, (Gi(y) —— Mod?™",

(resp. Df: Repz, (Grw)) — Modfﬁ ). The functor D} has quasi-inverse
&
Ve (M) := Homg, (MM, E™ [ Ognr),
for M e Modfgj (resp. V(M) = Homg, (M, Ogr), for M e Modfﬁg).

N

5.1.1. Relation between Modf@ and Modfﬁ . Recall that O¢ = S[1/u].
£
Since 7 is invertible in W (FrR), we have an extension of the map (5.1.4)
S[1/u] - W(FrR),

and hence a map

I

S[1/u] - W(FrR),
that is, a commutative diagram

S ——W(R)
ﬁg e W(FT’R)
Moreover the inclusion g - W (FrR) extends to an inclusion

E->W(FrR)[1/p],
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that is, there is a diagram

& W(FrR)[1/p]

ﬁg W(FTR)

| !

k((u)) FrR

Denote by Ognr the maximal unramified extension of O¢ in W(FrR), and define
Enr its field of fractions. This fixes a separable closure k((u))® of k((u)). We will
also consider the p-adic completion Og &, Define finally 6™ = Ognr nW(R)
W(FrR).

Recall that Ko := Upso Ky, where K, := K(7,), and define G, = Gal(K/K,) c
G . Note that G fixes & c W(R) and acts on & ¢ Ognr.

In what follows, we adapt Fontaine’s theory of étale ¢-modules over ¢ in order
to describe &-modules in terms of Theorem (5.1.0.24). The first observation is that
we can re-state the theorem in terms of the Galois group Gk .

THEOREM 5.1.1.1. The action of Gk., on Ognr induces an isomorphism
Gg. — Gal(E™/E).
For a proof see [FW]. It follows that there is an equivalence of categories
D} : Repy, (Gg..) — Modfﬁg :

The map & — O is flat. To see this, note first that the localization &, identifies
with the localization at (p) of &[1/u], since u ¢ (p). Hence, by construction of O,
the map above factorizes through the map &,y — O¢ and this is flat. Hence there
is a functor

Modf —  Mod?
& / 6¢
m — M Og
since F(u) is invertible in Of.

LEMMA 5.1.1.2. Suppose M € Modf6 of p-torsion,
(1) there is an isomorphism of Z,[Gk.. |-modules:

V(M) := Homg , (M, &"[1/p]/&") — Homy, ,(Mee g, E™ [ Ognr) = Vi (M@ O ),

(2) The functor V¢ is exact, it commutes with tensors and if M ~ &7 &S /P&
then V& =~ @', Zy[p™i Zy.

ProoOF. [Fonl, part Bl]. O

By passing to the limit one gets
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COROLLARY 5.1.1.3. For Mt € Mod“/o6 there is an exact functor
V& (M) := Home ,(9M, &™).
This is a free Z,-module of rank rke(9N). Moreover there is a bijection
Home, (M, &™) «— Homg, , (e ®s M, Os).

LEMMA 5.1.1.4. Let 9 € Mod“/oe. Then M’ := Homy, (g, 1(VZ(IM), &™) is a
free &-module of rank d = rkeM and there is a natural injection

M-~ N
PRrOOF. [Fonl, part Bl]. O
PrRoPOSITION 5.1.1.5. The functor
Modf6 — Modf .
is fully faithful.
In order to prove the statement, we need the following technical results.

LEMMA 5.1.1.6. Let h: 9y — My be a morphism in Modf6 such that

fz:?))h@ﬁgii)ﬁg@ﬁg.
Then h is an isomorphism as well.

PROOF. Note that if h is an isomorphism, then 91, and 9, have the same

rank. Moreover also the map det(h) is an isomorphism, hence we may suppose that
k(M) = rk(9M;) = 1. This tells us in particular that My =9, @0, My := M@0 €
Mod“/oév are elements of Modfgv. So, by the equivalence of categories

. o N
MF?N,Fllzo Mod? ¥
/o

we get a non-zero map, that is, an isomorphism, of (¢, N)-modules. By the fully
faithful functor

©,N,Filsg,ad  fullyfaithful ©
-
MFK MOd/ ®@p ,

we get that h has to be the multiplication by some non-negative power of p. But
since h is an isomorphism, this power is zero. 0

LEMMA 5.1.1.7. Let M ¢ Mod” , Mc M a finitely generated S-module, stable
under ¢ and of finite E-height. The 6 module

F(OM) := O s MnIM[1/p]
18 finite, free, it is a submodule of M which contains I and it is an object ofModfg.

REMARK. If 9t e Modf@, then F(OT) = M.

PRrOOF. [Fonl, Prop. B1.2.4]. O
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PROOF OF PROPOSITION (5.1.1.5). We want to prove that for any couple 0t;, 9, €
Mod“/o6 the map

HomG,ip(mh m2) - Homﬁg,@(ml ® ﬁg, mQ ® ﬁg)

is bijective. We show first the result in the following case: 91,90, € Modf6 are such
that My ®e O = My ®e O = M and the map h € Homg, (M, M) is an isomorphism.
Define the module 9t := My + My. There are obvious maps

h1:9ﬁ1—>9ﬁ, h2:93?2—>9ﬁ.

By Corollary (5.1.1.3) VZ(91;) ~ V& (9;) and hence by Lemma (5.1.1.4) both
My and M, inject in Homg g, 1(VE(OM1),E™"), which has rank kg, (M). In
particular 9 := My + M,y is of finite type, it is ¢-stable and of finite E-height
(since My and My are). By construction F(IM) ®s O¢ ~ M and hence, by Lemma
(5.1.1.6), the obvious maps 2t; - F(M) and My - F(IM) are isomorphisms, hence
the conclusion in this case.

In the general case consider My := My @ O, My := My ® O¢ and a map of
Os-modules

h: M1 —> Mz-
Define M3 := h(9M;) and MY := h(M;) nON,. These are p-stable, finitely generated
modules, of finite E-height? such that
F(9M3) = F(M).

Therefore we have h(9Ms) = h(M}). We define the map h : 9% - M, to be the

composition

9ﬁ1 - F(mg) ~ F(mé) - F(WQ) = 9)”(2.

We can summarize all this through the following fully faithful diagram

fully faith ful

VeeQ, : Mod76 ®Q, Modfﬁg ®Q, - Repz,(Gk..)®Qp, ~ Repg, (Gk..)-

We get hence a concrete description of the image of free p-Modules over & of finite
E-height.

Moreover these results allow us to give a proof of the following conjecture by
Breuil [Br2].

COROLLARY 5.1.1.8. The restriction from a G -representation to a G -representation
gies us a fully faithful functor

Repgjs(GK) — Repg, (Gk..)-

2to see this for M note that there is an exact sequence
0— 93?'3 = h(Ml) NNy — h(Ml) ® Ny > MQ,
and the map 1 ® ¢ is injective on each term of the sequence.
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PRrOOF. Note that it is enough to prove that there is a fully faithful functor
Repgf’+(GK) — Repg,(Gk..).

Indeed, one can always twist a crystalline representation so that it has positive
Hodge-Tate weights. The result follows then by the properties of the functors defined
in the previous sections:

Repgf’+(GK) __________________________ - Repg, (Gk..)

DZris \L

MFgova(LFﬂZO ~
K

fully faith ful L

o 0
Mod7 Mod7 o ®Q,

& ®@p Fully faith ful
O

LEMMA 5.1.1.9. Let M € Modf@ be a module of rank d. Recall that VZ(ON) is

a module of rank d and hence V := VZ(IM) ® Q, is a vector space of dimension d.
Define M =M g &, vector space of dimension d as well. The functor

Modf6 — Repz, (Gk..)

restricts to a bijection of free, finite, p-stable modules
N +— Homg ,(N, &™)

between modules N € Mod76 such that Nt c M, Mg E ~ M, N/p*(N) of finite
E-height and G, -stable Z,-lattices L c V.

PROOF. The map in the statement makes sense, since for 9t € Modf@, the bijec-
tion Homg ,,(91, &™) = Homyg, ,(N®s O¢, Oz ) tells us that V() is a G -stable
in V.

Moreover, the map 91— VZ(N) is injective. To prove surjectivity, take L c V a
G -stable lattice. By Fontaine’s Theorem (5.1.0.24) there is a bijection

{étale p-Modules of full rank over & } — {G k. -stable lattices contained in V'}.
Hence there exists a finite free &g-Module N = Homy, (¢, 1(L, Oga) corresponding
to L. Define 9t = N nM[1/p] ¢ M. Note that M ®s O =N and N € Modf6 (the

proof is identical to that of Lemma (5.1.1.7)). Since V() = V;_(N) we have that
I maps into L. 0
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CHAPTER 6

Breuil-Kisin’s classification

The first observation in order to classify Barsotti-Tate groups in terms of &-
modules is that there is a relation between a sub-category of Modf6 and BTfS.
Note that there is a map

6 - S
u > uP
Define BTf as the full sub-category of Mod“p with objects the modules 9 of

E-height at most 1. The reason for giving thls deﬁmtlon is that we may define a
functor

BT;p —  BTY
& /s
m — N ®6,p S
Indeed, for M =M ®¢ , S we define
Fil'l M={meM | (1®p)(m) e Mg, Fil'S c Mo, S},

in this way of course Fil'’ M c pM and hence we may define

ofp: FiI'M 222 Fil'S s, M 7% M e, S = M.

The fact that 91 has by definition E-height at most one, makes sure that this is a
surjective map.
This defines in particular a functor

THEOREM 6.0.1.10 (Kisin). The functor above is an equivalence of categories for
p>2 and an equivalence up to isogeny for p = 2.

The key results in order to do this are the equivalences of categories established
in chapter (5). In terms of these we may describe the category BT76.

DEFINITION 6.0.1.11. We say that an admissible module D is of BT-tipe if
griDg =0 fori¢{0,1}.

PROPOSITION 6.0.1.12. Recall that we established the following fully-faithful func-
tor

N,Filso,ad N
MF{; 04— Modf@ Q.
This induces an equivalence of categories
{admissible p-modules of BT -type } —— BTf6 ?Q,.

Proor. [Kis, Proposition 2.2.2]. O
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Recall that the Tate-module of a p-divisible group G is defined as T,(G) =
Hom(Q,/Z,,G ®g4, OF%). Consider the map of IW-algebras

S - Acris

u — 7]

sending Elz(,“) to Ei(i[!ﬂ). We have the following result due to Faltings.

LEMMA 6.0.1.13. Let G be a p-divisible group over Ok. There is a canonical
injection of Gk -modules

Tp(G) = HomS,Fil7go(M(G)a Acris),

where M is the functor BT (Ok) — BT“/DS. This map is an isomorphism if p > 2,
and has cokernel killed by p when p = 2.

PROOF. We define the map
TP(G) —> HOIH&FUW(M(G), Acm's).
Since A5 is the p-adic completion of the P.D. envelope of W(R), we get a diagram

W(R) — Agpis — O
S S Ok

By the rigidity condition on the Dieudonné crystal we get that given a p-divisible
group over K

]D(G ®0’K ﬁ?)(Acms) z ]D)(G) ®s Acris = M(G) ®s Acris-

Applying these considerations to the Tate module of G, we get, since D is contravari-
ant,

Tp(G) = Homgf(Qp/Zp, Go® ﬁ?) M’ Homs,ap,Fil(]D)(G ®ﬁK ﬁ?)(ACTiS%D(QP/ZP)(AC”S))
o~ H0m57¢(M(G)7Acris)-

This last isomorphism comes to the fact that D(Q,/Z,) ~ S ((3.0.4.1)). Note that by
the definition of the functor M, given f € T,(G), the obtained map M(G) - Agpis
respects the Frobenius and the filtration, that is, we have obtained a map

TP(G) - HomS,Fil,gp(M> Acris)-
O
COROLLARY 6.0.1.14. For M ¢ BT76, M :=M®g,, S, there is a natural map

Homw(im, Gur) —> HOHI&FH,SD(M, Acm’s)-
This is an isomorphism in case p > 2.

PROOF. Since by definition & ¢ W(R), there is an inclusion &™ < A..;.
Hence we define the map

Homg,@(gﬁ, 6”) — Homs,pﬂ,@(/\/l, ACMS)
{Mm i) G} — g
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where g is the extension to M of {&" < A_.;s} o f by S-linearity. The map is hence
injective and by Lemma (6.0.1.13) and Corollary (5.1.1.3) the two homomorphisms
groups have the same rank. It follows that this is an isomorphism after inverting p.
By Breuil ([Br2]) the map is an isomorphism for p > 2. O

PROOF OF THEOREM (6.0.1.10). We have seen that we have naturally a functor

We define an inverse

M: BT (0x) — BT .

Consider G a p-divisible group over O and consider its Tate module 7,(G) :=
Hom(Q,/Z,,G ®4, O). This is a Z,-lattice under the action of Gy = Gal(K/K)
of the Gg-representation V,(G) = T,(G) ®z, Q,. Note thatV,(G) is crystalline.
Indeed, by Lemma (6.0.1.13)., we have

Vy(G) = T,(G)®Q, — Homg i ,(M(G), Aeris)®Q, —> Homg i o (M(G), Bf,;,) € Repde.

Moreover V,(G) has Hodge-Tate weights in {0, 1} (this fact is proved in [Tate]).
By the results introduced in (5.1.0.1) we get a module of BT-type M through the
map

{ Repg”(Gk) of Hodge-Tate weights in {0,1} } Derie, {admissible p-modules of BT-type}

We find hence uniquely a module 901 € BT“/D6 ®Q,, through the equivalence
{admissible p-modules of BT-type} —— BTf6 ®Q,.
We apply finally Lemma (5.1.1.9) to 9t (of course V,,(G) € Repg,(Gk..)). This gives

us namely a bijection between Z,-lattices of V,,(G) and the modules 1 e Modf6 such

that MM c Mes &, Ns £ = Mg & and N/ N of finite E-height. We take the
Zy-lattice T,(G): this corresponds bijectively to such a module I, and we put
N =M(G).

We have hence built the functor 9t. We would like now to show that we have
an equivalence of categories.

Suppose fist that p > 2. We have by Lemma (6.0.1.13) and Corollary (6.0.1.14)
that
Tp(G) = HOIIlS’FiL@(M =Mes S, Acris) = Homg,w(ﬂﬁ, GnT)
This is a Gk, -equivariant map and hence a Gg-map of crystalline representations,
by Breuil’s conjecture (Corollary (5.1.1.8)). By the fact that G(9) = G(M) and by
the construction of the functor M we conclude that M(G(M)) ~ M. On the other
hand, for G a p-divisible group over O, the same results give us

T,(G(M(G))) — Home,,(M(G), &™) — T,(G),

where the first isomorphism comes from the construction of 9t. By Tate’s theorem
(2.2.0.9) we obtain an isomorphism on the fibers and hence we obtain an isomorhism

GM(G)) ~G.
For p = 2, the same results are true after inverting p, that is, up to isogeny. [
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