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Introduction

Classical Kloosterman sum (or SL2(Z) Kloosterman sum) is defined

by

S(m,n, c) =
∑

d(mod c)
gcd(c,d)=1

e

(
md+ nd

c

)

with dd ≡ 1(mod c). First, the given sum was discovered by Henri

Poincaré in 1911 in the paper [13] on modular forms.

Few years later in 1926 Hendrik Kloosterman also obtained the same

sum while he was solving the problem of finding asymptotic expression

of the number of representations of a large integer n by a quadratic

form in four variables1, i.e. the number of solutions (x1, x2, x3, x4) ∈
Z4 of an equation

ax2
1 + bx2

2 + cx2
3 + dx2

4 = n,

where a, b, c, d are fixed positive integers.

Already the fact that Kloosterman sum appeared in two problems of

different origins emphasizes its importance. Afterwards a number of

other applications in number theory have been found. One of them

is Conrey’s theorem [3] that at least two-fifths of the zeros of the

Riemann zeta function are simple and on the critical line, which uses

results of J.-M. Deshouillers and H. Iwaniec on averages of Klooster-

man sums.

Another application is the generalization of Ramanujan conjecture

to non-holomorphic cusp forms associated to arithmetic discrete sub-

1See [11].



groups of GLn(R) with n ≥ 2. Trying to find an approach to the gen-

eralized Ramanujan conjecture for GL2(R) and GL3(R) via Kloost-

erman sums, Bump, Friedberg and Goldfeld computed Fourier expan-

sion of SL3(Z) Poincaré series. As a part of Fourier coefficients they

obtained six exponential sums, among which we can distinguish two

new types different from classical Kloosterman sums, called SL3(Z)

Kloosterman sums.

The main goal of this work is to study the connection between Kloost-

erman sums and automorphic forms associated with groups SL2(Z)

and SL3(Z). We start with classical Kloosterman sums and obtain

them as a part of Fourier coefficients of SL2(Z) Poincaré series in the

first chapter. In the second chapter we compute Fourier expansion of

SL3(Z) Poincaré series and introduce two new types of exponential

sums called SL3(Z) Kloosterman sums. We also describe some prop-

erties of Kloosterman sums and discuss the problem of distribution of

Kloosterman angles.



Chapter 1

Classical Kloosterman sums

In this chapter we construct a particular example of SL2(Z) modular forms. Our

construction leads us to Poincaré series, whose Fourier expansion turns out to

contain classical Kloosterman sums.

1.1 SL(2) modular forms

The group

SL2(R) =

{[
a b

c d

]
: ad− bc = 1 and a, b, c, d ∈ R

}

acts on the Poincaré upper-half plane

H2 = {z ∈ C : =z > 0}

by linear fractional transformations. Let γ =

[
a b

c d

]
∈ SL2(R), then for any

z ∈ H2

γ(z) =
az + b

cz + d
∈ H2 (1.1)

since

=(γ(z)) =
=(z)

|cz + d|2
. (1.2)

3



1. Classical Kloosterman sums

The action of SL2(R) on the set H2 has one orbit because we can reach any

point in H2 from the point i:[√
y x√

y

0 1√
y

]
(i) = x+ iy.

And the stabializer K of i is equal to

SO2(R) = {k(θ)} for k(θ) =

[
cos θ sin θ

− sin θ cos θ

]
.

Indeed,
ai+ b

ci+ d
‘ = i⇒ ai+ b = di− c⇒ d = a, c = −b.

So

K =

{[
a b

−b a

]}
with a2 + b2 = 1

and we can write a = cos θ and b = sin θ to obtain the result.

This gives an alternative way to represent the upper-half plane as a quotient

space SL2(R)/SO2(R). Each element of the later group has a unique representa-

tive of the form

[
y x

0 1

]
, where y > 0, by Iwasawa decomposition1.

In this section we are mainly interested in a discrete subgroup SL2(Z) of

SL2(R) with a, b, c, d ∈ Z, called the modular group.

The group SL2(Z) is generated 2 by two elements

S =

[
0 −1

1 0

]
and T =

[
1 1

0 1

]
, such that S2 = (ST )3 = −1.

And the standard fundamental domain 3 for the action of SL2(Z) on H2 is

F =

{
z ∈ H2, |<(z)| ≤ 1

2
, |z| ≥ 1

}
.

1The proof is given in a general case in 2.1.1
2See [9], theorem 1.1
3See [9], theorem 1.2

4



1. Classical Kloosterman sums

To define a notion of automorphic form with respect to SL2(Z), we use the

following operator.

Definition 1.1.1. Let k be a positive integer. Define a weight k slash operator

of

GL+
2 (R) =

{[
a b

c d

]
; a, b, c, d ∈ R and ad− bc > 0

}

on the set of all functions f : H2 → C as follows. If γ =

[
a b

c d

]
∈ GL+

2 (R) and

j(γ, z) = cz + d, let (
f |kγ

)
(z) =

det(γ)k/2

j(γ, z)k
· f(γz). (1.3)

Remark 1.1.2. Formula (1.3) defines a right action of GL+
2 (R) on the set of all

functions f : H2 → C; in particular,

f |kγ1γ2 (z) = (f |kγ1) |
k
γ2

(z). (1.4)

The last equation is a consequence of the cocycle property

j(γ1γ2, z) = j(γ1, γ2z) · j(γ2, z). (1.5)

From now on we fix Γ2 = SL2(Z). Then the equation (1.3) can be written as

(
f |kγ

)
(z) =

f(γz)

j(γ, z)k
. (1.6)

Definition 1.1.3. A function f : H2 → C is called modular form of weight k

with respect to the group Γ2 if

• f is holomorphic on H2

• f |kγ= f for every γ ∈ Γ2

• f is holomorphic at infinity.

Remark 1.1.4. The last condition can be explained as follows.

5



1. Classical Kloosterman sums

Since

[
1 1

0 1

]
∈ SL2(Z), f is a periodic function:

f(z + 1) = f(z), z ∈ H2.

Thus, f has a Fourier expansion at infinity

f(z) =
+∞∑

n=−∞

an(f)qn, q = e2πiz.

And we call f holomorphic at infinity if an(f) = 0 for every n < 0. If in addition,

a0(f) = 0, function f is called cuspidal.

1.2 Construction of SL(2) Poincaré series

To find functions satisfying definition 1.1.3, we start with the automorphy con-

dition. Let h : H2 → C be a holomorphic function. We can write formally

f(z) =
∑
γ∈Γ2

h(γz)

j(γ, z)k
, z ∈ H2. (1.7)

The cocycle property (1.5) yields that for every γ
′ ∈ Γ2

f(γ
′
z) =

∑
γ∈Γ2

h(γγ
′
z)

j(γ, γ′z)k
= j(γ

′
, z)k

∑
γ∈Γ2

h(γγ
′
z)

j(γγ′ , z)k
= j(γ

′
, z)kf(z).

If (1.7) converges absolutely uniformly on compact subsets of H2, then f(z) is a

holomorphic function and all formal computations are valid. However, the sum

(1.7) does not converge in general. In particular, the sum may diverge if we have

infinitely many elements

γ ∈ Γ∞ =

{
±

[
1 n

0 1

]
, n ∈ Z

}
=< ±T > with j(γ, z) ≡ 1.

In order to avoid this problem, assume that h is invariant under Γ∞ and note

that the sum (1.7) depends only on cosets modulo Γ∞. Indeed, if γ = βγ
′

for

6



1. Classical Kloosterman sums

β ∈ Γ∞, γ, γ
′ ∈ Γ2, then

h(γz) = h(βγ
′
z) = h(γ

′
z),

j(γ, z) = j(βγ
′
, z) = j(β, γ

′
z)j(γ

′
, z) = j(γ

′
, z).

So the formula

f(z) =
∑

γ∈Γ∞\Γ2

h(γz)

j(γ, z)k
(1.8)

is the one we are looking for. Now we can choose a particular Γ∞-invariant

function, namely

h(z) = e(mz) = e2πimz, m ∈ Z.

Definition 1.2.1. The series

P k
m(z) =

∑
γ∈Γ∞\Γ2

h |kγ (z) =
∑

γ∈Γ∞\Γ2

e(mγz)

j(γ, z)k
(1.9)

is called mth Poincaré series of weight k.

Proposition 1.2.2. The Bruhat decomposition of Γ2 is given by

Γ2 = Γ∞ q (qc∈Z>0 qd(mod c)
(c,d)=1

(Γ∞wΓ∞)), q is a disjoint union, (1.10)

Γ∞ =< ±T > and w ∈ Wc,d =

{[
a∗ b∗

c d

]}
,

where for given c, d ∈ Z with (c, d) = 1, integral variables a∗, b∗ satisfy

a∗d− b∗c = 1, i.e. b∗ =
a∗d− 1

c
.

Proof. We would like to partition Γ into double cosets with respect to Γ∞.

First, consider the set of upper triangular matrices

∆1 =

{[
a∗ b∗

0 d∗

]
∈ Γ2

}
.

7



1. Classical Kloosterman sums

Conditions a∗d∗ = 1 and a∗, b∗, d∗ ∈ Z imply that ∆1 = Γ∞.

Second, any element of ∆1 \ Γ2 can be represented by a matrix

ω =

[
a b∗

c d

]
with c > 0.

The relation [
1 n1

0 1

][
a b∗

c d

][
1 n2

0 1

]
=

[
a+ cn1 b∗1

c d+ cn2

]

shows that the double coset Γ∞

[
a b∗

c d

]
Γ∞ determines c uniquely, while a and d

can be found modulo integral multiples of c.

Actually, the given coset does not depend on a, because for any two matrices

ω1 =

[
a1 b∗1

c d

]
and ω2 =

[
a2 b∗2

c d

]
in Γ2

ω1ω2
−1 =

[
1 b∗3

0 1

]
,

i.e. a1 is congruent to a2 modulo c. So

∆2 = Γ∞ωΓ∞ ∈ Γ2, with ω =

[
a∗ b∗

c d

]
∈ Γ2.

To sum up, Γ2 is a disjoint union of ∆1 and (qc∈Z>0 qd(mod c)
(c,d)=1

∆2).

Proposition 1.2.3. For k > 2, m ≥ 0 the series P k
m(z) converges absolutely and

uniformly on compact sets of H2 and defines a holomorphic function on H2.

Proof. Let γ =

[
a b

c d

]
∈ Γ2, then

∣∣∣∣e(mγz)

j(γ, z)k

∣∣∣∣ =

∣∣∣∣ e2πimγ(z)

(cz + d)k

∣∣∣∣ .

8



1. Classical Kloosterman sums

By formula 1.2, ∣∣∣∣ e2πimγ(z)

(cz + d)k

∣∣∣∣ =
1

|cz + d|k
e
− 2πm=(z)

(cz+d)2 ≤ 1

|cz + d|k

for m ≥ 0. According to the Bruhat decomposition of Γ2, we pick each pair

(c, d) as the second raw of matrices in Γ∞ \ Γ2 at most once. Therefore, P k
m(z) is

majorated by the series ∑
c,d∈Z

(c,d)6=(0,0)

1

|cz + d|k
.

The last series is known1 to be convergent uniformly on compact sets of H2 for

any k > 2.

1.3 Fourier expansion of Poincaré series

It only remains to verify the last condition of 1.1.3 to complete our construction

of modular form. With this goal, we find Fourier expansion of the series (1.9).

Ultimately, we obtain Kloosterman sums as a part of Fourier coefficients.

Definition 1.3.1. The sum

S(m,n, c) =
∑

d(mod c)
gcd(c,d)=1

e

(
md+ nd

c

)

with dd ≡ 1(mod c) is called classical Kloosterman sum.

Remark 1.3.2. If m = 0, then Kloosterman sum reduces to Ramanujan sum

Rc(n) = S(0, n, c) =
∑

d(mod c)
gcd(c,d)=1

e

(
nd

c

)
.

Theorem 1.3.3. Let k > 2. The Fourier expansion of Poincaré series P k
m(z) is

given by

1See [8], theorem 1

9



1. Classical Kloosterman sums

• if m = 0,

P k
0 (z) = 1 +

(−2πi)k

Γ(k)

∑
n>0

(∑
c>0

Rc(n)
nk−1

ck

)
e(nz);

• if m > 0,

P k
m(z) = e(mz) +

(−2πi)k

m
k−1
2

∑
n>0

(∑
c>0

S(m,n, c)
n
k−1
2 Jk−1(4π

√
mn
c

)

c

)
e(nz),

where

Jn(x) =
∞∑
i=0

(−1)i

i!Γ(i+ 1 + n)

(x
2

)n+2i

is the Bessel function of order n.

Proof. Consider the series (1.9). Applying the Bruhat decomposition,

Pm(z) := P k
m(z) = e(mz) +

∑
c>0

d(mod c)
gcd(c,d)=1

∑
β∈Γ∞
ω∈Wc,d

h |kωβ (z).

Take

ω =

[
a∗ a∗d−1

c

c d

]
∈ Wc,d and β =

[
1 n

0 1

]
∈ Γ∞,

then for every z ∈ H2

(ωβ)z =
a∗z + a∗n+ a∗d−1

c

cz + cz + d
=
a∗

c
− 1

c(c(z + n) + d)

and

h |kωβ (z) = (c(z + n) + d)−ke

(
m

(
a∗

c
− 1

c(c(z + n) + d)

))
.

Thus,

Pm(z) = e(mz) +
∑
c>0

∑
d(mod c)
gcd(c,d)=1

I(c, d, z) (1.11)

10



1. Classical Kloosterman sums

with

I(c, d, z) =
∑
n∈Z

g(n) and g(n) = h |kωβ (z).

By Poisson summation formula,

I(c, d, z) =
∑
n∈Z

ĝ(n) =
∑
n∈Z

(∫
R
g(t)e(−nt)dt

)

=
∑
n∈Z

∫
R

1

(c(z + t) + d)k
e

(
−nt+m

(
a∗

c
− 1

c(c(z + n) + d)

))
dt.

Let us write z = x + iy and make change of variables t → t
′

= z + t + d
c

in the

integral. Then we obtain

I(c, d, z) =
∑
n∈Z

e(n(z +
d

c
) +

ma∗

c
)

∫ +∞+iy

t′=−∞+iy

1

(ct′)k
e(−nt′ − m

c2t′
)dt

′
. (1.12)

Denote the inner integral 1 by

Lc(m,n) =

∫ +∞+iy

t′=−∞+iy

1

(ct′)k
e(−nt′ − m

c2t′
)dt

′

and distinguish the following cases:

1. If n ≤ 0, then we can move the line of integration upwards, i.e. let y →∞,

and estimate the absolute value of Lc(m,n) to see that

Lc(m,n) = 0. (1.13)

Therefore, all terms with n ≤ 0 in the sum (1.12) vanish.

2. If n > 0 and m = 0, then 2

Lc(0, n) =

(
2π

ic

)k
nk−1

Γ(k)
. (1.14)

1Note that Lc(m,n) does not depend on y by Cauchy’s theorem
2see [7], 8.315.1

11



1. Classical Kloosterman sums

3. If n,m > 0, then 1

Lc(m,n) =
2π

ikc

( n
m

) k−1
2
Jk−1

(
4π
√
mn

c

)
. (1.15)

Finally, substitute

I(c, d, z) =
∑
n>0

e(nz)e(
nd+ma∗

c
)Lc(m,n)

in the formula (1.11) and change the order of summation to obtain

Pm(z) = e(mz) +
∑
n>0

∑
c>0

 ∑
d(mod c)
gcd(c,d)=1

e(
nd+ma∗

c
)

Lc(m,n)

 e(nz)

= e(mz) +
∑
n>0

(∑
c>0

S(m,n, c)Lc(m,n)

)
e(nz).

Now just replace Lc(m,n) by its value and the assertion follows.

Corollary 1.3.4. The series P k
m(z) is holomorphic at infinity for m ≥ 0 and

cuspidal for m ≥ 1.

Remark 1.3.5. In 1965 Selberg [14] introduced non-holomorphic Poincaré series

Pm(z, s) =
∑

γ∈Γ∞\Γ2

(=(γz))se(mγz), <(s) > 1. (1.16)

The Fourier expansion of the series 1.16 also contains classical Kloosterman sums.

Let z = x+ iy, then

Pm(z, s) =
∑
h∈Z

pm(h; y, s)e(hz)

1see [7], 8.412.2
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1. Classical Kloosterman sums

with

pm(h; y, s) = δ(m,h) +
∑
c≥1

c−2sS(m,n, c)B(m,h, c, y, s)

and

B(m,h, c, y, s) = ys
∫ +∞

−∞
(x2 + y2)−se

(
−hx− m

c2(x+ iy)

)
dx.

1.4 Some properties of Kloosterman sums

The sum

S(m,n, c) =
∑

d(mod c)
gcd(c,d)=1

e

(
md+ nd

c

)

with dd ≡ 1(mod c) has some interesting properties.

Proposition 1.4.1. The Kloosterman sum depends only on the residue class of

m, n modulo c.

Proof. This is clear since e2πik = 1 for every k ∈ Z.

Proposition 1.4.2. The value of S(m,n; c) is always a real number.

Proof. Consider complex conjugate of Kloosterman sum

S(m,n; c) =
∑

d(mod c)
gcd(c,d)=1

e

(
−md− nd

c

)
.

Let d = −d′, then

S(m,n; c) = S(m,n; c)

since −d runs again over all residue classes modulo c.

Proposition 1.4.3.

S(m,n; c) = S(n,m, c)

Proof.

S(m,n, c) =
∑

d(mod c)
gcd(c,d)=1

e

(
md+ nd

c

)
.

13



1. Classical Kloosterman sums

Then the substitution d = mnd′ leads to the required result.

Proposition 1.4.4.

S(ma, n; c) = S(m,na, c) if (a, c) = 1

Proof.

S(ma, n, c) =
∑

d(mod c)
gcd(c,d)=1

e

(
mad+ nd

c

)
.

Then the substitution d = ad′ leads to the required result.

Proposition 1.4.5. (twisted multiplicativity) If (c1, c2) = 1, then

S(m,n; c1c2) = S(mc2, nc2, c1)S(mc1, nc1, c2).

Proof. Let c = c1c2. The proof is based on the Chinese Remainder theorem, i.e.

if

d ≡ di(mod ci), i = 1, 2, (c1, c2) = 1,

then

d ≡ d1b1c2 + d2b2c1(mod c)

with

b1c2 ≡ 1(mod c1),

b2c1 ≡ 1(mod c2).

Then

S(m,n, c) =
∑

d(mod c)
gcd(c,d)=1

e

(
md+ nd

c

)

=
∑

e

(
m(d1b1c2 + d2b2c1) + n(d1b1c2 + d2b2c1)

c1c2

)
,

summation is over all d1(mod c1), d2(mod c2), (c1, d1) = 1, (c2, d2) = 1. So that

S(m,n, c1c2) = S(mc2, nc2, c1)S(mc1, nc1, c2).

14



1. Classical Kloosterman sums

1.5 Distribution of Kloosterman angles

As a consequence of the Riemann Hypothesis for curves over functional fields, A.

Weil obtained the following bound1

|S(m, 1, p)| ≤ 2
√
p,

where p is a prime number and m is an integer coprime with p. Therefore, there

is a unique Kloosterman angle θ(p,m) ∈ [0, π] such that

S(m, 1, p) = 2
√
p cos θ(p,m).

There are two kinds of distribution of Kloosterman angles:

• vertical

{θ(p,m)}1≤m≤p
(m,p)=1

, p→∞;

• horizontal

{θ(p,m)} 1≤p≤P
(m,p)=1

, m fixed, P →∞.

In the vertical case, we have the following theorem by Katz2.

Theorem 1.5.1. Let p→∞, then the angles

{θ(p,m)}1≤m≤p
(m,p)=1

are equidistributed with respect to the Sato-Tate measure on [0, π]

dµST (θ) =
2

π
sin2(θ)dθ.

1See [16]
2See [10]
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1. Classical Kloosterman sums

Equivalently, for any interval I = [a, b] ∈ [0, π],

limp→∞
# {1 ≤ m ≤ p− 1, θ(m, p) ∈ I}

p− 1
= µST (I) =

2

π

∫ b

a

sin2(θ)dθ.

The horizontal case is still a conjecture.

Conjecture 1.5.2. Let P →∞, m is a fixed non-zero integer, then the angles

{θ(p,m)} 1≤p≤P
(m,p)=1

are equidistributed with respect to the Sato-Tate measure on [0, π].

Equivalently, for any interval I = [a, b] ∈ [0, π],

limP→∞
# {p ≤ P , (m, p) = 1, θ(m, p) ∈ I}

# {p ≤ P}
= µST (I) =

2

π

∫ b

a

sin2(θ)dθ.
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1. Classical Kloosterman sums

0.41652

-0.16681
2 2741

Figure 1.1: Difference between vertical and Sato-Tate measures on the interval
[1, 2]
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1. Classical Kloosterman sums

Figure 1.2: Vertical (red) and Sato-Tate (green) distribution functions
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0.41652

-0.074044
2 2741

Figure 1.3: Difference between horizontal and Sato-Tate measures on the interval
[1, 2], m = 1

19



1. Classical Kloosterman sums

Figure 1.4: Horizontal (red) and Sato-Tate (green) distribution functions
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1. Classical Kloosterman sums

1.6 Numerical computation of Poincaré series

1.6.1 Poincaré series and fundamental domain reduction

algorithm

Current section provides a PARI/GP code for the calculation of Poincaré series

Pm(z) = e(mz) +
∑
n>0

(F (m,n)) e(nz), (1.17)

with Fourier coefficients given by

F (m,n) =
∑
c>0

S(m,n, c)Lc(m,n). (1.18)

First, we compute the Kloosterman sum

S(m,n, c) =
∑

d(mod c)
gcd(c,d)=1

e

(
md+ nd

c

)
.

1 gp>{klsum (m, n , c , sum , dinv , t )=

2 gp> sum=0;

3 gp> for (d=0,c−1,
4 gp> i f ( gcd (d , c)==1,

5 gp> dinv= l i f t (1/Mod(d , c ) ) ;

6 gp> t=(m∗dinv+n∗d)/ c ;
7 gp> sum=sum+exp (2∗Pi∗ I ∗ t ) ;
8 gp> )

9 gp> )}

According to the formulas 1.13, 1.14, 1.15, the value of Lc(m,n) can be found

as follows.

1 gp>{co e f fL (m, n , c , k , L)=

2 gp> L=0;

3 gp> i f ( ( n>0)&(m>=0),

4 gp> i f (m==0,
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1. Classical Kloosterman sums

5 gp> L=((2∗Pi/ I /c )ˆk )∗ ( nˆ(k−1))/gamma(k ) ,

6 gp> L=2∗Pi/c /( I ˆk )∗ ( ( n/m)ˆ ( ( k−1)/2))∗ b e s s e l j (k−1 ,4∗Pi∗ s q r t (m∗n)/ c )
7 gp> )

8 gp> )}

Note that for the values of z ∈ H2 with a small imaginary part Pm(z) may

converge very slow. However, the second property of definion 1.1.3 allows us

to compute Pm(γz) for some γ ∈ Γ and then recover the original series by the

formula Pm(z) = Pm(γz)/j(γ, z)k. Furthermore, if a point z1 = γz is in the

fundamental domain F , then we have the estimate

|e(nz)| ≤ e(−π
√

(3))n < (
1

230
)n, (1.19)

which provides a very good convergence.

Now we describe a fundamental domain reduction algorithm, which on input

z ∈ H2 returns a matrix γ ∈ Γ2 such that γz lies in the fundamental domain. In

order to find such γ with z1 = γz ∈ F , we first apply

[
1 −n
0 1

]
with n = b<(z)e

to translate z into the strip |<(z)| ≤ 1/2.

Now if z /∈ F , then |z| < 1 and

=(−1/z) = =(z/ |z|2) > =(z).

Replace z by

[
0 −1

1 0

]
(z) and repeat the process. Note that there are only finitely

many integer pairs (c, d) such that |cz + d| < 1, and so, by the formula 1.2, there

are only finitely many transforms of z with a larger imaginary part. Thus, the

algorithm below terminates after a finite number of steps.

1 gp> {transM ( z ,A, z1 , f l a g )=

2 gp> A=[ 1 , 0 ; 0 , 1 ] ;

3 gp> f l a g =1;

4 gp> z1=z ;

5 gp> while ( f l a g==1,

6 gp> n=round ( r e a l ( z1 ) ) ;

7 gp> z1=z1−n ;
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1. Classical Kloosterman sums

8 gp> A=[1,−n ; 0 , 1 ] ∗A;

9 gp> m=z1∗ conj ( z1 ) ;

10 gp> i f ( abs (m)>=1, f l a g =0,A=[0 ,−1;1 ,0 ]∗A; z1=−1/z1 ; ) ;

11 gp> )

12 gp> A}

Finally, we compute Fourier coefficients as in the formula 1.18

1 gp>{coe f fF (cmax ,m, n , k ,F)=

2 gp> F=0;

3 gp> for ( c=1,cmax ,

4 gp> F=F+ klsum (m, n , c )∗ co e f fL (m, n , c , k )

5 gp> )}

and Poincaré series as in the formula 1.17.

1 gp>{poincareS ( z , k ,m, nmax , cmax ,A, z1 ,P)=

2 gp> A=transM ( z ) ;

3 gp> z1=(A[ 1 , 1 ] ∗ z+A[ 1 , 2 ] ) / (A[ 2 , 1 ] ∗ z+A[ 2 , 2 ] ) ;

4 gp> P=exp (2∗Pi∗ I ∗m∗ z1 ) ;

5 gp> for (n=1,nmax ,

6 gp> P=P+coe f fF (cmax ,m, n , k )∗ exp (2∗Pi∗ I ∗n∗ z1 )
7 gp> ) ;

8 gp> P=P/(A[ 2 , 1 ] ∗ z+A[ 2 , 2 ] ) ˆ k}

1.6.2 Absolute error estimate

Notice that both sums on n in 1.17 and on c in 1.18 are infinite. But for the

purpose of computing, we truncate these sums to a finite number of terms nmax

and cmax, respectively. This leads to some incorrectness in our computations,

which can be measured in terms of the absolute error.

Definition 1.6.1. Let X be a true value of the quantity and X1 its approximate

value, then the absolute error is defined to be a numerical difference X−X1. An

upper limit on the magnitude of the absolute error ∆X, such that

EX = |X1−X| ≤ ∆X,

is said to measure absolute accuracy.
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Remark 1.6.2. This type of accuracy is convenient when we are dealing with

sums, because the magnitude of the absolute error in the result is the sum of the

magnitudes of the absolute errors in the summands.

In our case,

X = Pm(z) and X1 = e(mz) +
∑

0<n≤nmax

(
F̃ (m,n)

)
e(nz)

with F̃ (m,n) =
∑

0<c≤cmax

S(m,n, c)Lc(m,n).

Thus,

EX = |X1−X| =

∣∣∣∣∣ ∑
0<n≤nmax

(
F̃ (m,n)

)
e(nz)−

∑
n>0

(F (m,n)) e(nz)

∣∣∣∣∣
≤

∑
0<n≤nmax

∣∣∣F̃ (m,n)− F (m,n)
∣∣∣ |e(nz)|+

∑
n>nmax

|F (m,n)| |e(nz)| .

Let us denote

E1 =
∑

0<n≤nmax

∣∣∣F̃ (m,n)− F (m,n)
∣∣∣ |e(nz)|

and

E2 =
∑

n>nmax

|F (m,n)| |e(nz)| .

The key ingredient of our computation is the bound for the Kloosterman sum

S(m,n, c). The optimal result for the prime values of c can be obtained using

Weil’s bound1, but for our purpose it is enough to consider the trivial estimate

|S(m,n, c)| ≤ c. (1.20)

The next step is to bound the value of Lc(m,n). In case m = 0,

|Lc(0, n)| = β(k)
nk−1

ck
, where β(k) =

2kπk

(k − 1)!
.

1See [16]
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Now suppose m > 0. Using the following estimate 1

|Jk(x)| ≤ |x/2|
k

k!
,

we obtain

|Lc(m,n)| ≤ β(k)
nk−1

ck
.

So for any m ≥ 0,

|S(m,n, c)Lc(m,n)| ≤ β(k)
nk−1

ck−1
.

Then

EF =
∣∣∣F̃ (m,n)− F (m,n)

∣∣∣ ≤ β(k)nk−1
∑

c>cmax

1

ck−1
≤ β(k)nk−1

∫ ∞
cmax

1

xk−1
dx

=
β(k)nk−1

(k − 2)ck−2
max

and

|F (m,n)| ≤ β(k)nk−1
∑
c>0

1

ck−1
= β(k)nk−1

(
1 +

∫ ∞
1

1

xk−1
dx

)
= β(k)nk−1k − 1

k − 2
.

Therefore,

E1 ≤ β(k)

(k − 2)ck−2
max

∑
0<n≤nmax

nk−1 1

230n
≤ β(k)nk−1

max

(k − 2)ck−2
max

∑
0<n≤nmax

1

230n

=
β(k)nk−1

max

(k − 2)ck−2
max

230nmax − 1

229(230)nmax
≤ β(k)nk−1

max

229(k − 2)ck−2
max

and

E2 ≤ β(k)
k − 1

k − 2

∑
n>nmax

nk−1e(−π
√

3)n ≤ β(k)
k − 1

k − 2

∫ ∞
nmax

xk−1dx

eπ
√

3x

= β(k)
k − 1

k − 2

e−π
√

3nmax

π
√

3

(
nk−1
max +

(k − 1)nk−2
max

π
√

3
+

(k − 1)(k − 2)nk−3
max

(π
√

3)2
+ . . .+

(k − 1)!

(π
√

3)k−1

)
1See [12], ex.9.6
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≤ β(k)
k − 1

k − 2

e−π
√

3nmax

π
√

3
k!nk−1

max.

Finally,

EX ≤ E1 + E2 ≤ α(k)

(
nk−1
max

ck−2
max

+
nk−1
max

eπ
√

3nmax

)
,

where

α(k) = max

(
β(k)

229(k − 2)
,
β(k)(k − 1)k!

(k − 2)π
√

3

)
=
β(k)(k − 1)k!

(k − 2)π
√

3
.

26



Chapter 2

SL(3) Kloosterman sums

Following the work [2], we generalize results of the previous chapter and obtain

Kloosterman sums associated to the group SL3(Z) as a part of Fourier coefficients

of SL3(Z) Poincaré series.

2.1 Generalized upper-half space and Iwasawa

decomposition

Let Gn = GLn(R) and Γn = SLn(Z).

In order to define a notion of generalized upper-half space associated to the

group Gn with n ≥ 2, we prove the following theorem.

Theorem 2.1.1. (Iwasawa decomposition) Every g ∈ Gn decomposes as

g = nak

with

n = n(xi,j) ∈ N =




1 x1,2 . . . ∗
0 1 x2,3 ∗

0 0
. . . xn−1,n

0 0 0 1

 , xi,j ∈ R, i < j

 ,
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2. SL3(Z) Kloosterman sums

a = a(yk) ∈ A =




y1 0 . . . 0

0 y2 . . .
...

... . . .
. . . 0

0 . . . . . . yn

 , yi > 0


,

k ∈ K = On(R)- orthogonal group.

The map

N × A×K → Gn,

(n, a, k)→ nak

is a homeomorphism of topological spaces. In particular, the decomposition is

unique.

Proof. We need to show that the map

f : (n, a, k)→ nak

is a continuous bijective map such that f−1 is also continuous.

1. The map is injective.

The group NA is a group of upper triangular matrices with positive el-

ements on the diagonal and K is a group of orthogonal matrices. If g ∈
NA∩K, then g−1 ∈ NA∩K since NA∩K is a group. Furthermore, since g

is orthogonal, g = (g−1)T . So that g is upper triangular and lower triangu-

lar at the same time, i.e. it is diagonal. And the only orthogonal diagonal

matrix with positive elements on the diagonal is the identity matrix, g = I.

We conclude that NA ∩K = I.

Suppose nak = n′a′k′, then (na)−1n′a′ = (a−1n−1n′a)a−1a′ = k(k′)−1.

Note that A normalizes N , i.e. for all a ∈ A

a−1Na = N.

Then

(a−1n−1n′a)a−1a′ ∈ NA.
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2. SL3(Z) Kloosterman sums

Since NA∩K = I, we have that k = k′ and na = n′a′. Finally, n = n′ and

a = a′ because N ∩ A = I.

2. The map is surjective.

We apply Gramm-Schmidt orthogonalization process to the columns g1, g2, . . . , gn ∈
Rn of matrix g−1. Vectors g1, g2, . . . , gn form a basis in Rn because g−1 is

invertible. Define h1, h2, . . . , hn ∈ Rn and h′1, h
′
2, . . . , h

′
n ∈ Rn as follows:

h1 = g1, h′1 =
h1

||h1||
,

h2 = −(g2|h′1)h′1 + g2, h′2 =
h2

||h2||
,

...

hi = −
i−1∑
j=1

(gi|hj)h′j + gi, h
′
i =

hi
||hi||

,

...

hn = −
n−1∑
j=1

(gn|hj)h′j + gn, h′n =
hn
||hn||

.

Note that {hi} form an orthogonal and {h′i} orthonormal bases of Rn. Ma-

trix g−1 sends canonical basis {ei} to {gi} via composition

ei → h′i → hi → gi, i = 1, . . . , n.

The first map is an application of k ∈ K (to the canonical basis), the second

is an action of kak−1 with a = diag(||h1||, . . . , ||h2||) ∈ A and the third is

(ka)n(ka)−1. So that

g−1 = (ka)n(ka)−1kak−1k = kan

and

g = nak.
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2. SL3(Z) Kloosterman sums

3. The map is continuous and its inverse is also continuous.

Given map is polynomial whence continuous. To show the continuity of

inverse map notice that K is compact and B = NA is closed subgroups of

Gn. Let g, gm ∈ Gn, k, km ∈ K, a, am ∈ A and n, nm ∈ N . If the sequence

gm = nmamkm
m→∞−→ g = nak,

then since K is compact

km
m→∞−→ k′ ∈ K.

So that

bm = nmam
m→∞−→ b′ = n′a′ ∈ B

since B is closed. Therefore, g = n′a′k′ and n = n′, a = a′, k = k′, i.e

nm
m→∞−→ n,

am
m→∞−→ a

and

km
m→∞−→ k.

As a corollary, we derive Iwasawa decomposition of the group SLn(R).

Corollary 2.1.2.

SLn(R) = NÃSOn(R),

with Ã = {a ∈ A, yn = 1}.

Remark 2.1.3. For later applications, it is convenient to write elements a ∈ Ã as

a =



y1y2 . . . yn−1 0 . . . 0

0 y1y2 . . . yn−2 . . .
...

...
. . . . . . 0

0 . . . y1 0

0 . . . . . . 1


.
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Given change of variables is valid since yi 6= 0 for all i = 1, . . . , n− 1.

Now in the analogous manner to the case n = 2, for n > 2 we define generalized

upper-half space

Hn ∼=
SLn(R)

SOn(R)
∼=

Gn

(On(R) · R×)
.

The space Hn plays the same role for GLn(R) that H2 played for GL2(R).

By the Iwasawa decomposition, every z ∈ Hn can be uniquely written as

z =


1 x1,2 . . . ∗
0 1 x2,3 ∗

0 0
. . . xn−1,n

0 0 0 1





y1y2 . . . yn−1 0 . . . 0

0 y1y2 . . . yn−2 . . .
...

...
. . . . . . 0

0 . . . y1 0

0 . . . . . . 1


,

where xi,j ∈ R for j > i, y1, . . . , yn−1 > 0. In particular, the generalized upper

half plane H3 is the set of all matrices z = na with

n =

1 x1,2 x1,3

0 1 x2,3

0 0 1

 , a =

y1y2 0 0

0 y1 0

0 0 1

 ,
where x1,2, x1,3, x2,3 ∈ R, y1, y2 > 0.

2.2 Automorphic forms and Fourier expansion

The group G3 acts on H3 by matrix multiplication. It is generated by diagonal

matrices, upper triangular matrices with 1s on the diagonal and the Weyl group

W3 consisting of all 3 × 3 matrices with exactly one 1 in each row and column.

The approximation of fundamental domain for G3 can be given by the Siegel set

Σ√3
2
, 1
2

.1 Here Σa,b ⊂ H3 (a, b ≥ 0) is the set of all matrices

1See [6], section 1.3.
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1 x1,2 x1,3

0 1 x2,3

0 0 1


y1y2 0 0

0 y1 0

0 0 1


with |xi,j| ≤ b for 1 ≤ i < j ≤ 3 and yi > a for i = 1, 2.

The group G3 is a Lie group whose Lie algebra gl(3,R) is the additive vector

space (over R) of all n×n matrices with coefficients in R with Lie brackets given

by

[a, b] = a · b− b · a

for all a, b ∈ gl(3,R), where · denotes matrix multiplication. Define the set S be

a space of smooth(infinitely differential) functions F : G3 → C.

Definition 2.2.1. Let F ∈ S, g ∈ G3 and α ∈ gl(3,R). Then we define the

differential operator Dα acting on F as

DαF (g) =
∂

∂t
F (g · exp(tα))|t=0 =

∂

∂t
F (g + t(gα))|t=0.

Remark 2.2.2. The differential operators Dα with α ∈ gl(3,R) generate an asso-

ciative algebra Dn defined over R. And the ring of differential operators Dα is a

realization of the universal enveloping algebra of the Lie algebra gl(3,R).1

Consider the center ∆ of Dn. Every D ∈ ∆ satisfies D · D′ = D′ · D for all

D′ ∈ Dn. We would like to construct an eigenfunction of all differential operators

D ∈ ∆.

Let ν1, ν2 be complex parameters and

z =

1 x1,2 x1,3

0 1 x2,3

0 0 1


y1y2 0 0

0 y1 0

0 0 1

 ∈ H3.

We define a generalization of imaginary part function on the classical upper-half

plane to H3 by

Iν1,ν2 : H3 → C
1See [6], section 2.2

32



2. SL3(Z) Kloosterman sums

Iν1,ν2(z) = y2ν1+ν2
1 yν1+2ν2

2 . (2.1)

Below we prove that the function Iν1,ν2 is an eigenfunction of every D ∈ ∆.

Thus it determines a character λν1,ν2 on ∆, i.e.

DIν1,ν2 = λν1,ν2(D)Iν1,ν2 . (2.2)

Theorem 2.2.3. Let us define Di,j = DEi,j , where Ei,j ∈ gl(3,R) is the matrix

with an 1 at the i, j component and zeros elsewhere. Then for all 1 ≤ i < j ≤ 3

and k = 1, 2, . . .

Dk
i,jIν1,ν2(z) =

{
νk3−iIν1,ν2(z) if i = j;

0 otherwise.
,

where Dk
i,j denotes the composition of differential operators Di,j iterated k times.

Proof. Let

z = na =

1 x1,2 x1,3

0 1 x2,3

0 0 1


y1y2 0 0

0 y1 0

0 0 1

 ∈ H3.

Note that the function Iν1,ν2(z) depends only on variables y1, y2. So that

Iν1,ν2(na) = Iν1,ν2(a)

and

Di,jIν1,ν2(na) = Di,jIν1,ν2(a).

We distinguish three different cases.

1. If i < j, then by definition 2.2.1

Di,jIν1,ν2(a) =
∂

∂t
Iν1,ν2(a+ taEi,j)|t=0 = y1 · . . . · y3−i

∂

∂xi,j
Iν1,ν2(a) = 0.

2. If i = j, then

Di,iIν1,ν2(a) =
∂

∂t
Iν1,ν2(a+taEi,i)|t=0 =

(
y3−i

∂

∂y3−i
−

2∑
l=3−i+1

yl
∂

∂yl

)
Iν1,ν2(a) = ν3−iIν1,ν2(a).
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Similarly,

Dk
i,iIν1,ν2(a) =

(
∂

∂t

)k
Iν1,ν2(ae

tEi,i) = νk3−iIν1,ν2(a).

3. Now let i > j. As before

Di,jIν1,ν2(a) =
∂

∂t
Iν1,ν2(a(Id+ tEi,j))|t=0,

where Id is the identity matrix. First we will show that

(Id+ tEi,j) ≡M(mod O3(R) · R×),

where M a matrix such that (t2 + 1)−1/2 occurs at the position {j, j},
(t2 + 1)1/2 at the position {i, i}, all the other diagonal entries are ones,

t
(t2+1)−1/2 occurs at the position {j, i} and all other entries are zeros. Indeed,

let h = Id+ tEi,j. Then

hht = (Id+ tEi,j)(Id+ tEj,i) = Id+ tEi,j + tEj,i + t2Ei,i.

Define a matrix u = Id− t
(t2+1)

Ej,i, then uhhtut must be a diagonal matrix

d. Let d = a−1(at)−1. Then by direct computations,

uhhtut = Id+ t2Ei,i −
t

t2 + 1
Ej,j,

u−1 = Id+
t

(t2 + 1)
Ej,i,

a−1 = Id+

(
1√

t2 + 1− 1

)
Ej,j + (

√
t2 + 1− 1)Ei,i.

Therefore,

M = u−1a−1 = Id+

(
1√

t2 + 1− 1

)
Ej,j +

t√
t2 + 1

Ej,i.

Since

auh(htutat) = Id,
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we have

auh ∈ O3(R)

and

h ≡M(mod O3(R) · R×)

as required.

Finally, taking the derivative of any of diagonal values and setting t = 0, we

obtain zero as an answer. So the only contribution comes from non-diagonal

entry t
(t2+1)−1/2 . Thus,

Di,iIν1,ν2(a) = a1 · . . . · a3−i
∂

∂xi,j
Iν1,ν2(a) = 0.

Now we can define the notion of automorphic form for the group Γ3 and

compute its Fourier expansion.

Definition 2.2.4. A function f on H3 is called an automorphic form (of type

ν1, ν2) for Γ3 if

• f(γz) = f(z) for γ ∈ Γ3, z ∈ H3

• Df = λν1,ν2 · f , where D ∈ ∆ and λν1,ν2 as in 2.2.

• f(z) has a polynomial growth in y1, y2 on the region {z : y1, y2 ≥ 1}.

Remark 2.2.5. If in addition, f satisfies

∫ 1

0

∫ 1

0

f



1 0 ξ3

0 1 ξ1

0 0 1


 z

 dξ1dξ3 = 0

∫ 1

0

∫ 1

0

f



1 ξ2 ξ3

0 1 0

0 0 1


 z

 dξ2dξ3 = 0,

for all z ∈ H3, then f is called a cusp form.
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2. SL3(Z) Kloosterman sums

Theorem 2.2.6. (Fourier expansion)

Let f be an automorphic form with respect to Γ3 = SL3(Z) and

Γ3,∞ =


1 ∗ ∗

0 1 ∗
0 0 1

 ∈ SL3(Z)


be a minimal parabolic subgroup of Γ3.

Then f has a Fourier expansion given by

f(z) =
∞∑

n=−∞

F0,n(z) +
∑

γ∈Γ2
3,∞\Γ2

3,+

∞∑
m=1

∞∑
n=−∞

Fm,n(γz),

where

Fm,n(z) =

∫ 1

0

∫ 1

0

∫ 1

0

f


1 ξ2 ξ3

0 1 ξ1

0 0 1

 z
 e(−mξ1 − nξ2)dξ1dξ2dξ3, (2.3)

Γ2
3,+ =


A B 0

C D 0

0 0 1

 |A,B,C,D ∈ Z, AD −BC = 1


and

Γ2
3,∞ = Γ2

3 ∩ Γ3,∞ =


1 B 0

0 1 0

0 0 1

 |B ∈ Z

 .

Proof. Since f is automorphic with respect to SL3(Z),

f(z) = f


1 0 n3

0 1 n1

0 0 1

 z
 , n1, n3 ∈ Z.
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2. SL3(Z) Kloosterman sums

Then analogously to one-dimensional Fourier expansion we can write

f(z) =
∑

n1,n3∈Z

fn1,n3(z) (2.4)

with

fn1,n3(z) =

∫ 1

0

∫ 1

0

f


1 0 ξ3

0 1 ξ1

0 0 1

 z
 e(−n1ξ1 − n3ξ3)dξ1dξ3. (2.5)

The function fn1,n3(z) satisfies the following properties:

• Let n2 ∈ Z, then

fn1,n3


1 n2 0

0 1 0

0 0 1

 z
 = fn1+n2n3,n3(z). (2.6)

By 2.5 the left-hand side is equal to

∫ 1

0

∫ 1

0

f


1 0 ξ3

0 1 ξ1

0 0 1


1 n2 0

0 1 0

0 0 1

 z
 e(−n1ξ1 − n3ξ3)dξ1dξ3 =

∫ 1

0

∫ 1

0

f


1 n2 0

0 1 0

0 0 1


1 0 ξ3 − n2ξ1

0 1 ξ1

0 0 1

 z
 e(−n1ξ1 − n3ξ3)dξ1dξ3.

Since f is automorphic,

f


1 n2 0

0 1 0

0 0 1


1 0 ξ3 − n2ξ1

0 1 ξ1

0 0 1

 z
 = f


1 0 ξ3 − n2ξ1

0 1 ξ1

0 0 1

 z
 .

And the following change of variables

ξ̃1 = ξ1
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2. SL3(Z) Kloosterman sums

ξ̃3 = ξ3 − n2ξ1,

leads us to the result.

• Let A,B,C,D,m ∈ Z, AD −BC = 1, m > 0.

fmD,mC(z) = fm,0


A B 0

C D 0

0 0 1

 z
 . (2.7)

Let us consider the left-hand side

fmD,mC(z) =

∫ 1

0

∫ 1

0

f


1 0 ξ3

0 1 ξ1

0 0 1

 z
 e(−mDξ1 −mCξ3)dξ1dξ3 =

∫ 1

0

∫ 1

0

f


A B 0

C D 0

0 0 1


1 0 ξ3

0 1 ξ1

0 0 1

 z
 e(−mDξ1 −mCξ3)dξ1dξ3

because f is automorphic. The last expression can be written as

∫ 1

0

∫ 1

0

f


1 0 Bξ1 + Aξ3

0 1 Dξ1 + Cξ3

0 0 1


A B 0

C D 0

0 0 1

 z
 e(−mDξ1 −mCξ3)dξ1dξ3.

Changing variables

ξ̃1 = Dξ1 + Cξ3,

ξ̃3 = Bξ1 + Aξ3,

we obtain the result.

In view of property 2.7, the formula 2.4 takes the form

f(z) = f0,0(z) +
∑

γ∈Γ2
3,∞\Γ2

3,+

∞∑
m=1

fm,0(γz). (2.8)
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2. SL3(Z) Kloosterman sums

Note that by 2.6, fm,0 is invariant under the action of the matrices of the form1 n 0

0 1 0

0 0 1

 with n ∈ Z.

Therefore,

fm,0(z) =
∞∑

n=−∞

Fm,n(z) (2.9)

with

Fm,n(z) =

∫ 1

0

∫ 1

0

∫ 1

0

f


1 ξ2 ξ3

0 1 ξ1

0 0 1

 z
 e(−mξ1 − nξ3)dξ1dξ2dξ3. (2.10)

Finally,

f(z) =
∞∑

n=−∞

F0,n(z) +
∑

γ∈Γ2
3,∞\Γ2

3,+

∞∑
m=1

∞∑
n=−∞

Fm,n(γz). (2.11)

Corollary 2.2.7. If f is a cusp form, then

F0,n = Fm,0 = 0 for every n,m ∈ Z

and Fourier expansion is given by

f(z) =
∑

γ∈Γ2
3,∞\Γ2

3,+

∞∑
m=1

∞∑
n=−∞
n6=0

Fm,n(γz).

2.3 SL(3) Poincaré series

For z ∈ H3 let

Iν1,ν2(z) = y2ν1+ν2
1 yν1+2ν2

2 .
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2. SL3(Z) Kloosterman sums

And for every two integers n1, n2 define E-function as

En1,n2 : H3 → C,

satisfying

En1,n2


1 ξ2 ξ3

0 1 ξ1

0 0 1

 z
 = e(n1ξ1 + n2ξ2)En1,n2(z) for all ξ1, ξ2, ξ3 ∈ R, (2.12)

En1,n2(z) = O(1) for z ∈ H3, y1, y2 = O(1). (2.13)

Definition 2.3.1. Let ν1, ν2 be two complex variables such that <(νi) >
2
3
, i =

1, 2. Then the series

Pn1,n2(z; ν1, ν2) =
∑

γ∈Γ3,∞\Γ3

Iν1,ν2(γz)En1,n2(γz) (2.14)

is called general Poincaré series for the minimal parabolic subgroup Γ3,∞.

Lemma 2.3.2. The series (2.14) converges absolutely uniformly on compact sub-

sets of H3 when <(νi) >
2
3
, i = 1, 2.

Proof. For every

z =

y1y2 x1,2y1 x1,3

0 y1 x2,3

0 0 1

 ∈ H3,

the left invariant GL3(R)− measure1 on H3 is given by

d∗z = dx1,2dx1,3dx2,3
dy1dy2

(y1y2)3
.

Let us also recall the notion of Siegel set Σa,b ⊂ H3 (a, b ≥ 0) that is the set of

all matrices

1For details see [6], prop. 1.5.3
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2. SL3(Z) Kloosterman sums

1 x1,2 x1,3

0 1 x2,3

0 0 1


y1y2 0 0

0 y1 0

0 0 1


with |xi,j| ≤ b for 1 ≤ i < j ≤ 3 and yi > a for i = 1, 2.

Since 2.13, E−function En1,n2(γz) is bounded and it is enough to prove the

theorem with respect to the series∑
γ∈Γ3,∞\Γ3

Iν1,ν2(γz),

i.e. that for every point z0 ∈ H3 and some non-zero volume compact subset Cz0

of H3 such that z0 ∈ Cz0 the integral

∫
Cz0

∣∣∣∣∣∣
∑

γ∈Γ3,∞\Γ3

Iν1,ν2(γz)

∣∣∣∣∣∣ d∗z
converges. Without loss of generality, assume ν1, ν2 to be real. So we can write∫

Cz0

∑
γ∈Γ3,∞\Γ3

Iν1,ν2(γz)d∗z =

∫
(Γ3,∞\Γ3)·Cz0

Iν1,ν2(z)d∗z.

According to the theorem of Siegel1, there are only finitely many γ ∈ Γ3,∞ \ Γ3

such that γz0 ∈ Σ√3
2
, 1
2

. By continuity, for a sufficiently small Cz0 there are only

finitely many γ ∈ Γ3,∞ \ Γ3 such that γz ∈ Σ√3
2
, 1
2

for all z ∈ Cz0 . Thus, there is

some a ≥
√

3
2

such that

γz /∈ Σa, 1
2

for all γ ∈ Γ3,∞ \ Γ3 and z ∈ Cz0 . Consequently,∫
(Γ3,∞\Γ3)·Cz0

Iν1,ν2(z)d∗z ≤
∫ 1

0

∫ 1

0

∫ 1

0

∫ a

0

∫ a

0

y2ν1+ν2−3
1 yν1+2ν2−3

2 dx1,2dx1,3dx2,3dy1dy2.

And the last integral converges absolutely if ν1, ν2 are sufficiently large.

1See, for example, [6] prop. 1.3.2
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2. SL3(Z) Kloosterman sums

2.4 Bruhat decomposition and Plucker coordi-

nates

Similarly to SL2(Z) case, it is necessary to know the Bruhat decomposition of

the group GL3(R) to compute Fourier expansion of Poincaré series.

Theorem 2.4.1. (Bruhat decomposition) The group GL3(R) can be decom-

posed as

GL3(R) = B3W3B3,

where

• B3 is the standard Borel subgroup of GL3(R), i.e. the group of invertible

upper triangular matrices,

• W3 is the Weyl group consisting of all 3 × 3 matrices which have exactly

one 1 in each row and column and zeros elsewhere.

Proof. Consider the element

g =

g1,1 g1,2 g1,3

g2,1 g2,2 g2,3

g3,1 g3,2 g3,3

 ∈ GL3(R).

Let g3,k be the first non-zero element of the third row of matrix g. Without

loss of generality, assume k = 1. Then we can always choose b1 ∈ B3 such that

gb1 =

g
′
1,1 g′1,2 g′1,3

g′2,1 g′2,2 g′2,3

1 0 0

 .
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Now multiplying on the left by a suitable element

b′1 =

∗ ∗ ∗0 ∗ ∗
0 0 1

 ∈ B3,

we obtain a matrix of the form

b′1gb1 =

0 g′′1,2 g′′1,3

0 g′′2,2 g′′2,3

1 0 0

 .
Applying the same procedure to the first non-zero element of the second row,

we can change the value of this entry to 1 and the rest of the entries in the

corresponding row and column to 0 using suitable matrices b2 and b′2.

Finally, repeating the process with a non-zero element of the first row, we

have

b′3b
′
2b
′
1gb1b2b3 ∈ W3

with exactly one 1 in each row and column.

Corollary 2.4.2. Let

G∞ =


1 ∗ ∗

0 1 ∗
0 0 1


 ⊂ B3

and

D =


∗ 0 0

0 ∗ 0

0 0 ∗

 , det(D) 6= 0

 .

Then Bruhat decomposition can be written as

GL3(R) =
⋃
w∈W3

Gw, (2.15)

where

Gw = G∞DwG∞ = G∞wDG∞. (2.16)
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2. SL3(Z) Kloosterman sums

Proof. The proof consists of several facts. First, B3 = G∞D = DG∞. Second, let

w ∈ W3, d =

a 0 0

0 b 0

0 0 c

 ∈ D, then products wdw−1 and w−1dw are in D. This

can be checked by direct computations for all 6 elements of W3. For instance, if

w =

0 1 0

1 0 0

0 0 1

 , then

wdw−1 = w−1dw =

b 0 0

0 a 0

0 0 c

 .
So that wD = Dw. Finally, notice that the product of 2 diagonal matrices is

again diagonal.

For γ ∈ G3 define the involution

iγ = wtγw, w =

0 0 1

0 1 0

1 0 0

 .
If

γ =

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

A1 A2 A3


then

iγ =

a1,1a2,2 − a1,2a2,1 a1,3a2,1 − a1,1a2,2 a1,2a2,3 − a1,3a2,2

a1,1A1 − a1,1B1 a1,1C1 − a1,3A1 a1,3B1 − a1,2C1

a2,1B1 − a2,2A1 a2,3A1 − a2,1C1 a2,2C1 − a2,3B1

 . (2.17)

Definition 2.4.3. Let us denote elements of the bottom row of iγ as

A2 = a2,1B1 − a2,2A1,
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B2 = a2,3A1 − a2,1C1,

C2 = a2,2C1 − a2,3B1.

Then the vectors

ρ1 = {A1, B1, C1} and ρ2 = {A2, B2, C2}

are called the Plucker coordinates of γ.

Remark 2.4.4. Plucker coordinates {ρ1, ρ2} satisfy the following relation

A1C2 +B1B2 + C1A2 = 0 (2.18)

called Plucker relation.

Theorem 2.4.5. Let G′ = SL3(R) and G∞ is the group of 3×3 upper triangular

unipotent matrices. Then the involution 2.17 induces the bijection of G∞\G′ into

the set of all (A1, B1, C1, A2, B2, C2) ∈ R6 such that 2.18 is satisfied. Furthermore,

the given orbit of G∞ \G′ contains an element of Γ3 if and only if A1, B1, C1 are

coprime integers and also A2, B2, C2 are coprime integers.

Proof. The map is defined as follows: the element

γ =

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

 ∈ G∞ \G′ (2.19)

goes to (A1, B1, C1, A2, B2, C2), where

A1 = −a3,1, B1 = −a3,2, C1 = −a3,3, (2.20)

A2 = a2,1a3,2 − a2,2a3,1, B2 = a2,3a3,1 − a2,1a3,3, C2 = a2,2a3,3 − a2,3a3,2. (2.21)

We need to show that the given map is bijective. To prove the injectivity, we
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2. SL3(Z) Kloosterman sums

show that if there are two matricesa1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

 and

b1,1 b1,2 b1,3

b2,1 b2,2 b2,3

b3,1 b3,2 b3,3


with the same coordinates (A1, B1, C1, A2, B2, C2), then there exist λ1, λ2, λ3 ∈ R
such that 1 λ2 λ3

0 1 λ1

0 0 1


a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

 =

b1,1 b1,2 b1,3

b2,1 b2,2 b2,3

b3,1 b3,2 b3,3

 . (2.22)

The first step is to show that there exist λ1 ∈ R such that[
0 1 λ1

0 0 1

][
a2,1 a2,2 a2,3

a3,1 a3,2 a3,3

]
=

[
b2,1 b2,2 b2,3

b3,1 b3,2 b3,3

]
. (2.23)

We have

a3,1 = −A1 = b3,1,

a3,2 = −B1 = b3,2,

a3,3 = −C1 = b3,3

and

a2,2a3,1 − a2,1a3,2 = A2 = b2,2b3,1 − b2,1b3,2,

a2,3a3,1 − a2,1a3,3 = B2 = b2,3b3,1 − b2,1b3,3,

a2,2a3,3 − a2,3a3,2 = C2 = b2,2b3,3 − b2,3b3,2.

Therefore,

a3,1(a2,2 − b2,2) = a3,2(a2,1 − b2,1),

a3,2(a2,3 − b2,3) = a3,3(a2,2 − b2,2),

a3,3(a2,1 − b2,1) = a3,1(a2,3 − b2,3).

Note that a3,1, a3,2, a3,3, are not all zeros. Without loss of generality, assume
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2. SL3(Z) Kloosterman sums

a3,1 6= 0. Let us take

λ1 =
b2,1 − a2,1

a3,1

.

Then 2.23 is satisfied, as required. Now we need to find λ2, λ3 such that 2.22

is true. The values A2, B2, C2 are not all zeros. Suppose, for instance, A2 =

a2,2a3,1 − a2,1a3,2 6= 0. Then the vectors (a2,1, a2,2) and (a3,1, a3,2) are linearly

independent, so there are λ2, λ3 such that

[
1 λ2 λ3

]a1,1 a1,2

a2,1 a2,2

a3,1 a3,2

 =
[
b1,1 b1,2

]
. (2.24)

Let us compute the determinants of matrices in 2.22

−b1,3A2 − b1,2B2 − b1,1C2

= −(a1,3 +λ2a2,3 +λ3a2,3)A2−(a1,2 +λ2a2,2 +λ3a3,2)B2−(a1,1 +λ2a2,1 +λ3a3,1)C2.

By, 2.24, we have

−(a1,3 + λ2a2,3 + λ3a2,3)A2− (a1,2 + λ2a2,2 + λ3a3,2)B2− (a1,1 + λ2a2,1 + λ3a3,1)C2

= −(a1,3 + λ2a2,3 + λ3a2,3)A2 − b1,2B2 − b1,1C2.

So that

b1,3 = a1,3 + λ2a2,3 + λ3a2,3

and 2.22 follows.

The next step is to show surjectivity. Suppose we are given

(A1, B1, C1) 6= (0, 0, 0)

and

(A2, B2, C2) 6= (0, 0, 0)
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such that 2.18 is satisfied. We may find X1, Y1, Z1, X2, Y2, Z2 such that

A1X1 +B1Y1 + C1Z1 = A2X2 +B2Y2 + C2Z2 = 1. (2.25)

Let

a1,1 = −Z2, a1,2 = −Y2, a1,3 = −X2,

a2,1 = Y1A2 − Z1B2, a2,2 = Z1C2 −X1A2, a2,3 = X1B2 − Y1C2,

a3,1 = −A1, a3,2 = −B1, a3,3 = −C1.

Using 2.18, one can verify relations 2.20 and 2.21. Likewise, the determinant of

γ (given by 2.19) is one. This shows that the map is surjective.

The last thing to prove is the characterization of orbits, which contain integer

matrices. If 2.19 is an integer matrix and (A1, B1, C1, A2, B2, C2) are given by

2.20, 2.21, then A1, B1, C1 have to be coprime since the determinant of 2.19 is

equal to 1. The values A2, B2, C2 are also coprime since the determinant

−a1,3A2 − a1,2B2 − a1,1C2 = 1.

Conversely, let A1, B1, C1 be coprime integers and A2, B2, C1 are also co-

prime integers such that 2.18 is satisfied. To show that the coset parametrized

by this invariants contains an integer matrix, we may find integer values of

X1, Y1, Z1, X2, Y2, Z2 satisfying 2.25. Then the matrix 2.19 can be constructed

as in the proof of surjectivity. Clearly, all entries of this matrix are integral.

Remark 2.4.6. The theorem above also gives the characterization of the orbits of

Γ3,∞\Γ3 in terms of their Plucker coordinates since Γ3,∞\Γ3 is included injectively

in G∞ \G′.

Consider the element

γ =

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

A1 B1 C1

 ∈ Γ3,∞ \ Γ3
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with Plucker coordinates ρ1 = {A1, B1, C1} and ρ2 = {A2, B2, C2}. Below we

determine explicitly Bruhat decomposition of γ ∈ Γ3,∞ \ Γ3 depending on its

Plucker coordinates.

Proposition 2.4.7. If γ ∈ Γ3,∞ \ Γ3 have coordinates A1 = A2 = B1 = B2 = 0,

C1, C2 6= 0, then

γ =

a1,1 a1,2 a1,3

0 a2,2 a2,3

0 0 C1

 =

a1,1 0 0

0 C2

C1
0

0 0 C1


1 a1,2

a1,1

a1,3
a1,1

0 1 a2,3C1

C2

0 0 1

 .
Proposition 2.4.8. If γ ∈ Γ3,∞ \ Γ3 have coordinates A1 = A2 = B1 = 0,

C1, B2 6= 0, then

γ =

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

0 0 C1

 =

1 −a1,1C1

B2
0

0 1 a2,3
C1

0 0 1


0 1 0

1 0 0

0 0 1



−B2

C1
0 0

0 1
B2

0

0 0 C1


1 −C2

B2
0

0 1 a1,3B2

0 0 1

 .
Proposition 2.4.9. If γ ∈ Γ3,∞ \ Γ3 have coordinates A1 = A2 = B2 = 0,

B1, C2 6= 0, then

γ =

a1,1 a1,2 a1,3

0 a2,2 a2,3

0 B1 C1

 =

1 0 0

0 1 a2,2
B1

0 0 1


1 0 0

0 0 1

0 1 0


a1,1 0 0

0 B1 0

0 0 −1
a1,1B1


1 a1,2

a1,1

a1,3
a1,1

0 1 C1

B1

0 0 1

 .
Proposition 2.4.10. If γ ∈ Γ3,∞ \Γ3 have coordinates A1 = 0, B1, A2 6= 0, then

γ =

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

0 B1 C1

 =

1 a1,1B1

A2

−b1,1
A2

0 1 0

0 0 1


0 0 1

1 0 0

0 1 0



A2

B1

0 B1 0

0 0 1
A2


1 a2,2B1

A2

a2,3B1

A2

0 1 C1

B1

0 0 1

 .
Proposition 2.4.11. If γ ∈ Γ3,∞ \Γ3 have coordinates A2 = 0, A1, B2 6= 0, then

γ =

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

A1 B1 C1

 =

1 0 a1,1
A1

0 1 a2,1
A1

0 0 1


0 1 0

0 0 1

1 0 0


A1 0 0

0 1
B2

0

0 0 B2

A1


1 B1

A1

C1

A1

0 1 −b2,2B2

A1

0 0 1

 ,
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where b2,2 = a1,1C1 − a1,3A1.

Proposition 2.4.12. If γ ∈ Γ3,∞ \ Γ3 have coordinates A1, A2 6= 0, then

γ =

a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

A1 B1 C1

 =

1 −b2,1
A2

a1,1
A1

0 1 a2,1
A1

0 0 1


0 0 1

0 1 0

1 0 0


A1 0 0

0 −A2

A1
0

0 0 1
A2


1 B1

A1

C1

A1

0 1 −B2

A2

0 0 1

 ,
where b2,1 = a1,2A1 − a1,1B1.

All the propositions above can be verified by direct computation, i.e. mul-

tiplying matrices on right-hand side and taking into account 2.4.3 , one obtains

the result.

Definition 2.4.13. Let us define the following group

Γw = (w−1Γ3,∞w)t ∩ Γ3,∞.

Explicitly,

Γw1 =

1 0 0

0 1 0

0 0 1

 with w1 =

1 0 0

0 1 0

0 0 1

 ,

Γw2 =


1 m 0

0 1 0

0 0 1

 , m ∈ Z

 with w2 =

0 1 0

1 0 0

0 0 1

 ,

Γw3 =


1 0 0

0 1 n

0 0 1

 , n ∈ Z

 with w3 =

1 0 0

0 0 1

0 1 0

 ,

Γw4 =


1 0 l

0 1 n

0 0 1

 , n, l ∈ Z

 with w4 =

0 0 1

1 0 0

0 1 0

 ,

Γw5 =


1 m l

0 1 0

0 0 1

 , m, l ∈ Z

 with w5 =

0 1 0

0 0 1

1 0 0

 ,
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Γw6 =


1 m l

0 1 n

0 0 1

 , m, l, n ∈ Z

 with w6 =

0 0 1

0 1 0

1 0 0

 .
Remark 2.4.14. Given results could be checked my direct computation. Let us

consider, for example, the case w = w5. Take an arbitrary matrix

g =

1 n m

0 1 l

0 0 1

 ∈ Γ3,∞,

where m, l, n ∈ Z. Then

(w−1Γ3,∞w)t =

1 m l

0 1 0

0 n 1

 .
Intersecting the set of such matrices with Γ3,∞, we obtain the required result.

Proposition 2.4.15. The group Γw acts properly on the right on Γ3,∞\Γ3∩Gw/U ,

where

U =


ε1 0 0

0 ε2 0

0 0 ε3

 , εi = ±1, ε1ε2ε3 = 1


and Gw is as in 2.16. Thus, Γ3,∞ \ Γ3 ∩ Gw/UΓw is a well-defined double coset

space.

Proof. Note that  ∗ ∗ ∗
a2,1 a2,2 a2,3

A1 B1 C1


ε1 0 0

0 ε2 0

0 0 ε3



=

 ∗ ∗ ∗
ε1a2,1 ε2a2,2 ε3a2,3

ε1A1 ε2B1 ε3C1

 .
So that

A1 → ε1A1, B1 → ε2B1, C1 → ε3C1 (2.26)
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A2 → ε1ε2A2, B2 → ε1ε3B2, C2 → ε2ε3C2. (2.27)

Therefore, the representatives of Γ3,∞\Γ3∩Gw(mod U) can be obtained by fixing

two signs of non-zero invariants.

Right multiplication by Γw maps left cosets to left cosets, so Γw acts on

Γ3,∞ \ Γ3 ∩Gw/U .

We need to show that the action is proper, i.e. if γ ∈ Γ3 ∩Gw, τ ∈ Γw and

Γ3,∞γτU = Γ3,∞γU,

then τ = id. In order to prove this fact we introduce two new sets:

H1 = w−1G∞w ∩G∞

and

H2 = w−1Gt
∞ ∩G∞,

where w ∈ W3. Explicit matrix computation for elements wi ∈ W3, i = 1, 2, . . . , 6

shows that every g ∈ G∞ has unique expressions

g = h1h2 (2.28)

and

g = h′2h
′
1 (2.29)

with h1, h
′
1 ∈ H1, h2, h

′
2 ∈ H2. More precisely,

H1 =

1 ∗ ∗
0 1 ∗
0 0 1

 , H2 =

1 0 0

0 1 0

0 0 1

 if w = w1,

H1 =

1 0 ∗
0 1 ∗
0 0 1

 , H2 =

1 ∗ 0

0 1 0

0 0 1

 if w = w2,
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H1 =

1 ∗ ∗
0 1 0

0 0 1

 , H2 =

1 0 0

0 1 ∗
0 0 1

 if w = w3,

H1 =

1 ∗ 0

0 1 0

0 0 1

 , H2 =

1 0 ∗
0 1 ∗
0 0 1

 if w = w4,

H1 =

1 0 0

0 1 ∗
0 0 1

 , H2 =

1 ∗ ∗
0 1 0

0 0 1

 if w = w5,

H1 =

1 0 0

0 1 0

0 0 1

 , H2 =

1 ∗ ∗
0 1 ∗
0 0 1

 if w = w6.

By Bruhat decomposition, γ = b1wdb2 with b1, b2 ∈ G∞, d ∈ D and w ∈ W3.

According to 2.28 and 2.29, without loss of generality, we may assume that b2 ∈
H1. Since

Γ3,∞γτU = Γ3,∞γU,

we conclude that

b2τb
−1
2 ∈ H1 ∩H2 = {I}

and τ = id as required.

Finally, for every w ∈ W3 we determine a canonical set of coset representatives

Rw for the quotient space Γ3,∞ \ Γ3 ∩Gw/UΓw. We give a proof in case w = w2

as an example.

Proposition 2.4.16. If w = w1 =

1 0 0

0 1 0

0 0 1

, then

Rw =


1 0 0

0 1 0

0 0 1


 .
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Proposition 2.4.17. If w = w2 =

0 1 0

1 0 0

0 0 1

, then

Rw =


 a1,1 a1,2 0

−B2 C2 0

0 0 1


 ,

where (B2, C2) = 1, B2 > 0, C2(mod B2) and values a1,1, a1,2 are chosen uniquely

such that a1,1C2 + a1,2B2 = 1 for each pair (B2, C2).

Proof. By proposition 2.4.8, Γ3,∞ \ Γ3 ∩Gw have coordinates A1 = A2 = B1 = 0,

C1, B2 6= 0. By 2.26, 2.27, we can obtain a representative of Γ3,∞\Γ3∩Gw(mod U)

by fixing the signs of C1, B2. Let C1, B2 > 0. Furthermore, by theorem 2.4.5,

Plucker coordinates B2 = −a2,1C1 and C2 = a2,2C1 are coprime integers, so that

C1 = 1. Consequently, a2,2 = C2 and a2,1 = −B2. Considera1,1 a1,2 a1,3

a2,1 a2,2 a2,3

0 0 C1


1 m 0

0 1 0

0 0 1

 =

a1,1 ma1,1 + a1,2 a1,3

a2,1 ma2,1 + a2,2 a2,3

0 0 C1

 .
Thus, to obtain the coset representative modulo Γw , we need to consider a2,2(mod a2,1),

equivalently C2(mod B2). The determinant of obtained matrix a1,1 a1,2 a1,3

−B2 C2 a2,3

0 0 1


must be equal to one. Whence,variables a1,1, a1,2 are chosen uniquely such that

a1,1C2 + a1,2B2 = 1 for each pair (B2, C2). Nor determinant, nor Plucker coor-

dinates depend on the values of a1,3, a2,3, so we can let a1,3 = a2,3 = 0. The

proposition follows.
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Proposition 2.4.18. If w = w3 =

1 0 0

0 0 1

0 1 0

, then

Rw =


1 0 0

0 a2,2 a2,3

0 B1 C1


 ,

where (B1, C1) = 1, B1 > 0, C1(mod B1) and values a2,2, a2,3 are chosen uniquely

such that a2,2C1 + a2,3B1 = 1 for each pair (B1, C1).

Proposition 2.4.19. If w = w4 =

0 0 1

1 0 0

0 1 0

, then

Rw =


a1,1 a1,2 a1,3

A2

B1
αC2 βC2

0 B1 C1


 ,

where (B1, C1) = 1, B1 > 0, C1(mod B1), (A2

B1
, C2) = 1, A2 > 0, C2(mod A2),

B1B2 + C1A2 = 0 and values α, β are chosen uniquely such that αC2 − βB2 = 1

for each pair (B1, C1). The values a1,1, a1,2, a1,3 are chosen uniquely such that

the matrix has determinant one for every quintuple (B1, C1, A2, B2, C2).

Proposition 2.4.20. If w = w5 =

0 1 0

0 0 1

1 0 0

, then

Rw =


a1,1 a1,2 a1,3

a2,1
a2,1B1

A1
a2,3

A1 B1 C1


 ,

where (B2, C2) = 1, B2 > 0, C2(mod B2), (A1

B1
, C1) = 1, A1 > 0, C1(mod A1),

A1C2 +B1B2 = 0 and the values a1,1, a1,2, a1,3, a2,1, a2,3 are chosen uniquely such

that the matrix has determinant one for every quintuple (A1, B1, C1, B2, C2).
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Proposition 2.4.21. If w = w6 =

0 0 1

0 1 0

1 0 0

, then

Rw =


a1,1 a1,2 a1,3

a2,1 a2,2 a2,3

A1 B1 C1


 ,

where A1, A2 > 0, B1, C1(mod A1), B2, C2(mod A2), (A1, B1, C1) = (A2, B2, C2) =

1, A1C2 + B1B2 + A2C1 = 0 and for every sextuple (A1, B1, C1, A2, B2, C2) the

values a2,1, a2,2, a2,3 are uniquely chosen such that

A2 = a2,1B1 − a2,2A1, B2 = a2,3A1 − a2,1C1, C2 = a2,2C1 − a2,3B1

and the rest of values a1,1, a1,2, a1,3 are chosen uniquely such that the matrix has

determinant one.

2.5 SL(3) Kloosterman sums

There are six Kloosterman sums that occur in the Fourier expansion of Poincaré

series (2.14). Let m1,m2, n1, n2 ∈ Z, D1, D2 ∈ Z>0, S(m,n, c) be a classi-

cal Kloosterman sum and W3 denote a Weyl group of permutation matrices of

GL3(Z). By definition,

δa,b =

1 a = b

0 a 6= b
.

For each wi ∈ W3 (i = 1, . . . , 6) we associate a certain Kloosterman sum Swi .

Namely,

Sw1 = δD1,1δD2,1 with w1 =

1 0 0

0 1 0

0 0 1

 ,
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Sw2 = δD1,1S(m2, n2;D2) with w2 =

0 1 0

1 0 0

0 0 1

 ,

Sw3 = δD2,1S(m1, n1;D1) with w3 =

1 0 0

0 0 1

0 1 0

 .
The remaining cases, corresponding to the elements

w4 =

0 0 1

1 0 0

0 1 0

 , w5 =

0 1 0

0 0 1

1 0 0

 and w6 =

0 0 1

0 1 0

1 0 0

 ,
are the most interesting: these are exponential sums different from classical

Kloosterman sums. Below we define two new types of Kloosterman sums K1 =

K1(m1,m2, n1, n2;D1, D2) and K2 = K2(m1, n1, n2;D1, D2) so that

Sw4 = K2(m1, n1, n2;D1, D2),

Sw5 = K2(m2, n2, n1;D2, D1),

Sw6 = K1(m2,m1, n1, n2;D2, D1).

Definition 2.5.1. First type K1 = K1(m1,m2, n1, n2;D1, D2) of SL3(Z) Kloost-

erman sum is

K1 =
∑

B1(mod D1)
B2(mod D2)

∑
C1(mod D1)
C2(mod D2)

e

(
m1B1 + n1(Y1D2 − Z1B2)

D1

+
m2B2 + n2(Y2D1 − Z2B2)

D2

)
(2.30)

where the inner sum satisfies the following conditions

(D1, B1, C1) = 1, (D2, B2, C2) = 1

and

D1C2 +B1B2 + C1D2 ≡ 0(mod D1D2).
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Variables Y1, Y2, Z1, Z2 are chosen such that

Y1B1 + Z1C1 ≡ 1(mod D1),

Y2B2 + Z2C2 ≡ 1(mod D2).

Lemma 2.5.2. The sum (2.30) is well-defined, i.e. it is independent of the choice

of Y1, Y2, Z1, Z2 and it does not depend on the choice of representatives B1, C1

and B2, C2 of the residue classes modulo D1 and D2.

Proof. 1. First, we show the independence of the choice of Y1, Z1 (Y2, Z2), i.e.

if (D1, B1, C1) = 1, D1 6= 0,

D1C2 +B1B2 + C1D2 ≡ 0(mod D1D2),

and if

X1D1 + Y1B1 + Z1C1 = X ′1D1 + Y ′1B1 + Z ′1C1,

then
Y1D2 − Z1B2

D1

≡ Y ′1D2 − Z ′1B2

D1

(mod 1).

We may assume that

D1C2 +B1B2 + C1D2 = 0

by changing the value of C2. Then both vectors (C2, B2, D2) and (α, β, γ) =

(X1−X ′1, Y1−Y ′1 , Z1−Z ′1) are orthogonal to (D1, B1, C1). Thus, the vector

cross product of (C2, B2, D2) and (α, β, γ) is parallel to (D1, B1, C1). So

there is λ ∈ Q such that

(βD2 − γB2, γC2 − αD2, αB2 − βC2) = λ(D1, B1, C1).

Since (D1, B1, C1) = 1, we deduce that λ ∈ Z and

Y1D2 − Z1B2

D1

= λ+
Y ′1D2 − Z ′1B2

D1

as required.

58



2. SL3(Z) Kloosterman sums

2. Let us denote the inner sum in 2.30 by

SB1,B2(m1,m2, n1, n2, D1, D2)

=
∑

C1(mod D1)
C2(mod D2)

e

(
m1B1 + n1(Y1D2 − Z1B2)

D1

+
m2B2 + n2(Y2D1 − Z2B2)

D2

)
,

where

(D1, B1, C1) = 1, (D2, B2, C2) = 1

and

D1C2 +B1B2 + C1D2 ≡ 0(mod D1D2).

We claim that the given sum depends only on the residue classes ofB1(mod D1)

( respectively B2(mod D2)) :

if B′1 = B1 + λD1, then

SB1,B2(m1,m2, n1, n2, D1, D2) = SB′1,B2
(m1,m2, n1, n2, D1, D2).

Let C ′2 = C2 − λB2, so that

(D1, B
′
1, C1) = (D2, B2, C

′
2) = 1

and

D1C
′
2 +B1B

′
2 + C1D2 ≡ 0(mod D1D2).

We deduce that

Y1B
′
1 + Z1C1 ≡ 1(mod D1),

Y ′2B2 + Z2C
′
2 ≡ 1(mod D2)

with Y ′2 = Y2 + λZ2. Then

Y ′2D1 − Z2B
′
1 = Y2D1 − Z2B1.

Finally, summing over all C1 and C2 for the first sum and over all C1 and
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C ′2 for the second sum, we obtain the result

SB1,B2(m1,m2, n1, n2, D1, D2) = SB′1,B2
(m1,m2, n1, n2, D1, D2).

Definition 2.5.3. Suppose D1|D2. Then the second type of SL3(Z) Kloosterman

sums is defined as follows

K2 = K2(m1, n1, n2;D1, D2),

K2 =
∑

C1(mod D1)
C2(mod D2)

(C1,D1)=(C2,
D2
D1

)=1

e

(
m1C1 + n1C2C

∗
1

D1

+
n2C

∗
2

D2/D1

)
. (2.31)

Variables C∗1 , C
∗
2 are chosen so that

C1C
∗
1 ≡ 1(mod D1)

and

C2C
∗
2 ≡ 1(mod D2/D1).

Remark 2.5.4. The sum (2.31) is well-defined, i.e. it is independent of the choice

of C∗1 , C
∗
2 and it does not depend on the choice of representatives C1, C2 of the

residue classes modulo D1 and D2.

2.6 Some properties of Kloosterman sums

New types of Kloosterman sums have properties similar to the classical case. Let

us list some of them.

Proposition 2.6.1.

S(m1,m2, n1, n2;D1, D2) = S(n1, n2,m1,m2;D1, D2).
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Proof. Given (D1, B1, C1) = (D2, B2, C2) = 1 such that

D1C2 +B1B2 + C1D2 ≡ 0(mod D1D2),

let

X1D1 + Y1B1 + Z1C1 = 1

and

X2D2 + Y2B2 + Z2C2 = 1.

Also let

B
′

1 = Y1D2 − Z1B2, B
′

2 = Y2D1 − Z2B1,

C
′

1 = Z2, C
′

2 = Z1,

Y
′

1 = X2B1 − Y2C1, Y
′

2 = X1B2 − Y1C2,

Z
′

1 = C2, C
′

2 = Z1.

Thus,

Y
′

1B
′

1 + Z
′

1C
′

1 ≡ Y1B1 + Z1C1 +D1C2(X1Z2 + Y1Y2 + Z1X2)(mod D1D2).

So that

Y
′

1B
′

1 + Z
′

1C
′

1 ≡ 1(mod D1)

and similarly

Y
′

2B
′

2 + Z
′

2C
′

2 ≡ 1(mod D2).

Besides,

D1C
′

2 +B
′

1B
′

2 + C
′

1 ≡ D1D2(X1Z2 + Y1Y2 + Z1X2) ≡ 0(mod D1D2)

and

Y
′

1D2 − Z
′

1B
′

2 ≡ B1(X2D2 + Y2B2 + Z2C2) ≡ B1(mod D1D2).

In an analogous manner,

Y
′

2D1 − Z
′

2B
′

1 ≡ B2(mod D1D2).
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Finally,

e

(
m1B1 + n1(Y1D2 − Z1B2)

D1

+
m2B2 + n2(Y2D2 − Z2B1)

D2

)

= e

(
n1B

′
1 +m1(Y

′
1D2 − Z

′
1B
′
2)

D1

+
n2B

′
2 +m2(Y

′
2D1 − Z

′
2B
′
1)

D2

)
.

Summing, we obtain the result.

Proposition 2.6.2.

S(m1,m2, n1, n2;D1, D2) = S(m2,m1, n2, n1;D2, D1).

Proof. Follows from the definition.

Proposition 2.6.3. If p1q1 ≡ p2q2 ≡ 1(mod D1D2), p1, q1, p2, q2 ∈ Z, then

S(p1m1, p2m2, q1n1, q2n2;D1, D2) = S(m1,m2, n1, n2;D1, D2).

Proof. Suppose we are given (D1, B1, C1) = (D2, B2, C2) = 1 such that

D1C2 +B1B2 + C1D2 ≡ 0(mod D1D2).

Let Y1B1 + Z1C1 ≡ 1(mod D1), Y2B2 + Z2C2 ≡ 1(mod D2) and

B
′

1 = p1B1, B
′

2 = p2B2,

C
′

1 = p1p2C1, C
′

2 = p1p2C2,

Y
′

1 = q1Y1, Y
′

2 = q2Y2,

Z
′

1 = q1q2Z1, Z
′

2 = q1q2Z2.

Then (D1, B
′
1, C

′
1) = (D2, B

′
2, C

′
2) = 1,

D1C
′

2 +B
′

1B
′

2 + C
′

1D2 ≡ 0(mod D1D2),

Y
′

1B
′

1 + Z
′

1C
′

1 ≡ 1(mod D1), Y
′

2B
′

2 + Z
′

2C
′

2 ≡ 1(mod D2).
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So we have

e

(
p1m1B1 + q1n1(Y1D2 − Z1B2)

D1

+
p2m2B2 + q2n2(Y2D1 − Z2B1)

D2

)

= e

(
m1B

′
1 + n1(Y

′
1D2 − Z

′
1B
′
2)

D1

+
m2B

′
2 + n2(Y

′
2D1 − Z

′
2B
′
1)

D2

)
.

Summing, we obtain the result.

Proposition 2.6.4. (twisted multiplicativity) If (D1D2, D
′
1D

′
2) = 1 and if

D
′

1D1 ≡ D
′

1D2 ≡ 1(mod D
′

1D
′

2),

D
′
1D

′

1 ≡ D
′
2D

′

2 ≡ 1(mod D1D2),

then

S(m1,m2, n1, n2;D1D
′

1, D2D
′

2)

= S(D
′
1

2
D
′

2m1, D
′
2

2
D
′

1m2, n1, n2;D1, D2)S(D1
2
D2m1, D

′
2

2
D
′

1m2, n1, n2;D
′

1, D
′

2).

Proof. Let p, p′ be such that

pD1D2 + p′D
′

1D
′

2 = 1.

Given (D1, B1, C1) = (D2, B2, C2) = 1 such that

D1C2 +B1B2 + C1D2 ≡ 0(mod D1D2)

and (D
′
1, B

′
1, C

′
1) = (D

′
2, B

′
2, C

′
2) = 1 such that

D
′

1C
′

2 +B
′

1B
′

2 + C
′

1D
′

2 ≡ 0(mod D
′

1D
′

2),

let

d1 = D1D
′

1, d2 = D2D
′

2,

b1 = p′D
′

1D
′

2B1 + pD1D2B
′

1, b2 = p′D
′

1D
′

2B2 + pD1D2B
′

2,

c1 = p′
2
D
′

1

2
D
′

2C1 + p2D2
1D2C

′

1, c2 = p′
2
D
′

1D
′

2

2
C2 + p2D1D

2
2C
′

2.
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Then

(d1, b1, c1) = (d2, b2, c2) = 1,

d1c2 + b1b2 + c1d2 ≡ 0(mod d1d2).

Let

y1 = p′D
′

1D
′

2Y1 + pD1D2Y
′

1 , y2 = p′D
′

1D
′

2Y2 + pD1D2Y
′

2 ,

z1 = p′D
′

1D
′

2

2
Z1 + pD1D

2
2Z
′

1, z2 = p′D
′

1

2
D
′

2Z2 + pD2
1D2Z

′

2.

Then

y1b1 + z1c1 ≡ 1(mod d1), y2b2 + z2c2 ≡ 1(mod d2),

m1b1 + n1(y1d2 − z1b2)

d1

≡ m1p
′D
′
2B1 + n1p

′D
′
2

2
(Y1D2 − Z1B2)

D1

+
m1pD2B

′
1 + n1pD

2
2(Y

′
1D

′
2)− Z ′1B

′
2

D
′
1

(mod 1).

And the identity for d2 is similar. Summing, we have

S(m1,m2, n1, n2; d1, d2) = S(p′D
′

2m1, p
′D
′

1m2, p
′D
′

2

2
n1, p

′D
′

1

2
n2;D1, D2)

×S(pD2m1, pD1m2, pD
2
2n1, pD

2
1n2;D

′

1, D
′

2).

But

D1 ≡ pD2(mod D1
′D2

′), D2 ≡ pD1(mod D1
′D
′

2),

D
′
1 ≡ p′D

′

2(mod D1D2), D
′
2 ≡ p′D

′

1(mod D1D2).

Now the result follows from proposition 2.6.3.

Proposition 2.6.5.

S(m1,m2, n1, n2;D1, 1) = S(m1, n1;D1),

S(m1,m2, n1, n2; 1, D2) = S(m2, n2;D2),

where S(m,n;D) is a classical Kloosterman sum.

Proof. Follows from the definition.
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Proposition 2.6.6. If (D1, D2) = 1, then

S(m1,m2, n1, n2;D1, D2) = S(D2m1, n1, D1)S(D1m2, n2, D2).

Proof. Follows from properties 2.6.4 and 2.6.5.

Now, let us consider the second type of SL3(Z) Kloosterman sum and list

some of its properties.

Proposition 2.6.7.

S(m1, n1, n2, 1, D2) = RD2(n2),

where

Rc(n) = S(0, n, c) =
∑

d(mod c)
gcd(c,d)=1

e

(
nd

c

)

is a Ramanujan sum.

Proof. Follows from the definition.

Proposition 2.6.8. (twisted multiplicativity) let (D2, D
′
2) = 1, D1|D2, D

′
1|D

′
2.

Then

S(m1, n1, n2, D1D
′

1, D2D
′

2) = S(m1D
′
1, n1D

′

2, n2D
′
2

2
, D1, D2)S(m1D1, n1D2, n2D2

2
, D

′

1, D
′

2),

where

D1D1 ≡ 1(mod D
′

1), D2D2 ≡ 1(mod D
′

2),

D
′

1D
′
1 ≡ 1(mod D1), D

′

2D
′
2 ≡ 1(mod D2).

Proposition 2.6.9. Let p be a prime number. Then for b > a > 0

S(m1, n1, n2; pa, pa) = 0

unless b = 2a, or n2 ≡ 0(mod pb−2a) and b > 2a, or n1 ≡ 0(mod p2a−b) and

b < 2a.
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2. SL3(Z) Kloosterman sums

Proposition 2.6.10.

S(m1, n1, n2; pa, pa) =


p2a − p2a−1 if pa|m, pa|n1

−p2a−1 if pa 6 |m, pa|n1

0 otherwise.

Proposition 2.6.11.

S(m1, n1, n2;D1, D2) = 0

unless n1
D2

D2
1
∈ Z.

Proof. Follows from propositions 2.6.8, 2.6.9 and 2.6.10.

Proposition 2.6.12. (Larsen’s bound)

|S(m1, n1, n2;D1, D2)| ≤ min(τ(D1)α(n2, D2/D1)D2
1, τ(D2)(m1, n1, D1)D2),

where α = log(3)
log(2)

and τ(n) =
∑

d|n
d≥1

1.

2.7 Fourier expansion of Poincaré series

Let us choose an E−function as

En1,n2(z) = e(n1(x1 + iy1/M) + n2(x2 + iy2/M)) with M ∈ Z. (2.32)

Since the function does not depend on x3, we write

En1,n2(z) = En1,n2(x1 + iy1, x2 + iy2). (2.33)

Below we compute the Fourier coefficients of SL3(Z) Poincaré series for this choice

of E−function.

Theorem 2.7.1. Let <(ν1),<(ν2) > 2
3
. Then

∫ 1

0

∫ 1

0

∫ 1

0

Pn1,n2


0 ξ2 ξ3

0 1 ξ1

0 0 1

 z
 e(−m1ξ1 −m2ξ2)dξ1dξ2dξ3 =
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2. SL3(Z) Kloosterman sums

= e(m1x1 +m2x2)Iν1,ν2(z)
∑
wi∈W

∑
ε1,ε2=±1

∞∑
D1,D2=1

Swi(ε1m1, ε2m2, n1, n2;D1, D2)

×D−3ν1
1 D−3ν2

2 Jwi(y1, y2; ν1, ν2; ε1m1, ε2m2, n1, n2;D1, D2),

where Swi is a SL3(Z) Kloosterman sums and

Jwi = Jwi(y1, y2; ν1, ν2; ε1m1, ε2m2, n1, n2;D1, D2)

is an integral below corresponding to the element wi.

Let us write ξ4 = ξ1ξ2 − ξ3, Z3 = ξ2
3 + ξ2

2y
2
1 + y2

1y
2
2 and Z4 = ξ2

4 + ξ2
1y

2
2 + y2

1y
2
2,

then

• Jw1 = δm1,n1δm2,n2En1,n2(y1, y2),

• Jw2 = δn1,0δm1,0

∫ +∞
−∞ (ξ2

2 + y2
2)
−3ν2

2 En1,n2(0,−(ξ2 + iy2)−1D−2
2 )e(−m2ξ2)dξ2,

• Jw3 = δn2,0δm2,0

∫ +∞
−∞ (ξ2

1 + y2
1)
−3ν2

2 En1,n2(−(ξ1 + iy1)−1D−2
1 , 0)e(−m1ξ1)dξ1,

• Jw4 = δm2D2
1 ,n1D2

∫ +∞
−∞

∫ +∞
−∞ (ξ2

1 + y2
1)
−3ν1

2 Z
−3ν2

2
4 e(−m1ξ1)

×En1,n2((ξ1ξ4+iy1Z
1/2
4 )(ξ2

1+y2
1)−1D2D

−2
1 , (ξ4+iy2(ξ2

1+y2
1)1/2)Z−1

4 D1D
−2
2 )dξ1dξ4,

• Jw5 = δm1D2
2 ,n2D1

∫ +∞
−∞

∫ +∞
−∞ (ξ2

2 + y2
2)
−3ν2

2 Z
−3ν1

2
3 e(−m2ξ2)

×En1,n2((ξ3+iy1(ξ2
2+y2

2)1/2)Z−1
3 D2D

−2
1 , (ξ2ξ3+iy2Z

1/2
3 )(ξ2

2+y2
2)−1D1D

−2
2 )dξ2dξ3,

• Jw6 =
∫ +∞
−∞

∫ +∞
−∞

∫ +∞
−∞ Z

−3ν1
2

3 Z
−3ν2

2
4 e(−m1ξ1 −m2ξ2)

×En1,n2((−ξ1ξ3−ξ2y
2
1+iy1Z

1/2
4 )Z−1

3 D2D
−2
1 , (−ξ2ξ4−ξ1y

2
2+iy1Z

1/2
3 )Z−1

4 D1D
−2
2 )

×dξ1dξ2dξ3.

Proof. Consider the Poincaré series

Pn1,n2(z, ν1, ν2) =
∑

γ∈Γ3,∞\Γ3

Iν1,ν2(γz)En1,n2(γz).

Let

U =


ε1 ε2

ε3

 , εi = ±1, ε1ε2ε3 = 1

 .
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Then we can write

Pn1,n2(z, ν1, ν2) =
∑

γ∈Γ3,∞\Γ3/U

∑
u∈U

Iν1,ν2(γuz)En1,n2(γuz).

According to the formula 2.3, Fourier coefficients are given by

Fm1,m2(z) =

∫ 1

0

∫ 1

0

∫ 1

0

Pn1,n2


1 ξ2 ξ3

0 1 ξ1

0 0 1

 z
 e(−m1ξ1 −m2ξ2)dξ1dξ2dξ3.

Since 1 ξ2 ξ3

0 1 ξ1

0 0 1

 z =

1 ξ2 ξ3

0 1 ξ1

0 0 1


1 x2 x3

0 1 x1

0 0 1


y1y2 0 0

0 y1 0

0 0 1



=

y1y2 (x2 + ξ2)y1 ξ3 + ξ2x1 + x3

0 y1 ξ1 + x1

0 0 1

 ,
we can make a change of variables

ξ1 → ξ1 − x1,

ξ2 → ξ2 − x2,

ξ3 → ξ3 − x3 − ξ2x1

to obtain

Fm1,m2(z) = e(x1m1+x2m2)

∫ 1

0

∫ 1

0

∫ 1

0

Pn1,n2


y1y2 y1ξ2 ξ3

0 y1 ξ1

0 0 1


 e(−m1ξ1−m2ξ2)dξ1dξ2dξ3

= e(x1m1 + x2m2)
∑

γ∈Γ3,∞\Γ3/U

∑
u∈U

∫ 1

0

∫ 1

0

∫ 1

0

Iν1,ν2En1,n2

γu
y1y2 y1ξ2 ξ3

0 y1 ξ1

0 0 1
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×e(−m1ξ1 −m2ξ2)dξ1dξ2dξ3.

Note that each element u ∈ U , u 6=

1 0 0

0 1 0

0 0 1

 changes signs of some variables ξi,

1 ≤ i ≤ 3. So the following substitution

ξi → εiξi, i = 1, . . . , 3

leads to

Fm1,m2(z) = e(x1m1 + x2m2)
∑

ε1,ε2=±1

∑
γ∈Γ3,∞\Γ3/U

∫ 1

0

∫ 1

0

∫ 1

0

Iν1,ν2

×En1,n2

γ
y1y2 y1ξ2 ξ3

0 y1 ξ1

0 0 1


 e(−m1ε1ξ1 −m2ε2ξ2)dξ1dξ2dξ3.

Let us denote k1 = m1ε1, k2 = m2ε2 and

L =
∑

γ∈Γ3,∞\Γ3/U

∫ 1

0

∫ 1

0

∫ 1

0

Iν1,ν2En1,n2

γ
y1y2 y1ξ2 ξ3

0 y1 ξ1

0 0 1


 e(−k1ξ1−k1ξ2)dξ1dξ2dξ3.

Now we apply results of the section 2.4 to modify the given sum. Note that

Γ3 = G3 ∩ Γ3 = (∪w∈W3Gw) ∩ Γ3

by Bruhat decomposition 2.15. So that

Γ3,∞ \ Γ3/U = ∪w∈W3Γ3,∞ \ Γ3 ∩Gw/U.

Let

en1,n2


1 x2 ∗

0 1 x1

0 0 1


 = e(n1x1 + n2x2).
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Then, using proposition 2.4.15 and property 2.12 , we have

L =
∑
w∈W3

∑
γ∈Rw

γ=b1wdb2
b1,b2∈G∞,d∈D

en1,n2(b1)
∑
t∈Γw

∫ 1

0

∫ 1

0

∫ 1

0

Iν1,ν2

×En1,n2

wdb2t

y1y2 y1ξ2 ξ3

0 y1 ξ1

0 0 1


 e(−k1ξ1 − k1ξ2)dξ1dξ2dξ3.

According to the definition 2.4.13, there are six types of groups Γw associated to

different elements w ∈ W3. We can treat them case by case in order to apply

the action of t ∈ Γw to the matrix

y1y2 y1ξ2 ξ3

0 y1 ξ1

0 0 1

 and change the domain of

integration. Consider, for instance,

Γw5 =


1 m l

0 1 0

0 0 1

 , m, l ∈ Z

 with w5 =

0 1 0

0 0 1

1 0 0

 .
Then, 1 m l

0 1 0

0 0 1


y1y2 y1ξ2 ξ3

0 y1 ξ1

0 0 1

 =

y1y2 y1(ξ2 +m) ξ3 +mξ1 + l

0 y1 ξ1

0 0 1

 .
Let us make the following change of variables

ξ1 → ξ1,

ξ2 → ξ2 −m,

ξ3 → ξ3 −mξ1 − l.

Summing over all elements in Γw5 (equivalently, summing over all m, l ∈ Z), the
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2. SL3(Z) Kloosterman sums

domain of integration in the space ξ3 × ξ2 × ξ1 is

[−∞,+∞]× [−∞,+∞]× [0, 1].

In general,

L =
∑
w∈W3

∑
γ∈Γ3,∞\Γ3∩Gw/UΓw

γ=b1wdb2

en1,n2(b1)

∫
Ωw

Iν1,ν2

×En1,n2

wdb2

y1y2 y1ξ2 ξ3

0 y1 ξ1

0 0 1


 e(−k1ξ1 − k1ξ2)dξ1dξ2dξ3,

where in the space ξ3 × ξ2 × ξ1

Ωw1 = [0, 1]× [0, 1]× [0, 1] with w1 =

1 0 0

0 1 0

0 0 1

 ,

Ωw2 = [0, 1]× [−∞,+∞]× [0, 1] with w2 =

0 1 0

1 0 0

0 0 1

 ,

Ωw3 = [0, 1]× [0, 1]× [−∞,+∞] if w3 =

1 0 0

0 0 1

0 1 0

 ,

Ωw4 = [−∞,+∞]× [0, 1]× [−∞,+∞] with w4 =

0 0 1

1 0 0

0 1 0

 ,

Ωw5 = [−∞,+∞]× [−∞,+∞]× [0, 1] with w5 =

0 1 0

0 0 1

1 0 0

 ,

Ωw6 = [−∞,+∞]× [−∞,+∞]× [−∞,+∞] if w5 =

0 0 1

0 1 0

1 0 0

 .

71



2. SL3(Z) Kloosterman sums

Next we apply

b2 =

1 β2 β3

0 1 β1

0 0 1


to y1y2 y1ξ2 ξ3

0 y1 ξ1

0 0 1


and make a change of variables

ξ1 → ξ1 − β1,

ξ2 → ξ2 − β2,

ξ3 → ξ3 − β2ξ1 − β3.

Then,

L = Iν1,ν2(z)En1,n2(y1, y2)

∫ 1

0

∫ 1

0

∫ 1

0

e((n1 − k1)ξ1 + (n2 − k2)ξ2)dξ1dξ2dξ3

+
∑
w∈W3
w 6=w1

∑
γ∈Γ3,∞\Gw∩Γ3/UΓw

γ=b1wdb2

en1,n2(b1)ek1,k2(b2)

×
∫

Ωw,b2

Iν1,ν2(z)En1,n2

wd
y1y2 y1ξ2 ξ3

0 y1 ξ1

0 0 1


 e(−k1ξ1 − k2ξ2)dξ1dξ2dξ3.

According to Bruhat decomposition and propositions 2.4.7-2.4.21, the domain

of integration Ωw,b2 is given by

Ωw2,b2 = [0, 1]× [−∞,+∞]× [0, 1],

Ωw3,b2 = [0, 1]× [0, 1]× [−∞,+∞],

Ωw4,b2 = [−∞,+∞]× [
αC2B1

A2

, 1 +
αC2B1

A2

]× [−∞,+∞],
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Ωw5,b2 = [−∞,+∞]× [−∞,+∞]× [
−b2,2B2

A1

, 1− b2,2B2

A1

],

Ωw6,b2 = [−∞,+∞]× [−∞,+∞]× [−∞,+∞].

The next step is to modify the integral
∫

Ωw,d2
. Since wd

y1y2 y2ξ2 ξ3

0 y1 ξ1

0 0 1


belongs to the generalized upper-half space H3, we considery

′
1y
′
2 y′2x2 x3

0 y′1 x1

0 0 1

 ≡ wd

y1y2 y2ξ2 ξ3

0 y1 ξ1

0 0 1

 mod
(
O3(R) · R×

)
.

Let

ξ4 = ξ1ξ2 + ξ3,

Z3 = ξ2
3 + y2

1ξ
2
2 + y2

1y
2
2,

Z4 = ξ2
4 + y2

2ξ
2
1 + y2

1y
2
2.

Then the values of x′1, x′2, x′2, y′1, y′2 are as follows.

• If w = w2, then

x′1 = B2ξ3,

x′2 =
−ξ2

B2
2(ξ2

2 + y2
2)
,

x′3 =
ξ1

B2

,

y′1 = B2y1(ξ2
2 + y2

2)0.5,

y′2 =
y2

B2
2(ξ2

2 + y2
2)
.

• If w = w3, then

x′1 =
−ξ1

B2
1(ξ2

1 + y2
1)
,

x′2 = B1(ξ1ξ2 − ξ3),

x′3 =
ξ1ξ3 + ξ2y

2
1

B1(ξ2
1 + y2

1)
,
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y′1 =
y1

B2
1(ξ2

1 + y2
1)
,

y′2 = B1y2(ξ2
1 + y2

1)0.5.

• If w = w4, then

x′1 =
A2

B2
1

(ξ1ξ3 + ξ2y
2
1)

ξ2
1 + y2

1

,

x′2 =
−B1ξ4

A2
2Z4

,

x′3 =
ξ1

B1A2(ξ2
1 + y2

1)
,

y′1 =
A2y1Z

0.5
4

B2
1(ξ2

1 + y2
1)
,

y′2 =
B1y2(ξ2

1 + y2
1)0.5

A2
2Z4

.

• If w = w5, then

x′1 =
B2ξ3

A2
1Z3

,

x′2 =
A1

B2
2

(ξ1 −
ξ2ξ3

ξ2
2 + y2

2

),

x′3 =
ξ1ξ3 + ξ2y

2
1

A1B2Z3

,

y′1 =
B2y1(ξ2

2 + y2
2)0.5

A2
1Z3

,

y′2 =
A1y2Z

0.5
3

B2
2(ξ2

2 + y2
2)
.

• If w = w6, then

x′1 =
−A2

A2
1

(ξ1ξ3 + ξ2y
2
1)

Z3

,

x′2 =
−A1

A2
2

(ξ2ξ4 + ξ2y
2
2)

Z4

,

x′3 =
ξ3

A1A2Z3

,
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y′1 =
A2y1Z

0.5
4

A2
1Z3

,

y′2 =
A1y2Z

0.5
3

A2
2Z4

.

Given results can be verified by direct calculations. Consider, for example,

case w = w5. Let r1 =
√
ξ2

2 + y2
2, r2 =

√
ξ2

2y
2
1 + y2

1y
2
2 + ξ2

3 , then there are

O =


−ξ2
r1

y2
r1

0
−ξ3y2
r1r2

−ξ2ξ3
r1r2

r1y1
r2

y1y2
r2

y1ξ2
r2

ξ3
r2

 ∈ O3(R)

and

R =

A1r
2
2 0 0

0 A1r
2
2 0

0 0 A1r
2
2

 ∈ R×

such that y
′
1y
′
2 y′2x2 x3

0 y′1 x1

0 0 1

OR = w5d

y1y2 y2ξ2 ξ3

0 y1 ξ1

0 0 1

 .
Now summing up all the results we immediately obtain the statement of the

theorem in case w = w1, w2, w3. The remained three cases involve some more

computations. Let us consider for instance the case w = w5:

Iν1,ν2(z) = A−3ν1
1 B−3ν2

2 Z
−3ν1

2
3 (ξ2

2 + y2
2)
−3ν2

2

and according to 2.33

En1,n2(z) = En1,n2(x
′
1 + iy′1, x

′
2 + iy′2).

Then ∫
Ωw5,b2

= A−3ν1
1 B−3ν2

2

∫ 1−
b2,2B2
A1

−
b2,2B2
A1

e((
n2A1

B2
2

− k1)ξ1)dξ1
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×
∫ +∞

−∞

∫ +∞

−∞
Z
−3ν1

2
3 (ξ2

2+y2
2)
−3ν2

2 En1,n2

(
B2

A2
1

(
ξ3 + iy1(ξ2

2 + y2
2)1/2

Z3

)
,
A1

B2
2

(
−ξ2ξ3 + iy2Z

1/2
3

(ξ2
2 + y2

2)

))
×e(−k2ξ2)dξ2dξ3.

If n2A1

B2
2
6= k1,

∫ 1−
b2,2B2
A1

−
b2,2B2
A1

e((
n2A1

B2
2

−k1)ξ1)dξ1 =
1

2πi
(
n2A1

B2
2

−k1)−1e(b2,2(
k1B2

A1

− n2

B2

))(e(
n2A1

B2
2

−k1)−1).

So that ∫
Ωw5,b2

= µ · A−3ν1
1 B−3ν2

2 e(b2,2(
k1B2

A1

− n2

B2

))

×
∫ +∞

−∞

∫ +∞

−∞
Z
−3ν1

2
3 (ξ2

2+y2
2)
−3ν2

2 En1,n2

(
B2

A2
1

(
ξ3 + iy1(ξ2

2 + y2
2)1/2

Z3

)
,
A1

B2
2

(
−ξ2ξ3 + iy2Z

1/2
3

(ξ2
2 + y2

2)

))
×e(−k2ξ2)dξ2dξ3,

where

µ = 1 if
n2A1

B2
2

= k1

and

µ =
1

2πi
(
n2A1

B2
2

− k1)−1(e(
n2A1

B2
2

− k1)− 1), otherwise.

Let D1 = A1 and D2 = B2, then

∑
γ

en1,n2(b1)ek1,k2(b2)e(b2,2(
k1B2

A1

− n2

B2

)) =
∑

C1(mod D1)
C2(mod D2)

e

(
n1C

∗
2

D1D
−1
2

+
k2C2

D2

+
n2C1C

∗
2

D2

)
,

where (C2, D2) = 1, (C1, D1D
−1
2 ) = 1, C2C

∗
2 ≡ 1(mod D2) and C1C

∗
1 ≡ 1(mod D1D

−1
2 ).

By property 2.6.11, the later sum is zero unless n2D1

D2
2
∈ Z. On the other hand,

if n2D1

D2
2
∈ Z, then the integral

∫
Ωw5,b2

vanishes for k1 6= n2A1

B2
2

. This leads to the

result. Applying the same procedure, one can also obtain required expressions

for Kloosterman sums and integrals Jw in case w = w4, w6.
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2. SL3(Z) Kloosterman sums

2.8 SL(3) Kloosterman angles

Let us recall proposition 2.6.6 in case n1 = n2 = m1 = m2 = 1, D1 = p1, D2 = p2,

where p1 6= p2 are prime numbers.

Proposition 2.8.1. If (p1, p2) = 1, then

S(1, 1, 1, 1; p1, p2) = S(p2, 1, p1)S(p1, 1, p2),

where S(m,n, c) is a classical Kloosterman sum.

According to Weil’s bound,

|S(p2, 1, p1)| ≤ 2
√
p1,

|S(p1, 1, p2)| ≤ 2
√
p2.

Thus, there are unique Kloosterman angles (θp2,p1 , θp1,p2) on [0, π] × [0, π] such

that

S(p2, 1, p1) = 2
√
p1cos(θp2,p1)

and

S(p1, 1, p2) = 2
√
p2cos(θp1,p2).

We associate a couple of angles (θp1,p2 , θp2,p1) with SL3(Z) Kloosterman sum

S(1, 1, 1, 1; p1, p2).

Conjecture 2.8.2. Let P1, P2 →∞, then the set of Kloosterman angles

{(θp2,p1 , θp1,p2)}p1≤P1
p2≤P2
p1 6=p2

becomes equidistibuted with respect to Sato-Tate measure on [0, π]× [0, π]. Equiv-

alently, for any I1 × I2 = [a1, b1]× [a2, b2] ∈ [0, π]× [0, π],

limP1→∞,
P2→∞

# {p1 ≤ P1, p2 ≤ P2, p1 6= p2, θ(p2, p1) ∈ I1, θ(p1, p2) ∈ I2}
# {p1 ≤ P1} × (# {p2 ≤ P2} − 1)

= µST (I1 × I2) =
4

π2

∫ b1

a1

∫ b2

a2

sin2(θ1) sin2(θ2)dθ1dθ2.
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2. SL3(Z) Kloosterman sums

Figure 2.1: Cumulative distribution function for Kloosterman angles (red) and
Sato-Tate cumulative distribution function (blue)
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2. SL3(Z) Kloosterman sums

Figure 2.2: Cumulative distribution function for Kloosterman angles (red) and
Sato-Tate cumulative distribution function (blue) in one plot
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