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Introduction

Classical Kloosterman sum (or SLy(Z) Kloosterman sum) is defined

by 3
S(m,n,c) = Z e(w)

d(mod c)
ged(e,d)=1

with dd = 1(mod c). First, the given sum was discovered by Henri

Poincaré in 1911 in the paper [13] on modular forms.

Few years later in 1926 Hendrik Kloosterman also obtained the same
sum while he was solving the problem of finding asymptotic expression
of the number of representations of a large integer n by a quadratic
form in four variables', i.e. the number of solutions (z1,z2, z3,24) €

Z* of an equation
az? + bas + cxs + da? = n,

where a, b, ¢, d are fixed positive integers.

Already the fact that Kloosterman sum appeared in two problems of
different origins emphasizes its importance. Afterwards a number of
other applications in number theory have been found. One of them
is Conrey’s theorem [3] that at least two-fifths of the zeros of the
Riemann zeta function are simple and on the critical line, which uses
results of J.-M. Deshouillers and H. Iwaniec on averages of Klooster-

marn sums.

Another application is the generalization of Ramanujan conjecture

to non-holomorphic cusp forms associated to arithmetic discrete sub-

1See [11].



groups of GL,(R) with n > 2. Trying to find an approach to the gen-
eralized Ramanujan conjecture for GLy(R) and GL3(R) via Kloost-
erman sums, Bump, Friedberg and Goldfeld computed Fourier expan-
sion of SL3(Z) Poincaré series. As a part of Fourier coefficients they
obtained six exponential sums, among which we can distinguish two
new types different from classical Kloosterman sums, called SL3(Z)

Kloosterman sums.

The main goal of this work is to study the connection between Kloost-
erman sums and automorphic forms associated with groups SLy(Z)
and SL3(Z). We start with classical Kloosterman sums and obtain
them as a part of Fourier coefficients of SLy(Z) Poincaré series in the
first chapter. In the second chapter we compute Fourier expansion of
SL3(Z) Poincaré series and introduce two new types of exponential
sums called SL3(Z) Kloosterman sums. We also describe some prop-
erties of Kloosterman sums and discuss the problem of distribution of

Kloosterman angles.



Chapter 1
Classical Kloosterman sums

In this chapter we construct a particular example of SLy(Z) modular forms. Our
construction leads us to Poincaré series, whose Fourier expansion turns out to

contain classical Kloosterman sums.

1.1 SL(2) modular forms

The group

b
SLQ(R):{[CL d] cad —be = 1 and a,b,c,deR}
C

acts on the Poincaré upper-half plane

H*={2€C:S2>0}

by linear fractional transformations. Let v = [Z Z] € SLy(R), then for any
z € H?

v(z) = ij__z € H? (1.1)
since . B 3(2)

S(v(2)) = o dP (1.2)



1. Classical Kloosterman sums

The action of SLy(R) on the set H? has one orbit because we can reach any

point in H? from the point i

0 L

](i):x—i-iy.
VY

And the stabializer K of 7 is equal to

0 sind
SO,(R) = {k(0)} for k()= | o~ UL
—sinf cosf
Indeed, .
a?+b‘:i:>ai+b:di—c:>d:a,c:—b.
ca+d
So

b
K:{[a ]}Witha2+b2:1
—b a

and we can write a = cosf and b = sin 6 to obtain the result.
This gives an alternative way to represent the upper-half plane as a quotient

space SLy(R)/SO5(R). Each element of the later group has a unique representa-
x
tive of the form g i where y > 0, by Jwasawa decomposition'.

In this section we are mainly interested in a discrete subgroup SLy(Z) of
SLy(R) with a, b, c,d € Z, called the modular group.
The group SLy(Z) is generated 2 by two elements

0 -1 11
S = and T = , such that S? = (ST)* = —1.
1 0 0 1
And the standard fundamental domain ® for the action of SLy(Z) on H? is

F— {z e I, |R(2)| < % 2] > 1}.

IThe proof is given in a general case in 2.1.1
2See [9], theorem 1.1
3See [9], theorem 1.2



1. Classical Kloosterman sums

To define a notion of automorphic form with respect to SLo(Z), we use the

following operator.

Definition 1.1.1. Let k be a positive integer. Define a weight k slash operator
of

b
GL;(R):{[“ d] . a,b,c,d € R and ad—bc>0}
C

on the set of all functions f : H? — C as follows. If v = [a
c

b
d] € GL; (R) and
(v, 2) =cz+d, let

k _ det (y)*/? )
Fh) &) =50 5y

Remark 1.1.2. Formula (1.3) defines a right action of GLj (R) on the set of all

functions f : H? — C; in particular,

f(r2). (1.3)

flons )= (F15) 15, (2). (1.4)
The last equation is a consequence of the cocycle property
37172, 2) = J(,722) - (72, 2). (1.5)

From now on we fix I'y = SLy(Z). Then the equation (1.3) can be written as

k _ f(vz2)
R &= 505

(1.6)
Definition 1.1.3. A function f : H? — C is called modular form of weight k
with respect to the group I's if

e f is holomorphic on H?

o f|i= f for every y € I'y

e f is holomorphic at infinity.

Remark 1.1.4. The last condition can be explained as follows.



1. Classical Kloosterman sums

11
Since [0 1] € SLy(Z), f is a periodic function:

flz+1) = f(2), z € H

Thus, f has a Fourier expansion at infinity

+oo

f2) =D anlf)g" g =€

And we call f holomorphic at infinity if a,(f) = 0 for every n < 0. If in addition,
aog(f) =0, function f is called cuspidal.

1.2 Construction of SL(2) Poincaré series

To find functions satisfying definition 1.1.3, we start with the automorphy con-

dition. Let h : H? — C be a holomorphic function. We can write formally

h
o) =3 202 e, (17)
The cocycle property (1.5) yields that for every 4" € I'y

CEEDY % SUIEDY % =2 2).

If (1.7) converges absolutely uniformly on compact subsets of H?, then f(z) is a
holomorphic function and all formal computations are valid. However, the sum
(1.7) does not converge in general. In particular, the sum may diverge if we have

infinitely many elements

’yeFoo:{j:

711] , N E Z} =< 4T > with j(v,z2) = 1.

In order to avoid this problem, assume that A is invariant under I',, and note

that the sum (1.7) depends only on cosets modulo I's.. Indeed, if v = v for



1. Classical Kloosterman sums

/B € I\007 777/ € F27 then
h(vz) = h(B'2) = h(7 2),

§(1.2) =387, 2) = §(B,7'2)i(v . 2) = §(7, 2).

So the formula

OEEY h (Vz)k (1.8)

i, 70 2)

is the one we are looking for. Now we can choose a particular I',-invariant
function, namely

h(z) = e(mz) = ™™ m € Z.

Definition 1.2.1. The series

Piy = 3 hi(= Y dme) (1.9)

'YEFOO\F? ’YGFOO\FQ

is called m! Poincaré series of weight k.

Proposition 1.2.2. The Bruhat decomposition of I'y is given by

[y =Too O (Ieez o Wapmod ) Toowl')), 1T 4s a disjoint union, (1.10)
(¢,d)=1
a® b
oo =< £T > andwEWc,d:{[ d]}’
c

where for given ¢, d € Z with (¢,d) = 1, integral variables a*, b* satisfy

a*d —b*'c=1, i.e. b*:ad_l.
c

Proof. We would like to partition I' into double cosets with respect to I'y.

First, consider the set of upper triangular matrices

a* b*
A = els .
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Conditions a*d* = 1 and a*, b*,d* € Z imply that A} = T'.

Second, any element of A; \ I'; can be represented by a matrix

b*
w = [a d] with ¢ > 0.

Cc

The relation

B ISE

*

a
shows that the double coset I'y p I', determines ¢ uniquely, while a and d
c

*
a—+ cny b;

c d+ cno

can be found modulo integral multiples of c.

Actually, the given coset does not depend on a, because for any two matrices

aq bT

ay b3 .
w; = and we = inT
1 d] : [ d] :

c c
1 03
~1 3

wiwe T = ,
1wW2 [0 1]

i.e. a; is congruent to as, modulo ¢. So
) a* b*
Ay =T wl's € 'y, with w = [ ] €I

To sum up, I'y is a disjoint union of Ay and (Heez., Hagmod ) A2)-
(e,d)=1
O
Proposition 1.2.3. For k > 2, m > 0 the series P¥(z) converges absolutely and

uniformly on compact sets of H? and defines a holomorphic function on H?2.

b
Proof. Let v = [a d] € I's, then
c

€2mm'y(z)

(cz + d)k

e(myz) _
J(v, 2)*




1. Classical Kloosterman sums

By formula 1.2,

27r7:m'7(z) 1 _2mmS(2) 1
e (cz+d)?2 <

~ ez +d|f

e
(cz 4+ d)*

a ez + d|f

for m > 0. According to the Bruhat decomposition of I'y, we pick each pair
(c,d) as the second raw of matrices in I'y, \ I'y at most once. Therefore, P¥(z) is
>
-
ey lcz + d|
(c,d)#(0,0)

majorated by the series

The last series is known' to be convergent uniformly on compact sets of H? for
any k > 2. O]

1.3 Fourier expansion of Poincaré series

It only remains to verify the last condition of 1.1.3 to complete our construction
of modular form. With this goal, we find Fourier expansion of the series (1.9).

Ultimately, we obtain Kloosterman sums as a part of Fourier coefficients.

Definition 1.3.1. The sum

Simme)= 3 e (@)

d(mod c)
ged(c,d)=1

with dd = 1(mod c) is called classical Kloosterman sum.

Remark 1.3.2. If m = 0, then Kloosterman sum reduces to Ramanujan sum

R(n)=S0,me)= 3 e<%l>.

d(mod c)
ged(c,d)=1

Theorem 1.3.3. Let k > 2. The Fourier expansion of Poincaré series P¥(z) is

given by

1See [8], theorem 1



1. Classical Kloosterman sums

e ifm =020,

o ifm >0,

Pk (2) = e(mz) + ( Z (ZS m,n,c) d C( ¢ >> e(nz),

where .
o (1) TN\ n+2i
o= )
(z) ; AT(i+1+n) \2
1s the Bessel function of order n.

Proof. Consider the series (1.9). Applying the Bruhat decomposition,

Palz) = Pie) =elm)+ 3 0 nlk

c>0 BET 5
d(mod c) WEW, q
ged(c,d)=1

Take

*  a*d—1 1
w=|" ¢ € W.qand 8 = " €'y,
c d 0 1

then for every z € H?>

az+an+ad1_a* 1
(wh)z = cz+cz+d _?_C(C(Z—i_n)—i_d)
and
wp ¢  cle(z+n)+d) '
Thus,

P,(z) =e(mz —1—2 Z (c,d,2) (1.11)

¢>0 d(mod ¢)
ged(c,d)=1

10



1. Classical Kloosterman sums

with
I(c,d, 2) Zg and g(n) = h |55 (2).

ne”L

By Poisson summation formula,

Hed )= g =3 (/Rg(t)e(—nt)dt)

neZ nel

= %é (= + 1) e (_”t m (a? ez —i—ln) n d))) d.

Let us write z = z + iy and make change of variables t — t = z +t + % in the

integral. Then we obtain

*

d, ma oot , Mmoo
I(c,d,z) =) e(n(z+ )+ )/t/ (Ct,)ke(—nt -t (112)

nez ¢ =—oo+iy

Denote the inner integral ! by

+oo+1y 1 ,
L.(m,n) :/ rpe(—nt’ — n )dt
t' =—oco+iy (Ct )

and distinguish the following cases:

1. If n <0, then we can move the line of integration upwards, i.e. let y — oo,

and estimate the absolute value of L.(m,n) to see that
L.(m,n) = 0. (1.13)

Therefore, all terms with n < 0 in the sum (1.12) vanish.

2. If n > 0 and m = 0, then 2

Lo(0,1) = (%)k 7;;; (1.14)

!'Note that L.(m,n) does not depend on y by Cauchy’s theorem
Zsee [7], 8.315.1

11



1. Classical Kloosterman sums

3. If n,m > 0, then !

Lo(m,n) = 2% (ﬁ>k_ Jo1 <4WW> . (1.15)

Finally, substitute
d *
Ie.d,2) = Y eln)e(“" ) Lofm, n)

n>0

in the formula (1.11) and change the order of summation to obtain

Pm(z):e(mz)+z Z Z e(M) L.(m,n) | e(nz)

Cc
n>0 | >0 d(mod c)

ged(c,d)=1
=e(mz) + Z (Z S(m,n,c)L.(m, n)) e(nz).

Now just replace L.(m,n) by its value and the assertion follows.
O

Corollary 1.3.4. The series P¥(2) is holomorphic at infinity for m > 0 and
cuspidal for m > 1.

Remark 1.3.5. In 1965 Selberg [14] introduced non-holomorphic Poincaré series

Pu(z,8) = > (S(72))e(myz), R(s) > 1. (1.16)

el \I'2

The Fourier expansion of the series 1.16 also contains classical Kloosterman sums.
Let z = x + 1y, then

P,(z,8) = me(h; y,s)e(hz)

heZ

see [7], 8.412.2

12



1. Classical Kloosterman sums

with
pm(h;y,s) = d(m, h) + Z c2S(m,n,c)B(m, h,c,y,s)
c>1
and
s e 2 2\—s m
B(m,h,c,y,s) =y /OO (x* 4+ y*)%e (—hx— m) dx.

1.4 Some properties of Kloosterman sums

The sum

d+nd
Stmne) = 3 e(m)
d(mod c) ¢
ged(c,d)=1

with dd = 1(mod c) has some interesting properties.

Proposition 1.4.1. The Kloosterman sum depends only on the residue class of

m, n modulo c.

Proof. This is clear since e?™* =1 for every k € Z. O
Proposition 1.4.2. The value of S(m,n;c) is always a real number.

Proof. Consider complex conjugate of Kloosterman sum

d(mod c)
ged(c,d)=1

Let d = —d’, then
S(m,n;c) = S(m,n;c)

since —d runs again over all residue classes modulo c.

Proposition 1.4.3.
S(m,n;c) = S(n,m,c)

Smnc)= Y e(@).

d(mod c)
ged(c,d)=1

Proof.

13



1. Classical Kloosterman sums

Then the substitution d = mnd’ leads to the required result. O

Proposition 1.4.4.

S(ma,n;c) = S(m,na,c) if (a,c) =1

Proof. 3
mad + nd
S = — .
(ma,n, c) Z e ( . )
d(mod c)
ged(e,d)=1
Then the substitution d = ad’ leads to the required result. O

Proposition 1.4.5. (twisted multiplicativity) If (¢1,¢c2) = 1, then
S(m7 n; 0102) = S(mc_Za nc—?a Cl)S(mc_la na» 62)'
Proof. Let ¢ = c¢yco. The proof is based on the Chinese Remainder theorem, i.e.

if
d=d;(mod ¢;),i=1,2, (c1,¢2) = 1,

then
d= dlblcg + d2b261 (mod C)
with
bice = 1(mod ¢),
bacy = 1(mod ¢y).
Then

S(m,n.c)= Y e(M)

d(mod c)
ged(ce,d)=1

- Z o (m(d1b102 + dngCl) + n(d16102 + dgbgcl))

C1C2

summation is over all dj(mod ¢;), dy(mod ¢3), (c1,d1) =1, (c2,ds) = 1. So that

S(m,n,cic2) = S(mcy, nez, ¢1)S(mer, ney, ca).

14



1. Classical Kloosterman sums

1.5 Distribution of Kloosterman angles

As a consequence of the Riemann Hypothesis for curves over functional fields, A.

Weil obtained the following bound*
|5(m, 1,p)| < 2v/p,

where p is a prime number and m is an integer coprime with p. Therefore, there

is a unique Kloosterman angle 6(p, m) € [0, 7] such that
S(m,1,p) = 2/pcosf(p,m).

There are two kinds of distribution of Kloosterman angles:

e vertical

{0(p,m)} 1<m<p , p — 00;
(m,p):l

e horizontal
{0(p,m)}1<p<p , m fixed, P — o0.
(m,p)=1

In the vertical case, we have the following theorem by Katz?.

Theorem 1.5.1. Let p — oo, then the angles
{0(p,m)} 1<m<p

(m,p)=1

are equidistributed with respect to the Sato-Tate measure on [0, 7]

2
dusr(0) = — sin®(6)df.

1See [16]
2See [10]

15



1. Classical Kloosterman sums

Equivalently, for any interval I = [a,b] € [0, 7],

limp—s00

<m<p- ’
#{1<m<p 11, G(m,p)GI}ZMST(]):E/ sin®(6)do.
P T/

The horizontal case is still a conjecture.

Conjecture 1.5.2. Let P — 0o, m is a fized non-zero integer, then the angles

{0(p,m)} 1<p<p
(m,p)=1

are equidistributed with respect to the Sato-Tate measure on [0, 7).

Equivalently, for any interval I = [a,b] € [0, 7],

MmP—mo

#{p< P, (:;’3 = ]13,}9<m,p> Dy =2 / sin?(6)do.

16



1. Classical Kloosterman sums

0.4165¢ T T T T T T T T T T T T T T T T T T T T T T

-0.1668.
2

2741

Figure 1.1: Difference between vertical and Sato-Tate measures on the interval
[1,2]
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1. Classical Kloosterman sums

rectplot

L n L L L L L L L L L L L L L L L L L L L L L
a 3.1418

Figure 1.2: Vertical (red) and Sato-Tate (green) distribution functions
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0.4165! T

I WA
WY WY VI
oora0Mp '
2

Figure 1.3: Difference between horizontal and Sato-Tate measures on the interval
1,2], m=1

271
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1. Classical Kloosterman sums

rectplot — X
1 T T T T T T T T T T T T T T T T T T T T T T T T T T

' L 1 1 L L 1 1 L 1 1 1 1 1 1 L L L 1 L 1 1
Q 3.1416

Figure 1.4: Horizontal (red) and Sato-Tate (green) distribution functions
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1. Classical Kloosterman sums

1.6 Numerical computation of Poincaré series

1.6.1 Poincaré series and fundamental domain reduction

algorithm

Current section provides a PARI/GP code for the calculation of Poincaré series

P(z) = e(mz) + Y (F(m,n))e(nz), (1.17)

n>0

with Fourier coefficients given by

F(m,n) = ZS(m,n,c)Lc(m,n). (1.18)

c>0

First, we compute the Kloosterman sum

S(m,n.c)= Y e(M).

d(mod c)
ged(e,d)=1

gp>{klsum (m,n, c,sum, dinv , t)=

gp> sum=0;

gp> for (d=0,c—1,

gp> if (ged(d,c)==1,

gp> dinv=1ift (1/Mod(d,c));
gp> t=ms+dinv4nxd)/c;

gp> sum=sum+-exp (2x PixI*t);
gp> )

gp> )}

According to the formulas 1.13, 1.14, 1.15, the value of L.(m,n) can be found

as follows.

gp>{coeffL (m,n,c,k,L)=

gp> L=0;
gp> if ((n>0)&(m>=0),
gp>  if (m==0,

21
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gp> L=((2%xPi/I/c)"k)*(n"(k—1))/gamma(k),

gp> L=2«Pi/c/(I"k)*((n/m)" " ((k—1)/2))«besselj (k—1,4«Pixsqrt (m«n)/c)

gp> )
gp> )}

Note that for the values of z € H? with a small imaginary part P,,(z) may
converge very slow. However, the second property of definion 1.1.3 allows us
to compute P,,(yz) for some v € I and then recover the original series by the
formula P, (z) = P,(72)/j(7, 2)*. Furthermore, if a point 2; = vz is in the

fundamental domain F', then we have the estimate

—T n 1 n
le(nz)] < eVER < (335" (1.19)

which provides a very good convergence.
Now we describe a fundamental domain reduction algorithm, which on input

z € H? returns a matrix « € I’y such that vz lies in the fundamental domain. In
1 —
order to find such v with z; = vz € F, we first apply [0 177,] with n = [R(2)]

to translate z into the strip |R(z)| < 1/2.
Now if z ¢ F', then |z| < 1 and

I(—1/2) =3(z/ |z|2) > 3(2).

0
Replace z by L 0 (z) and repeat the process. Note that there are only finitely

many integer pairs (¢, d) such that |cz 4+ d| < 1, and so, by the formula 1.2, there
are only finitely many transforms of z with a larger imaginary part. Thus, the

algorithm below terminates after a finite number of steps.

gp> {transM (z,A,z1,flag)=

gp> A=[1,0;0,1];

gp> flag=1;

gp> z1=7;

gp> while (flag==1,

gp> n=round (real(zl));
gp> zl=z1-n;

22
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1. Classical Kloosterman sums

gp>
gp>
gp>
gp>
gp>

A=[1,—n;0,1]%A;
m=zlxconj(zl);
if (abs(m)>=1,flag=0,A=[0,—1;1,0]xA;z1=—1/z1;);

)
A}

Finally, we compute Fourier coefficients as in the formula 1.18

gp>{coeffF (cmax,m,n,k ,F)=

gp>
gp>
gp>
gp>

F=0;

for (¢c=1,cmax,
F=F+ klsum (m,n,c)*coeffL (m,n,c, k)
)}

and Poincaré series as in the formula 1.17.

gp>{poincareS (z,k,m,nmax,cmax,A,zl ,P)=

gp>
gp>
gp>
gp>
gp>
gp>
gp>

A=transM (z);
AU=(A[1, 1] 2+A[1,2]) / (A[2,1]524A[2 ,2]);
P=exp (2% PixIxmxz1);
for (n=1,nmax,
P=P+coeffF (cmax ,m,n,k)xexp (2« PixI*nxzl)
)i
P=P/(A[2,1]xz+A[2,2]) "k}

1.6.2 Absolute error estimate

Notice that both sums on n in 1.17 and on ¢ in 1.18 are infinite. But for the

purpose of computing, we truncate these sums to a finite number of terms n,,4,

and ¢4, respectively. This leads to some incorrectness in our computations,

which can be measured in terms of the absolute error.

Definition 1.6.1. Let X be a true value of the quantity and X1 its approximate

value, then the absolute error is defined to be a numerical difference X — X1. An

upper limit on the magnitude of the absolute error AX, such that

Ex = |X1 - X| < AX,

is said to measure absolute accuracy.
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1. Classical Kloosterman sums

Remark 1.6.2. This type of accuracy is convenient when we are dealing with
sums, because the magnitude of the absolute error in the result is the sum of the

magnitudes of the absolute errors in the summands.

In our case,

X = P,(z) and X1 =e(mz) + Z (ﬁ(m,n)) e(nz)

0<n<nmaz

with F(m,n) = Z S(m,n,c)L.(m,n).

0<c<cmaz

Thus,

Ex=|X1-X|= Z (ﬁ(m,n)) e(nz) — Z (F(m,n))e(nz)

0<n<nmaz n>0

< Y |Fmn) = Fnn)|lema) + > [Fm,m)lle(n2)].

0<n<nmaz N>Nmax

Let us denote
Bi= 3 |Fmn) = Fm,n)|le(n2)]

0<n<nmaz

and

Ey= Y |F(m,n)le(nz)|.

N>Nmaz
The key ingredient of our computation is the bound for the Kloosterman sum
S(m,n,c). The optimal result for the prime values of ¢ can be obtained using

Weil’s bound!, but for our purpose it is enough to consider the trivial estimate
|S(m,n,c)| <ec. (1.20)

The next step is to bound the value of L.(m,n). In case m = 0,

k—1 2k: k
[Le(0.m)| = B(k) 5, where B(k) = T _”1)!.

1See [16]
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1. Classical Kloosterman sums

Now suppose m > 0. Using the following estimate !

/2"

ulw)] < L

we obtain

So for any m > 0,

_ Bkt
- (k=2)ek2
and
- > k-1
[F'(m,n)| < B(k ’“Zkl— 1<1+/1 po: 1dx)—ﬁ(k)nk 1—k_2
c>0
Therefore,
bk) i L Blknk |
1< -7 <
T (k=2)cha Z " 230" ~ (k—2)ck2 Z 230n
O<n<nmaz 0<n<nmaz
_ By 230" =1 Blk)ng
(k= 2)ck 2 229(230)mmes = 229(k — 2)ch 2
and
k—1 E—1 [ zk1ldy
Ey, < A k=1,(=mV3)n < 3(}. /
P e J
_ ﬁ(/{)k — 1 e~ ™V3nmas (nkl 1 (k— 1)717]2;122 n (k—1)(k— 2)”51_;; - (k—1)!
k—2 7'(\/3 max 7T\/§ (71-\/5)2 (7‘(‘ 3)k—1

1See [12], ex.9.6
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1. Classical Kloosterman sums

k _ 1 e—ﬂ'\/gnmax

k—1
S ﬁ(k)k 5 Tr\/g k’!nmw.
Finally,
nk-1 nk-1
EX S El + EQ S Oé(k’) (C;cna; + ewgsiax) ’
where - < B(k) Bk)(k — 1)k:!) _ B(k)(k —1)k!
229(k —2)" (k- 2)7v/3 (k= 2)mv/3
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Chapter 2
SL(3) Kloosterman sums

Following the work [2], we generalize results of the previous chapter and obtain
Kloosterman sums associated to the group SL3(Z) as a part of Fourier coefficients

of SL3(Z) Poincaré series.

2.1 Generalized upper-half space and Iwasawa

decomposition

Let G, = GL,(R) and T',, = SL,(Z).
In order to define a notion of generalized upper-half space associated to the

group G, with n > 2, we prove the following theorem.

Theorem 2.1.1. (Iwasawa decomposition) Every g € G,, decomposes as

g = nak
with
1 T12 .- *
0 1 T23 * . .
n=n(z;;) €N = s iy €R 1< g0,
0 ’ xn—l,n
0 O 0 1
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2. SL;(Z) Kloosterman sums

0 cee
a’:a’(yk)eA: . v 7yl>0 )
P
\_0 e Y )

k€ K = O,(R)- orthogonal group.

The map
N x Ax K — Gy,

(n,a, k) — nak
1s a homeomorphism of topological spaces. In particular, the decomposition is

unique.

Proof. We need to show that the map
f:(n,a, k) = nak

is a continuous bijective map such that f~! is also continuous.

1. The map is injective.

The group NA is a group of upper triangular matrices with positive el-
ements on the diagonal and K is a group of orthogonal matrices. If g €
NANK, then g7 € NANK since NANK is a group. Furthermore, since g
is orthogonal, g = (¢~ 1)?. So that g is upper triangular and lower triangu-
lar at the same time, i.e. it is diagonal. And the only orthogonal diagonal
matrix with positive elements on the diagonal is the identity matrix, g = I.

We conclude that NAN K = 1.

Suppose nak = n’d’k’, then (na) 'n'a’ = (a7 'n"'n'a)a"ta’ = k(k')~L.

Note that A normalizes N, i.e. for all a € A
a*Na=N.

Then
(a"'n"'n'a)a'a' € NA.
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2. SL;(Z) Kloosterman sums

Since NAN K = I, we have that k = k' and na = n’d’. Finally, n = n’ and
a =a' because NNA=1.

. The map is surjective.

We apply Gramm-Schmidt orthogonalization process to the columns g1, g2, ..., g, €

1

R" of matrix ¢g—!. Vectors g1, s, ..., g, form a basis in R™ because ¢! is

invertible. Define hy, ho, ..., h, € R™ and h!, h}, ..., hl € R™ as follows:

hy
h =01, h,
[l
AN / h2
hy = _(92’h1)h1 + g2, hy = 7,
|[a]|
i—1
= 3 (g, + g, B =
2- Thd]

n—1
(gnlh;) h' + G, hl, = )
-2 Tl

Note that {h;} form an orthogonal and {h}} orthonormal bases of R". Ma-

trix g~! sends canonical basis {e;} to {g;} via composition
el—>h;—>hz—>gz,z:1,,n

The first map is an application of k € K (to the canonical basis), the second
is an action of kak™! with a = diag(||hi]],...,||h2||]) € A and the third is
(ka)n(ka)~t. So that

! = (ka)n(ka) ‘kak ™'k = kan

and
g = nak.
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2. SL;(Z) Kloosterman sums

3. The map is continuous and its inverse is also continuous.

Given map is polynomial whence continuous. To show the continuity of
inverse map notice that K is compact and B = N A is closed subgroups of
G,. Let g,9m € G, k, k, € K, a,a,, € A and n,n,, € N. If the sequence

then since K is compact
m—0o0

k, — k' € K.

So that

m—ro0
by = Ny, — 0 =n'd’ € B
since B is closed. Therefore, g =n'a’k’ and n=n', a=d, k=F, ie

m—r
Nm 7 n,

8

3
1
8

3
|
S

and

ko S k.

As a corollary, we derive Iwasawa decomposition of the group SL,(R).

Corollary 2.1.2.
SL,(R) = NASO,(R),

with A = {a € Ay, = 1}.

Remark 2.1.3. For later applications, it is convenient to write elements a € A as

-ylyg...ynfl 0 ... 0
0 Y2 - -Yn-2 :

Y1
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2. SL;(Z) Kloosterman sums

Given change of variables is valid since y; # 0 for allt =1,...,n — 1.

Now in the analogous manner to the case n = 2, for n > 2 we define generalized
upper-half space
SL,.(R) _ G
SO,(R)  (On(R)-R*)’
The space H" plays the same role for GL, (R) that H? played for GLy(R).

By the Iwasawa decomposition, every z € H" can be uniquely written as

2

H'I’L

_ylyg...yn_1 0 ... 0
1 12 .- * 0 .
z = : : ,
0 Tn—1,n 0
00 0 1 h
. O -
where 2;; € R for j > ¢, y1,...,yp—1 > 0. In particular, the generalized upper

half plane H? is the set of all matrices z = na with

1 m2 713 yiye 0 0
n=10 1 x3|,a= 0 i 0,
0 O 1 0 0 1

where x1 2,213,723 € R, y1,72 > 0.

2.2 Automorphic forms and Fourier expansion

The group G5 acts on H? by matrix multiplication. It is generated by diagonal
matrices, upper triangular matrices with 1s on the diagonal and the Weyl group
W3 consisting of all 3 x 3 matrices with exactly one 1 in each row and column.
The approximation of fundamental domain for GG3 can be given by the Siegel set
Zé’l.l Here X, C H? (a,b > 0) is the set of all matrices

2

1See [6], section 1.3.
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2. SL;(Z) Kloosterman sums

I 212 13| |t1ie 0 O
O 1 $273 0 Y1 0
0 O 1 0 0 1

with |z; ;| <bfor 1 <i<j<3andy >afori=1,2.

The group Gj is a Lie group whose Lie algebra gl(3,R) is the additive vector
space (over R) of all n X n matrices with coefficients in R with Lie brackets given
by

la,b] =a-b—b-a

for all a,b € gl(3,R), where - denotes matrix multiplication. Define the set S be
a space of smooth(infinitely differential) functions F': G5 — C.

Definition 2.2.1. Let F' € S, g € G5 and a € gl(3,R). Then we define the

differential operator D, acting on F' as

D.F(9) = 5 Pg- explta))lico = o Flg + 1(ga) o

Remark 2.2.2. The differential operators D, with o € gl(3,R) generate an asso-
ciative algebra D" defined over R. And the ring of differential operators D, is a

realization of the universal enveloping algebra of the Lie algebra gl(3,R).!

Consider the center A of D™. Every D € A satisfies D - D' = D’ - D for all
D' € D". We would like to construct an eigenfunction of all differential operators
D e A.

Let v, v be complex parameters and

I zi2 x| [y 0 O
=10 1 @3 0 vy 0| €¢H.
0 O 1 0 0 1

We define a generalization of imaginary part function on the classical upper-half
plane to H? by
Iy, H*—=C

1See [6], section 2.2
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2. SL;(Z) Kloosterman sums

[V17V2(Z) = y%yl+y2yl2/1+2y2- (2.1)

Below we prove that the function [, ,, is an eigenfunction of every D € A.

Thus it determines a character A,, ,, on A, i.e.
DIy, v, = )‘V1,V2(D)IV1,V2' (2'2)

Theorem 2.2.3. Let us define D;; = Dg, ;, where E;; € gl(3,R) is the matriz
with an 1 at the i,7 component and zeros elsewhere. Then for all 1 <i < j <3
and k=1,2,...

DkI (Z) — Vg—ilvl,ug(z) Zfl =7;
v 0 otherwise.

where Di’fj denotes the composition of differential operators D; ; iterated k times.

Proof. Let
1 z12 713 yiye 0 0
z=na= |0 1 33 0 9wy 0 € H3.
0 0 1 0 0 1

Note that the function 1, ,,(2) depends only on variables y;, y». So that

IV17V2 (na) = IV17V2 (a)

and
Di7jIV1,V2 (na) = Di,jIVl,V2 (a)
We distinguish three different cases.

1. If ¢« < j, then by definition 2.2.1

0 0
Diuj]l’l,l/2 (a’) - a]Vlle (CL + taEi,j>|t:0 =Y. y3—iWIV1uV2 (a) = 0.
z’]

2. If © = j, then

0

0 L9
Di,i]lll,VQ(a) = E]VLVQ(G’—}_taEi,i)hZO = (ys—i% - Z 1yza—yl) Iul,ug(a) = V3—i]l/1,ug(a)-

1=3—i+
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2. SL;(Z) Kloosterman sums

Similarly,

o k
D@ = (57) Ta(005) = il ).

. Now let ¢ > j. As before

0

DiyjIV1,V2 <a> - a

]V17V2 (a(Id + tEiJ)) |t:07
where Id is the identity matrix. First we will show that
(]d + tEi,j) = M(mod O3<R) : RX),

where M a matrix such that (¢2 + 1)7/2 occurs at the position {j,j},
(t? 4+ 1)/2 at the position {i,i}, all the other diagonal entries are ones,
m occurs at the position {j, 1} and all other entries are zeros. Indeed,

let h = Id+tE; ;. Then

hh' = (Id +tE; ;)(Id + tE;;) = Id + tE; ; + tE;; + t*E; ;.

Define a matrix u = Id — (tQtTl)EM, then whh'u' must be a diagonal matrix

d. Let d = a=!(a’)™!. Then by direct computations,

uhhtut =1Id + tQEi,Z' — Ej,j’

241
wl=Id4y ——E,
= <t2 T 1) 7,09

1
a_l = Id+ <—W1—1> Ej’j + (\/t2 + 1-— ].)E'L,z

Therefore,

t

1
M=u'ta'=1Id+ (—) E. i+ —F;,.
VeEri—-1) 7 2r1

Since
auh(h*u'a’) = Id,
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2. SL;(Z) Kloosterman sums

we have

auh € O3(R)

and
h = M(mod O3(R) - R*)

as required.

Finally, taking the derivative of any of diagonal values and setting ¢t = 0, we
obtain zero as an answer. So the only contribution comes from non-diagonal

entry m Thus,

Di,ilm,ug(a) = Q... Q33—

]

Now we can define the notion of automorphic form for the group I's and

compute its Fourier expansion.

Definition 2.2.4. A function f on H? is called an automorphic form (of type

v1,v9) for Iy if
o f(vz) = f(z) for y €Ty, z € H?
e Df =X, ., f, where D € A and A, ,, as in 2.2.
e f(2) has a polynomial growth in y;,y2 on the region {z : y;,yo > 1}.

Remark 2.2.5. If in addition, f satisfies

1 . 10 &]
/o/of 01 & z | d&dés =0

00 1]

1 1 1 & &
/o/of 0 1 0 z | déadés = 0,

00 1

for all z € H3, then f is called a cusp form.
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2. SL;(Z) Kloosterman sums

Theorem 2.2.6. (Fourier expansion)

Let f be an automorphic form with respect to I's = SL3(Z) and

1 % x
I300=14 10 1 x| € SLy(Z)
0 0 1
be a minimal parabolic subgroup of I's.

Then f has a Fourier expansion given by

f(z) = Z Fon(2) + Z Z Z Frn(v2),

n=—o0o '\,161“300\1“3,7L m=1n=—o0

where
1 1 1 1 52 63
men(Z):/ / / f O 1 51 V4 6(—m§1—n§2)d§1d§2d§3, (23)
o Jo Jo
0 0 1
A B
I'5,=¢|C D 0||AB,C,DeZ, AD—-BC=1
0 O

and

2 =T2NTs0 = B eZ

o O =
_ o O

B
1
0
Proof. Since f is automorphic with respect to SL3(Z),

n3
f)=f110 1 ny| 2], n,nse€Z.
1
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2. SL;(Z) Kloosterman sums

Then analogously to one-dimensional Fourier expansion we can write

F@) = > fums(?) (2.4)

ni,n3cs

with
1,1 10 &
Forma(2) = / / o1 alz|eme —medads. (25
00 00 1

The function f,, »,(2) satisfies the following properties:

o Let ny € Z, then

No

0
Jrans 0] 2 :fn1+nzn3,n3(z)~ (2.6)
1

o O =

1
0
By 2.5 the left-hand side is equal to

1 1 1 0 53 1 N9 0
//f 01 &| [0 1 0fz]|e(—mé& —ngés)dédés =
o 00 1]0 0 1
Lo 1 ny 0] [1 0 &—m&
//f 0 1 0] ]0 1 & z | e(=m& — ngés)dérdEs.
o 00 1f]lo0 1
Since f is automorphic,
L ng Of [1 0 & —nok L 0 &—méy
f110 1 0] |01 & zl=f110 1 &1 z
0 0 1[1]0 O 1 00 1

And the following change of variables

G=&
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2. SL;(Z) Kloosterman sums

53 = &§3 — ma&y,

leads us to the result.

e Let A B,C,DmeZ, AD— BC =1, m > 0.

A B 0
Jmpmc(2) = fmo | |C D 0] 2 (2.7)
0 0 1
Let us consider the left-hand side
1 1 10 &
me,mC<Z>:/ / F110 1 &) 2| e(—mD& —mCEs)dédEs =
o Jo
0 0 1
Lo A B 0| |1 0 &
| [rl]e poffo 1 al=]e-mpa - mcgdsds
00 0 0 1|00 1

because f is automorphic. The last expression can be written as

Lo 1 0 BG+A& [A B o
[ [rl]o 1 pa+csl |c b ooz el-mba - mog)dcds.
00 00 1 0 0 1
Changing variables

&1 = D& + C&,

€3 = BE + A&,

we obtain the result.

In view of property 2.7, the formula 2.4 takes the form

F@)=fol)+ D D fmo(r2). (2.8)

VETE oo \I§ 4 =1
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2. SL;(Z) Kloosterman sums

Note that by 2.6, f,, o is invariant under the action of the matrices of the form

1 n O
0 1 0| withn e Z.
0 01
Therefore,
fmo(2) = D Fun(2) (2.9)
with
1 1 1 1 52 53
o Jo Jo
0 0 1
Finally,

f(z) = Z Fon(z) + Z Z Z Fnn(72). (2.11)

n=-—o00 ’VEFg Do\f‘g N m=1n=—o0

Corollary 2.2.7. If f is a cusp form, then
Fon=Fno=0 for everyn,m e Z

and Fourier expansion is given by

f(z) = Z Z Z me(q/z).

'YGFg,oo\Fg,Jr m=1n=—o0

n#0

2.3 SL(3) Poincaré series

For z € H? let

_ ,2v1tve, 114202
Ly (2) = 41 TPy T
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2. SL;(Z) Kloosterman sums

And for every two integers ny, ny define E-function as

Epymy  HP — C,
satisfying
S &3
En17n2 0 1 fl z |l = 6(71151 + ngég)Enth(Z) for all 51, 52,53 c R, (212)
0 1
B,y (2) = O(1) for z € H?, y1, 0 = O(1). (2.13)

Definition 2.3.1. Let vy, 5 be two complex variables such that R(v;) > 2, ¢ =
1,2. Then the series

Pm,m(z; v, o) = Z IV17V2(7Z)EH17712(72) (2.14)
7€F3700\F3

is called general Poincaré series for the minimal parabolic subgroup I's .

Lemma 2.3.2. The series (2.14) converges absolutely uniformly on compact sub-
sets of H® when R(v;) > 2, i=1,2.

Proof. For every
Y2 Ti12Y1 213
z=10 Y1 To3| € H®,
0 0 1

the left invariant GL3(R)— measure' on H? is given by

dy,dys
(yl Y2 ) 3

Let us also recall the notion of Siegel set ¥, C H? (a,b > 0) that is the set of

all matrices

d*'z = d(El,gdZL‘l,gdﬂfzg

IFor details see [6], prop. 1.5.3
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2. SL;(Z) Kloosterman sums

I 212 13| |t1ie 0 O
O 1 $273 0 Y1 0
0 0 1 0 0 1
with |z; ;| <bfor 1 <i<j<3andy >afori=1,2.
Since 2.13, E—function E,, ,,(7z) is bounded and it is enough to prove the

theorem with respect to the series

Z Ly s (72),

’yEngoo\Fg

i.e. that for every point zy € H® and some non-zero volume compact subset C,,
of H? such that 2y € C.,, the integral

RIS
C

=0 ’YGF3,00\F3

converges. Without loss of generality, assume vy, 15 to be real. So we can write

/ Z L, v, (v2)d z—/ L, (2)d 2.
c (T3,00\'3)-C:g

#0 vel's, oo\Fg

According to the theorem of Siegel!, there are only finitely many v € T's oo \ '3
such that vzp € ¥ 5 .. By continuity, for a sufficiently small C,, there are only
22
finitely many v € I's o \ I's such that vz € ¥ 5, for all z € C,,. Thus, there is
22

some a > ‘/73 such that
V2 & X

for all v € I's o \ I's and z € C,. Consequently,

/ V1 V2 * < / / / / / 2v1+1v2—3 l/1+21/2 3de‘1 del 3dl‘2 3dy1dy2.
(T'3,00\I'3)-Cs,

And the last integral converges absolutely if v, 5 are sufficiently large.

1See, for example, [6] prop. 1.3.2
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2. SL;(Z) Kloosterman sums

2.4 Bruhat decomposition and Plucker coordi-

nates

Similarly to SLy(Z) case, it is necessary to know the Bruhat decomposition of

the group GL3(R) to compute Fourier expansion of Poincaré series.

Theorem 2.4.1. (Bruhat decomposition) The group GL3(R) can be decom-
posed as

GLg (R) — BgWng,
where

e B3 is the standard Borel subgroup of GL3(R), i.e. the group of invertible

upper triangular matrices,

o W3 is the Weyl group consisting of all 3 x 3 matrices which have exactly

one 1 in each row and column and zeros elsewhere.

Proof. Consider the element

911 912 913
9= 1921 G922 923| € GL3(R).
931 932 9g33

Let g3 be the first non-zero element of the third row of matrix g. Without

loss of generality, assume k£ = 1. Then we can always choose b; € B3 such that

/ / /
911 912 913

)

gb = 95,1 95,2 95,3
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Now multiplying on the left by a suitable element

¥ % %
b/1 =0 x x| € Bg,
0 0 1
we obtain a matrix of the form
0 975 913
Vighy= |0 g4, dhs
1 0 0

Applying the same procedure to the first non-zero element of the second row,
we can change the value of this entry to 1 and the rest of the entries in the
corresponding row and column to 0 using suitable matrices by and bj.
Finally, repeating the process with a non-zero element of the first row, we
have
bsbyb’ gb1babs € W

with exactly one 1 in each row and column. O

Corollary 2.4.2. Let

1 * *
Goo = 0 1 = C Bs
0 01
and
* 0 0
D=<10 % 0|,det(D)#0
0 0 x

Then Bruhat decomposition can be written as

GL;R) = | J G.. (2.15)
weWs
where
Gy = Goo DG s = Goow DG . (2.16)
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Proof. The proof consists of several facts. First, B; = G D = DG,. Second, let

a 0 0
weWs, d= |0 b 0| €D, then products wdw™! and w='dw are in D. This
0 0 ¢
can be checked by direct computations for all 6 elements of W3. For instance, if
010
w= |1 0 0} , then
0 01
b 0 0
wdw ' =wldw=10 a 0
0 0 ¢

So that wD = Dw. Finally, notice that the product of 2 diagonal matrices is
again diagonal.
[

For v € G5 define the involution

0 0 1
y=wyw,w= [0 1 0
1 00
If
a1,1 air2 G1,3
Y= [G21 Q22 Q23
A Ay Az
then

a11G0292 — A120d21 A130A21 — Q1,1A22 Q12023 — A1 3022
[
Y= a1,1A1 - a1,1Bl a1,101 - &1,3/11 a1,3Bl - a1,201 . (2-17)

CL2,1Bl - a2,2A1 G2,3A1 - a2,1C1 CL2,201 - a2,3Bl

Definition 2.4.3. Let us denote elements of the bottom row of *y as

Ay = a2,1Bl - a2,2A1,
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2. SL;(Z) Kloosterman sums

By = a2,3A1 - a2,101,
Cy = G2,201 - Cl2,331'
Then the vectors

P1 = {AbBl; Cl} and py = {A2, B2702}

are called the Plucker coordinates of ~.

Remark 2.4.4. Plucker coordinates {p1, po} satisfy the following relation
A1Cy 4+ B1By+ C1A; =0 (2.18)

called Plucker relation.

Theorem 2.4.5. Let G' = SL3(R) and G is the group of 3 X 3 upper triangular
unipotent matrices. Then the involution 2.17 induces the bijection of G \ G’ into
the set of all (A1, By, Cy, Aa, By, Cy) € RS such that 2.18 is satisfied. Furthermore,
the given orbit of Go, \ G’ contains an element of I's if and only if Ay, By, Cy are

coprime integers and also As, By, Cy are coprime integers.

Proof. The map is defined as follows: the element

ayi1 Aai2 a3
Y= |a21 G22 G23 € G \ G (2.19)

azi1 azz Aass

goes to (Al, Bl, Cl, AQ, Bg, 02), where
Ay = —a31, By = —ago, C1 = —asgs, (2.20)

Ay = a2,10a32 — A22031, By = A2.3031 — (2,103,3, Cy = A2203 3 — (2303 2. (2-21)

We need to show that the given map is bijective. To prove the injectivity, we
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2. SL;(Z) Kloosterman sums

show that if there are two matrices

11 A1z Aai13 51,1 b1,2 bl,3

Q21 Q22 a23 and b2,1 bz,z 52,3

az1 AaAz2 Aa33 b3,1 53,2 b3,3

with the same coordinates (A;, By, C1, As, By, Cs), then there exist A\j, Ay, A3 € R
such that

I X A3 a1 Ai2 ais 51,1 b1,2 51,3
01 XN Q21 Q22 Q23| — b2,1 bz,2 b2,3 . (2-22)
0 0 1 as1 a2 as3 53,1 53,2 53,3

The first step is to show that there exist \; € R such that

[O 1 >\1] [agg as2 a2,3] _ [bll ba,2 b273] (2.23)

0 0 1] (as1 az2 ass bs1 b3a b33
We have
as1 = —A; = 53,17
a3 = —B, = 53,27
az s = —C) = bs,3
and
(22031 — A21G032 = Ay = b2,2b3,1 - b2,1b3,27
(23031 — A21033 = By = 52,353,1 - b2,1b3,3,
22033 — A23032 = Cy = 52,253,3 - 52,353,2-
Therefore,

ag,l(a2,2 - 52,2) = a372(a2,1 - b2,1),
as,z(a2,3 - b2,3) = 03,3(a2,2 - 5272),
@3,3(612,1 - 52,1) = a3,1(a2,3 - b2,3)-

Note that as i, as2, as3, are not all zeros. Without loss of generality, assume
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as1 7# 0. Let us take
A = ba1 — GJ2,1.
as,1
Then 2.23 is satisfied, as required. Now we need to find Ay, A3 such that 2.22
is true. The values Ay, B,, Cy are not all zeros. Suppose, for instance, Ay =
agoazy — agiazs 7 0. Then the vectors (agq,as2) and (asy,as2) are linearly

independent, so there are Ay, A3 such that

ay1 a12
[1 A2 )\3] Q21 Q22| = [51,1 b1,2]- (2-24)
asy asz

Let us compute the determinants of matrices in 2.22
—b1 349 — b12By — b11C5

= —(a1 3+ A3+ A3a2,3)As — (@12 + Xaas o+ A3as.2) Ba — (a1 + Aeas 1 +Aszas 1) Coa.

By, 2.24, we have
—(a13+ Ao 3+ A3a23) Az — (a1,2 + Aot + A3a3.2) By — (a11 + Aaas 1 + Azas1)Co

= —(a1’3 + )\2a2,3 + )\3a2,3)A2 - bl,QBQ - 51,102-

So that

biz = a3+ Aaag3 + Azag3

and 2.22 follows.

The next step is to show surjectivity. Suppose we are given
(Ala Bla Cl) 7& (Oa 07 0)

and
(A27 827 02) 7& (07 07 O)

47



2. SL;(Z) Kloosterman sums

such that 2.18 is satisfied. We may find X4, Y], Z;, X, Y5, Z5 such that
A X+ BYy 4+ CiZy = Ay Xy + ByYs + CaZy = 1. (2.25)

Let

11 = —Zo, A1,2 = -Y5, a1,3 = — X,
a1 = Y1As — Z1Bs, A22 = 2,0y — X1 A,, a2.3 = X1By — Y105,
az1 = — Ay, az2 = —By, a3 3 = —C.

Using 2.18, one can verify relations 2.20 and 2.21. Likewise, the determinant of
v (given by 2.19) is one. This shows that the map is surjective.

The last thing to prove is the characterization of orbits, which contain integer
matrices. If 2.19 is an integer matrix and (Ay, By, Cy, Ag, By, Cy) are given by
2.20, 2.21, then Ay, B;,C} have to be coprime since the determinant of 2.19 is

equal to 1. The values A,, By, (5 are also coprime since the determinant
—a1’3A2 - CL1,2BQ - Cl1,102 =1

Conversely, let Aq, By,C7 be coprime integers and As, By, C are also co-
prime integers such that 2.18 is satisfied. To show that the coset parametrized
by this invariants contains an integer matrix, we may find integer values of
X, Y1, 7y, Xo, Yy, Zy satisfying 2.25. Then the matrix 2.19 can be constructed
as in the proof of surjectivity. Clearly, all entries of this matrix are integral.

m

Remark 2.4.6. The theorem above also gives the characterization of the orbits of
'35 \I's in terms of their Plucker coordinates since I's o \I's is included injectively
in G, \ G'.

Counsider the element

a1 A2 ai3
v = |agq a2 az3| €30 \ I3
A B G
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with Plucker coordinates p; = {A;, B1,C1} and py = {As, By, Cy}. Below we
determine explicitly Bruhat decomposition of 7 € I's o \ I's depending on its

Plucker coordinates.

Proposition 2.4.7. If v € I's .o \ I's have coordinates Ay = Ay = By = By = 0,
01, 02 7é 0, then

ai,2 a1,3

a1 Q12 413 ap 0 O L o5 oo

c

Y=10 a2 agz| =10 g—f 010 a2’32 -
0 0 0 0 C 0O O 1

Proposition 2.4.8. If v € I's o \ I's have coordinates Ay = Ay = By = 0,
Cl,BQ 7é 0, then

11 Q12 Q13 1 %;Cl 0 010 _CB;Q 0 0 1 _BC;Q
Y= Qg1 Q22 Q23| = 0 1 acz,—f 1 0 0 0 BLQ 0 0 1
0 0o 0 0 1 0 01 0 0 Cy] |0 O

Proposition 2.4.9. If v € I's o \ I's have coordinates Ay = Ay = By = 0,
B1,C5 # 0, then

11 Q12 Q13 1 0 0 1 00 1,1 0 0 1 Zi_’? %
Y= 0 Qg2 Q23| = 0 1 aé—f 0 01 0 Bl 0 0 %
0 B C 00 1J(010 [0 0 =50 0 1

Proposition 2.4.10. If v € I'; oo \ I's have coordinates Ay =0, By, Ay # 0, then

a1 Giz ais 1 % %121 00 1 g_? 1 a21,42231
Y= Q21 G222 Q23| = 0 1 0 1 00 0 By O 0
0 B 0 0 1 01 0/[0 0 £][0 0

Proposition 2.4.11. If vy € I'; oo \ I's have coordinates Ay =0, Ay, By # 0, then

ay ap ag] [1 0 @) o1 0] [4 0 0 Boa
7= |az1 a2 azz| = [0 1 aj—‘f 0 0 1 0 BLQ 0 0 1 —_biﬁB?
Ay B Gy 00 1 1 00/]0 0 3|0 0 1

Ay
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where bay = a11C1 — a1 34;.

Proposition 2.4.12. If vy € I's .o \ I's have coordinates Ay, Ay # 0, then

a @z a1 1 =2t wl o0 1[4 o o]t &8 &
V= |ag1 agp ags| =0 1 %10 1 0] |0 j;f 0ol o 1 1;-?
A, B 0 0 1 1 0 0/]0 L1110 o 1

Az
where b271 = CLLQAl — al’lBl.

All the propositions above can be verified by direct computation, i.e. mul-
tiplying matrices on right-hand side and taking into account 2.4.3 , one obtains
the result.

Definition 2.4.13. Let us define the following group

Ty = (0 'T30w) N30

Explicitly,
100 10
Fy,= (0 1 0| withwy, = [0 1 ,
00 1 0 0
1 m 0] 010
Ly, = 0 1 0|, meZ, withwy,= 1|1 0 0],
0 0 1] 00 1
1 0 0] 1 00
Ly = 01 n|,n€Zp withws=10 0 1],
00 1] 010
10 1] 00 1
Iy, = 01 n|,nleZ) withwy= 1|1 0 0],
00 1 010
1 m 1] 010
Ly = 0 1 0ol,mleZ, withws=1{0 0 1],
0 0 1] 100

20



2. SL;(Z) Kloosterman sums

l

m
Ly = 1 nl,m,,neZ ) with ws =
0 1

o O =
_ o O
o = O
o O =

Remark 2.4.14. Given results could be checked my direct computation. Let us

consider, for example, the case w = ws. Take an arbitrary matrix

1 n m
g=10 1 1] €Tls,
0 0 1
where m,l,n € Z. Then
1 m
(w T3 0w) =10 1 0
0 n 1

Intersecting the set of such matrices with I's o, we obtain the required result.

Proposition 2.4.15. The group I, acts properly on the right on I's ,\I'sNG,, /U,

where
€1 0 0
U= 0 €9 0], 6= Ztl, €1€2€3 = 1
0 0 €3

and Gy, is as in 2.16. Thus, I's . \ I's N G, /U, is a well-defined double coset

space.

Proof. Note that
* * * e 0 O
Q21 G292 0423 0 e 0

Al Bl Cl 0 0 €3

* * *

= |€1G2,1 €2Q22 €3023
el ebB e3Ch

So that
Al — €1A1, B, — EgBl, 01 — 6301 (226)
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A2 — 6162142, B2 — €1€3B2, CQ — 626302.

(2.27)

Therefore, the representatives of I's o \I'sNG,,(mod U) can be obtained by fixing

two signs of non-zero invariants.

Right multiplication by I', maps left cosets to left cosets, so I', acts on

I3 \I'sNG,/U.

We need to show that the action is proper, i.e. if vy € I'sN G, 7 € ', and

then 7 = id. In order to prove this fact we introduce two new sets:

and

where w € W3. Explicit matrix computation for elements w; € W3, ¢ =

1—‘?a,oor}/TU - F3,oo’7Ua

H1 = w_lGoow N Goo

H2 = w_lGéo N Gooa

shows that every g € G has unique expressions

and

g = hihsy

g = hyh}

with hy, b} € Hy, he, hl, € Hy. More precisely,

H, =

H,

o O =

S = %

_ O

7H2

7H2

0
=10 1 0fif w=w,
L O .
o O
= 1 if w = wo,
L 0 .

52
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Y
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1 % «] (1 0 0]
Hi=10 1 0|,Hy= |0 1 x|ifw=ws,
0 0 1] 0 0 1]
[1 % 0] [1 0 ]
Hi=10 1 0|,Hy= |0 1 x|if w=wy,
0 0 1] 0 0 1]
(1 0 0] (1 % %]
H =101 x|,Hy=10 1 0]if w=ws,
0 0 1] 0 0 1]
[1 0 0] (1 % x|
Hi=101 0|,Hys= 10 1 x|if w=ws.
0 0 1 [0 0 1)

By Bruhat decomposition, v = bjwdbs with b1,02 € G, d € D and w € Wi.
According to 2.28 and 2.29, without loss of generality, we may assume that by €
H,. Since

['30077U = I'3 57U,

we conclude that
bothy' € Hy N Hy = {I}

and 7 = id as required.
O

Finally, for every w € W5 we determine a canonical set of coset representatives
R,, for the quotient space I's .o \ I's N G,,/UT,,. We give a proof in case w = wy

as an example.

Proposition 2.4.16. If w = w; = , then

o O =
O = O
= O O

=

S

|
o o
o~ o
— o o
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Proposition 2.4.17. If w = wy = , then

o = O
o O =
—_ o O

1,1 a12 0
Rw - —B2 02 O )
0 0 1

where (By, C3) =1, By > 0, Cy(mod Bs) and values a1, a1 are chosen uniquely
such that a1 1Cy + a1 2By =1 for each pair (B, Cy).

Proof. By proposition 2.4.8, I'; .o \ I's N G, have coordinates A; = Ay = By =0,
Ch, By # 0. By 2.26, 2.27, we can obtain a representative of I's ., \I'sNG,,(mod U)
by fixing the signs of C}, By. Let C}, By > 0. Furthermore, by theorem 2.4.5,
Plucker coordinates By = —a91C, and Cy = ag2C are coprime integers, so that

Cy = 1. Consequently, aso = C5 and as; = —B,. Consider

ai; are aiz| |1 m 0 a1 mayy +aiz a3
Q21 G292 d23 0 1 0] = Q21 Magy + ag2 023
0 0 C 0 0 1 0 0 Cy

Thus, to obtain the coset representative modulo I',, , we need to consider as 5(mod as ),

equivalently Cy(mod Bs). The determinant of obtained matrix

1,1 Gi12 Aa13
—By, (4 a3
0 0 1

must be equal to one. Whence,variables a; 1, a1 2 are chosen uniquely such that
a11Cy 4+ a1 2By = 1 for each pair (B, Cy). Nor determinant, nor Plucker coor-
dinates depend on the values of a3, ass, so we can let a3 = as3 = 0. The

proposition follows. O
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100
Proposition 2.4.18. Ifw=w3= [0 0 1|, then
010
10 0
R, = 0 Q29 (23 s
0 Bl Cl

where (By,Cy) =1, By > 0, C1(mod By) and values as s, as s are chosen uniquely
such that az2Cy + az 3By =1 for each pair (B, Ch).

Proposition 2.4.19. If w = wy = , then

S = O
= o O
o O =

1,1 Q12 A13
R, = g—f aCy  BC ,
0 By O
where (By,Cy) = 1, By > 0, Cy(mod By), (g—f,Cg) =1, Ay > 0, Cy(mod A,),
BBy + C1As = 0 and values o, B are chosen uniquely such that aCy — BBy = 1
for each pair (By,C1). The values ayi, a1, a1 are chosen uniquely such that

the matriz has determinant one for every quintuple (By, Cy, Ag, By, Cy).

010
Proposition 2.4.20. Ifw=ws= [0 0 1|, then
100

a1 Q12 a13

_ a2,1B1
R, = as 1 A 2.3 )
Ay By Cy

where (By,Cy) = 1, By > 0, Cy(mod By), (’;—1,01) =1, A > 0, Cy(mod A),
A1Co+ BBy = 0 and the values ay 1, a12, a13, a2.1, a3 are chosen uniquely such

that the matriz has determinant one for every quintuple (Ay, By, C1, B, Cs).
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0
Proposition 2.4.21. If w =wg = |0 , then
1

o = O
o O =

1,1 A1z 13
R, = G271 Q22 A3 )

Al Bl Cl

where Ay, Ay > 0, By, Ci(mod Ay), By, Ca(mod Asy), (A1, By, Ch) = (Ag, By, Cy) =
1, A1Cy + BBy + AyCy = 0 and for every sextuple (Ay, By, Cy, Ay, By, Cy) the

values as 1, a2, azs are uniquely chosen such that
Ay = a2,1Bl - az,QAl, By = @2,3141 - a2,101, Cy = a2,201 - a2,3Bl

and the rest of values a1 1, a1 2, a1 3 are chosen uniquely such that the matriz has

determinant one.

2.5 SL(3) Kloosterman sums

There are six Kloosterman sums that occur in the Fourier expansion of Poincaré
series (2.14). Let my,mo,ny,ng € Z, Dy, Dy € Z~o, S(m,n,c) be a classi-
cal Kloosterman sum and W3 denote a Weyl group of permutation matrices of
GL3(Z). By definition,

1 a=0
dap = .
0 a#b
For each w; € W3 (i = 1,...,6) we associate a certain Kloosterman sum S,,.
Namely,
100
Swl == 5D1,15D2,1 with w1 = 010 y
001
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o0 -
Sw2 = 5[)1718(7712, Noj Dg) Wlth Wy = 1 0 0 5
._O -
- N
Sw3 = 5D2715(m1, ny; Dl) with W3 = 1
- 0_
The remaining cases, corresponding to the elements
0 01 010 0 01
wy= 11 0 0|, ws=1({0 0 1| andwg= |0 1 0},
010 100 100

are the most interesting: these are exponential sums different from classical
Kloosterman sums. Below we define two new types of Kloosterman sums K; =
Ki(my,mg,n1,m9; Dy, Dy) and Ky = Ka(my,ny,n2; Dy, D) so that

Swy = Kao(mq,nq,ne; Dy, Ds),

Swg, = K2(m2,n2,n1; D2,D1)7
Swe = K1(ma, my,n1,ng; Da, Dy).

Definition 2.5.1. First type K; = K;(my, ma, ny,ng; Dy, Do) of SL3(Z) Kloost-

erman sum is

mi By +nm(Y1Dy — Z1By)  moBs + no(YoDy — Z5By)
K, =
DI i . E by

Bi(mod D1) Ci(mod Dy)
Ba(mod Dg) Ca(mod Dg)

(2.30)

where the inner sum satisfies the following conditions
<D17 Bh Cl) = 17 <D27 327 02) =1

and

D102 + BlBQ + Cng = O(mod Dng).
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Variables Y7, Ys, Z1, Z5 are chosen such that
YiBl + 2101 = 1(mod D]_)7

YoBy + Z5Cy = 1(mod D2).

Lemma 2.5.2. The sum (2.30) is well-defined, i.e. it is independent of the choice
of Y1,Y5, 721,75 and it does not depend on the choice of representatives By, Cy

and By, Cy of the residue classes modulo Dy and Ds.

Proof. 1. First, we show the independence of the choice of Y1, Z; (Y3, Zs), i.e.
lf (-D17BI7CI> - 17 -Dl ?é 07

chg + BlBQ + OlDQ = O(mod Dng),

and if
XlDl + }/lel —|— ZlCl - X{Dl —|— }/—1/31 + ZiCl,

Y\Ds — Z1B Y/Ds — Z! B
1472 1D2 1472 102

= 1).
D1 D1 (mod )

We may assume that
chg + B1B2 + ClDQ - 0

by changing the value of Cy. Then both vectors (Cy, By, Do) and (a, 8,7) =
(X, — X1, Y1 =Y], Z, — Z]) are orthogonal to (D, By, Cy). Thus, the vector
cross product of (Cy, By, Dy) and (v, 8,7) is parallel to (Dy, By,C7). So
there is A € Q such that

(BDy — yBy,vCy — Dy, By — C5) = A(Dy, By, Cy).

Since (D1, By, C1) = 1, we deduce that A € Z and

ViDy—ZiBy _\  YiDy—ZiBy
D; D,

as required. O
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2. Let us denote the inner sum in 2.30 by

SBl,Bg (mla mao, M1, No, D17 DZ)

_ . (mlBl +n1(Y1Dy — Z1 By) " ma By 4+ na(YaDy — 2232))
(mod Dy)

D, D,
Cs(mod Ds)
where
<D17B17CI) - 17 <D27B2702) — 1
and

D102 + BlBQ + Cng = O(mod Dng).

We claim that the given sum depends only on the residue classes of By (mod D)

( respectively By(mod Dy)) :
if Bi = B1 + /\Dl, then

SBI,BQ(mth,nl,nz, Dy, Dy) = SB{,BQ(mlam2a”17n27D17D2)-
Let C) = Cy — ABs, so that
(DlaBiac’I) = (D27B27O§) =1

and

ché + BlBé + Cng = O(mod Dng).

We deduce that
Y1 By + Z,C, = 1(mod D),

Yé/Bg + ZQCQ = 1(1’IlOd DQ)

with Y] = Y5 + AZ;. Then
}/QIDl - ZQBi == }/2D1 - ZQBl.

Finally, summing over all C; and Cy for the first sum and over all C; and
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C} for the second sum, we obtain the result
SBy,B, (M1, M2, 1, g, D1, Da) = Spr g, (M1, ma, ny, g, Dy, Dy).

]

Definition 2.5.3. Suppose D;|D,. Then the second type of SL3(Z) Kloosterman

sums is defined as follows

Ky = Ky(ma,ny,ng; Dy, Ds),

m101 + nngCf HQC;
K, = ) 2.31
> > e ( D, + .70 (2.31)
C1(mod Dy)
Ca(mod D3)

(C1,D1)=(Ca,32)=1

Variables C7, C3 are chosen so that
C1C} = 1(mod D1)

and
CZO; = 1(m0d Dz/Dl)

Remark 2.5.4. The sum (2.31) is well-defined, i.e. it is independent of the choice
of Cf,C5 and it does not depend on the choice of representatives C, Cy of the
residue classes modulo D; and Ds.

2.6 Some properties of Kloosterman sums

New types of Kloosterman sums have properties similar to the classical case. Let

us list some of them.

Proposition 2.6.1.

S(m17m27n1>n2§DlaD2) = S<n17n2am1>m2;D17D2)-
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Proof. Given (Dq, By,C}) = (Dg, By, C3) = 1 such that

ch’g + BlBQ + ClDQ = O(mod Dng),

let
XlDl + }/131 + Z1C'1 - 1
and
XoDy +Y5By + Zy,Cy = 1.
Also let
By, =YDy — Z, By, By =Y2D, — ZyBy,
C; = Z2a Cé = Z17
Y] = XoBy — Y201, Yy = X1 By — Y1Cy,
Zy=Cy, Cy= 7.
Thus,

Y,B, + Z,C, = Y1 By + Z,Cy + D1Cy(X1 Zo + Y1Ys + Z, X5)(mod Dy Dy).

So that
Y, By + Z,C} = 1(mod D)

and similarly
Y, B, + Z,C, = 1(mod Dy).

Besides,
D\Cy + BB,y + C, = D1Dy(X1Z5 + Y1Ys + 7, X,) = 0(mod Dy Dy)

and
Y, Dy — Z, B, = By(Xy,Dy + Y3 By + Z,C5) = By(mod Dy D).

In an analogous manner,

Y, Dy — ZyB; = By(mod Dy D).
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Finally,
m131 + nl(Yng - ZlBg) mng + ng(Yng - ZQBl)
e +
D1 D2
_(mBi+mi(Y{ Dy — Z,By)  naBy+mo(Yy D1 — Z,B))
=e€ + .
Dl D2
Summing, we obtain the result. m

Proposition 2.6.2.
5(m1>m2,n1,n2;D1,D2) = S(m2,m1,n2,”1;D2,D1)-

Proof. Follows from the definition. O]

Proposition 2.6.3. If pyq1 = page = 1(mod D1D»), p1,q1,D2,q2 € Z, then
S(prma, pama, qina, ganz; D1, Da) = S(ma, ma, ny, ng; Dy, Dy).
Proof. Suppose we are given (D1, By, Cy) = (Ds, By, Cs) = 1 such that
D,Cy + BBy + C1 Dy = 0(mod Dy Ds).
Let Y1 By + Z1Cy = 1(mod D), YoBs + Z5Cy = 1(mod Ds) and
Bi = p1 By, B; = p2Ba,

C; = p1p2Ch, Cé = p1p2Cy,
Y1/ = qY, YQI = q2Ya,
Zi = 19221, Z; = Q1q22>.
Then (D1, By, Cy) = (Do, By, Cy) = 1,

D1C, + BB, + C,Dy = 0(mod D;D,),

Y, B, + Z,C, = 1(mod D,), Y, B, + Z,C, = 1(mod D).
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So we have

(plmlBl + C.hnl(YlDz - Zle) pamo By + Qan(Y2D1 - ZQBl))
c D * D
1 2

mi B, +ny(Y, Dy — ZBy)  myBy + ny(Yy, Dy — ZyB))
=e + .
D1 D2

Summing, we obtain the result. O

Proposition 2.6.4. (twisted multiplicativity) If (Dy1Dy, D\D,) = 1 and if

D,D, = DD, = 1(mod D\Dy),

DD, = D,D, = 1(mod Dy D),

then
S(m17m27n17n2; DlD/17D2Dl2)

2 2~ -2 -2 -
= S(Dl Dle,DQ Dlmg,nl,nQ;Dl,D2>S(D1 Dle,Dz DlmQ,nl,ng;Dl,DQ).

Proof. Let p, p' be such that
pD\Dy +p'Dy D = 1.
Given (Dy, By, C4) = (D3, By, Cy) = 1 such that
DyCy + By By + C1 Dy = 0(mod D D,)
and (D}, By, C}) = (Dy, By, Cy) = 1 such that
D,C, + BB, + C, D, = 0(mod D D,),

let
dy = DDy, dy = DyD,,
by = p' D\ DyBy + pDy Dy B, by = p' Dy Dy By + pD1 Dy By,

e = p° D\’ DyCy + pPD2DyC,, ey = p? DD, Cy + p? Dy DIC,.
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2. SL;(Z) Kloosterman sums

Then
(d17 b17 Cl) == <d27 b2a 02) = 17
d1C2 + b1b2 + Cldg = O(mod dldg).
Let
y1 = p'DyDLY1 + pDi DoY), ya = p/' D) DyYs + pD1DsYy,
2 = p' DDy 2y + pDiD2Z,, 2 = p' D> D}y Zs + pD2 Dy Zs,.
Then

y1by + 2101 = 1(mod dy), yobs + 22¢2 = 1(mod dy),
myby + ny(y1ds — 2102) mlp,D/QBl + nlp,D,22<}/1D2 — Z1Bs)
d; D,
+m1pD231 +npD}(Y, D) — Z, B,
D}

And the identity for ds is similar. Summing, we have

(mod 1).

’ ’ 12 12
S(my, mg,ny,ng;dy, do) = S(p'Dymy, p'Dyma, p' Dy ny, p' Dy ng; Dy, Dy)

x S(pDamy, pDyma, pDany, pD?ny; Dy, D).

But
D, = pDy(mod Dy'Dy"), Dy = pDy(mod Dy’ Dy),

!

D} = p'Dy(mod D1 Ds), Dy = p'D(mod Dy D).

Now the result follows from proposition 2.6.3.

O
Proposition 2.6.5.
S(my, ma, n1, ng; Dy, 1) = S(my,ny; Dy),
S(ma, mag,ny,ng; 1, Do) = S(ma, ng; Da),
where S(m,n; D) is a classical Kloosterman sum.
Proof. Follows from the definition. ]

64



2. SL;(Z) Kloosterman sums

Proposition 2.6.6. If (D, Ds) =1, then
S(mlamQanh/n’Q;Dl)DQ) - S(D2m17n17Dl)S(D1m27n27D2)-

Proof. Follows from properties 2.6.4 and 2.6.5. n

Now, let us consider the second type of SL3(Z) Kloosterman sum and list

some of its properties.

Proposition 2.6.7.
S(mi,n1,n9,1, Do) = Rp,(na),

where

Re(n) = S(0,n,c)= > e(%i)

d(mod c)
ged(c,d)=1
15 a Ramanujan sum.

Proof. Follows from the definition. O]

Proposition 2.6.8. (twisted multiplicativity) let (Dy, D) = 1, Dy|Dy, D.|Ds.
Then

’ ’ e ’ —2 _— —_—2 ’ ’
S(ml,nl,ng,DlDl,DgDQ) = S(mlDl,nlDQ,ngDQ ,Dl,Dg)S(mlDl,nng,nng ,Dl,DQ),

where
Dy D; = 1(mod D), DyDy = 1(mod D),

DD} = 1(mod Dy), DyDy = 1(mod D,).

Proposition 2.6.9. Let p be a prime number. Then for b > a > 0
S(ma,n, ng; p, p*) =0

unless b = 2a, or ny = 0(mod p°~2*) and b > 2a, or ny = 0(mod p**~*) and

b < 2a.
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2. SL;(Z) Kloosterman sums

Proposition 2.6.10.

1

p** —p*=tif p*m, p*ng
2a—1

S(my,n1,ng; p*, p*) = —p if p* fm, p®ny
0 otherwise.

Proposition 2.6.11.
S(mhnl?nQ; D17 D2) - O

unless nl% €.
Proof. Follows from propositions 2.6.8, 2.6.9 and 2.6.10. ]

Proposition 2.6.12. (Larsen’s bound)

mi,n1,ne; D1, Da)| < min(7(D1)%(ne, Do/ D1)Dy, 7(Da)(ma, n1, D1)Ds),
1S( Dy, Do)| < (7(D1)*(ng, D2/ D1) D3, 7(D2)( Dy)Dy)

where o = ;Zig and T(n) = Zj‘>n1 L.

2.7 Fourier expansion of Poincaré series
Let us choose an F—function as
B (2) = e(n(x1 + iy /M) + no(xg + iyo/M)) with M € Z. (2.32)
Since the function does not depend on z3, we write
By ny(2) = Epy oy (21 + 141, 22 + iy2). (2.33)

Below we compute the Fourier coefficients of SL3(Z) Poincaré series for this choice

of E—function.

Theorem 2.7.1. Let R(v1),R(1n) > 2. Then

1 1 1 0 52 53
/ / / Py o 0 1 &| 2| e(—=mi& —maby)d déedés =
o Jo Jo 00 1
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2. SL;(Z) Kloosterman sums

= e(myz1 + maxa) Ly, 1, ( E E E Sw; (€11, €2ma, Ny, No; Dy, Dy)

w; EW €1,e2==%1 D1,D2=1

—3111 —31/2 . . .
XDI D2 Jwi(yl,yg,7/1,1/2,€1m1,62m2,n1,n2,D1,D2>,

where Sy, is a SL3(Z) Kloosterman sums and
Jw; = Jw; (Y1, Y23 V1, Vo5 €6m, €9mia, iy, ng; Dy, Do)

1s an integral below corresponding to the element w;.

Let us write {4 = 16 — &3, 43 = 53 + 5291 + y1y2 and Zy = 54 + 5192 + y1y27
then

o le = 5m1,n15m2,n2En1,n2 (ylvy2)7
o 73IJ2 _
© Juy = 00 00m0 [ o (€2 4+ Y3) 2 Brypng (0, — (&2 + iy2) "' Dy ?)e(—maks)dés,

o Juy = 5712,05"1270 fj;o(gf + y%) - Em,nz(_(gl + iyl)_lDl_za 0)6(_m1€1)d€1a

—3vq

oy
> Z, 7 e(—mi&)

L4 J’w4 - 5m2D%,n1D2 fj;;o fjoooo(é% + y%)

X By oy (E1€041351 24/ ) (€34y3) " Do D2, (Eatina (€2-4+y2)Y/?) 21 1Dy Dy 2) € dEs,

—3v

o) 00 —3v —_or1
hd st = 5m1ngn2D1 f—+oo f—+oo (6% + y%) > ZS ? €<_m2€2)

X By (S0 (E34y2)Y2) 25 Dy D2, (&9€s+ia Z3 ) (€3+y2) "' D1 Dy 2)dédEs,

o oo oo i1 —Bvy
o Jy; = fjoo fjoo fjoo Zs? 7,7 e(—mi& — moby)
X By (—61&3—Eayi +ipn Z,/*) 25 Do DT, (—Ea64—E1y3+iy Z3) 27 D, D3 ?)
X d&1déadEs.

Proof. Consider the Poincaré series

Pnl,ng(Z7V17V2) = Z IV1 vy 72 ni, nz(fyz)'

Y€l'3 60 \I'3

Let

U= €9 , € = :i:l, €1€9€3 — 1
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2. SL;(Z) Kloosterman sums

Then we can write

Pn17n2(za’/177/2) - Z le/lwz(’yuz)Em,nz(’yuz)'

’yEngoo\Fg/U uelU

According to the formula 2.3, Fourier coefficients are given by

11 el 1 & &
Fm1,m2(z>:/ / / Poims | |0 1 & 2 | e(—=mi&y — ma&y)dédEadEs.
o Jo Jo
0O 0 1
Since

S &3 1 & &) |1 xo z3| [vaye O O
51 z=10 1 51 0 1 = 0 U1 0
0 0 1 0 0 1 0 0 1 0 0 1

y1ye (T +&)y1 &+ Soxy + x5
= 0 Y1 &1+ )
0 0 1

we can make a change of variables
&1 — & — 1,

§2 — §o — @,
§3 — &3 — w3 — {1y

to obtain

1 .1 1 ny2 &2 &
Fousoma(2) = e{@ima-+aams) / / / Pom | 10w &l | elcmé—mss)deidede,
0 0 0 0 O 1

viy2 i &3

1 1 1
= e(wimy +xamy) Y Z///Iul,qum,nz yul 0w &
0 0 0

Y€l 00 \I'3/U uel 0 0 1
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2. SL;(Z) Kloosterman sums

xe(—mi& — mobs)dédéadEs.
1 00

Note that each element v € U, u # [0 1 0| changes signs of some variables &;,

001
1 <4 < 3. So the following substitution

giﬁeigivi:]-a"wg

leads to

1 1 1
Fm17m2<z) = 6(.771777/1 + xgmg) Z Z / /0v /0v [,,17,12
0

€1,62=+1 €3 oo \I's/U

12 y1&e &3
XEnyim [ 7] 0 y1 & e(—mye1&y — mao€xés)dé déadEs.
0 0 1

Let us denote k1 = mqeq, ko = moey and
1 p1 p1 Y2 & &
L= S [ [ B || 0w @] | doh-hepadads,
7€l 00\ /U 70 70 /0 0 0 1
Now we apply results of the section 2.4 to modify the given sum. Note that
I's =G3NT5 = (UpewsGw) Ny

by Bruhat decomposition 2.15. So that

T30 \ T3/U = Upew, 3,00 \ Ts N Gy /U.

Let
To k
€ni,na 01 = = e(n1x1 + naxa).
0 0 1
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Then, using proposition 2.4.15 and property 2.12 , we have

=Y % emm(bl)Z/ol /01/011,,1,V2

weWs YERw tely
y=b1wdbz
b1,b2€Go0,deD

y1y2 e &3
><Ewn1,n2 ’U)dbgt O U1 51 6(—/{?151 — k1£2)dfld£2d£3.
0 0 1

According to the definition 2.4.13, there are six types of groups I',, associated to

different elements w € W3. We can treat them case by case in order to apply
ny2 & &

the action of ¢ € T',, to the matrix | 0 gy & | and change the domain of

0 0 1

integration. Consider, for instance,

1 m | 010
Ly, = 0 1 0l,mleZ, withws=1]0 0 1
0 0 1 1 0 0
Then,
L m | |y ni&e & vy (e +m) &+mé +1
01 0 0 y &l=10 (7 &1
0 0 1 0 0 1 0 0 1

Let us make the following change of variables

&1 — &1,

S — & —m,
§3 — & —mé — L.

Summing over all elements in T, (equivalently, summing over all m,[ € Z), the
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2. SL;(Z) Kloosterman sums

domain of integration in the space &3 x & x & is
[—00, +00] X [—00, +00] x [0, 1].

In general,

L= Z Z enl,nz(bl)/Q Loy,

weWs3 'YGFS,oo \Fg ﬁGw/UFw
y=b1wdba

viy2 e &3
X By e | wdby | 0 v & e(—ki1& — k1&2)dé1dEadEs,
0 0 1

where in the space &5 X & X &

10
Qu = [0,1) % [0,1] x [0,1] with w, = [0 1 0],
0 0
0
U, = [0,1] x [0, +00] x [0,1] with w; = |1 0 0,
0 1
1 00
Qu, =10,1] x [0,1] x [—00, +00] if wg= |0 0 1},
010
0 0 1
Qy, = [—00,4+00] x [0,1] X [-00,4+00] withws = [1 0 0],
._0 -
_ 0
Q= [—00, +00] X [—00, +o0] x [0,1] with ws = [0 0 1],
. 0_
0 01
Qe = [—00, +00] X [—00, +00] X [—o0, +oo] if ws= {0 1 0
1 0 0
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2. SL;(Z) Kloosterman sums

Next we apply

1 Ba B3
bg - O 1 51
0 0 1
to

ny2 & &3
0 vy &
0 0 1

and make a change of variables
& — & — B,
§o — & — Do,

§3 — &3 — By — Ps.

Then,

1 1 1
L = Lyvon(2) B (1 32) / / / (1 — k)Es + (g — o)) drdEndts

+ Z Z €y ms (D1)€ky 1z (D2)

WEW3 v€l'3 0o \GwNl'3 /Uy,
wH#wW1 y=biwdbs

iy 1§ &3
< @B [wd| 0 & | b - bt drdgad
i 0 0 1
According to Bruhat decomposition and propositions 2.4.7-2.4.21, the domain

of integration €2, is given by

QwQ,bz - [07 1] X [—OO, +OO] X [07 1]7

mebz - [07 1] X [O, 1] X [—OO, +OO]7

C(CQBl ’ 14 C(CQBl

A2 A2 ] X [—OO,—{—OO],

Qw47bz = [_OO>+OO] X [
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2. SL;(Z) Kloosterman sums

—bo 2B b2,2 B>

Qs b, = |—00, +00| X |—00, +00] X : 11— = ,

= [0, +00] x [o0,+od] x [ e
Qw6,b2 - [—OO,—I—OO] X [—OO,—i—OO] X [—OO,—i—OO].

Yiy2 Y262 &
The next step is to modify the integral fQ L Since wd | 0 &
w,ay

0 0 1
belongs to the generalized upper-half space H?, we consider
YiYh YTz T3 Y2 el &
0 v, m|=wd| 0 gy &]| mod (Os3(R)-R¥).
0 0 1 0 0 1
Let
§a =616 + &3,

Zs =& + & + uivs,
Zy = &+ ya€1 + yiva.
Then the values of ), x}, x4, vy, v, are as follows.

e If w = wy, then

-T/1 = B?&?w
Z‘l _ _52
* T B3(&+ )
/ 61
ZL‘3 — E,
Yy = Bayi (65 +43)"7,

y/ _ Yo

T BiHE+vd)

e If w = w;s, then
—&

/
T =

LOBHE +y3)
zy = Bi(§1& — &),

o &1&s + Syt
3 B, (f% + y%)’
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e If w = wy, then

e If w = w;s, then

e If w = wg, then

/ Y1

Y1 = 5979 7 9w
LOBHE + )
Yy = Biya (&7 4+ y7)*°.

;o é (&1&3 + &oup)

T, = 5 9
YBY G4y
x/ _ _BI€4
2 A3z
.I/ _ §1
P BiAY G+ )
/ A23/122'5

Yy = g
OB+ )

= By (6 +43)°°
2 A3Z, '

LL'/ _ 3253
LAz

£2£3
&+ 3
o &1&s + &out
3 A1 By 75
J = By (65 +3)*°
! A7, ’
y' _ A1y22§'5
T B3(&+13)

, A
Ty = B_é(fl - )7

;A (Siés + &2u7)

l’l—

A2 Zs ’
o —A; (&6 +523/%)
2 A2 Z, ’
iL‘/ _ 53
37 A A
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2. SL;(Z) Kloosterman sums

I A2y1225
yl A%Zg 9
yh = Alyzz:(s)'5

2 A2Z,

Given results can be verified by direct calculations. Consider, for example,
case w = ws. Let ry = /& + y2, ra = \/E3y} + yPy3 + &2, then there are

and

such that

0

=& Y2 0
O = —f:alyz —52153 T1Y1 GOg(R)
r1T2 T17T2 T2
yiy2 e &
T2 T2 T2
Aﬂ"; 0 0
R = 0 Alrg 0 e R*
0 0 Al’f‘%
YiYs YoTo T3 Y1y2 Y282 &3
vy w1 |OR=wsd| 0 y &
0 1 0 0 1

0

Now summing up all the results we immediately obtain the statement of the

theorem in case w = wy, wq, w3. The remained three cases involve some more

computations. Let us consider for instance the case w = ws:

and according to 2.33

Then

—3vq
Ly (2) = AT By 2,77 (65 +y3) 2

Enyny (2)

—3vg

= Enyna (95/1 + Z.yllv 37/2 + Zyé)

— k1)&1)d6y
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/+OO/+°° = (2442) o B, <§3+iy1(§§+y§)1/2) Ay —5253+iy22§/2
) B | 7 2 B\~ @

X 6(—]@252)6[52(1&3.

If%zgl #kb

by o B
1 22.2B82

Ay 7’LQA1 1 ’I’LzAl 1 k’lBg N9 n2A1
/bQﬁBQ 6((—33 —k1)&1) §1=ﬂ(—B§ —k1)"e(baa( m _E))( ( B —k1)—1)
So that -
— A—Syl B—3l/2 b 1D2 @
/Q p A By " e(bao( 1 B )

X /+OO /+OOZ_32V1 (€2+y2)%E B <§3+iyl(f§+y§)l/2) A 6ot + iy
oo S BT e\ A Zs z5 (63 +53)

where 4
.. NoAy
on = 1 lf B—22 kl
and . ) A
M= o (n2321 — k1)_1(6(n2331 — k1) — 1), otherwise.

Let D1 A1 and .D2 BQ, then

k?lBQ Mo nlcék ]{?202 7@0105
n1ne (D b b - %5 J)) = )

S oo ()elna ) = 0o Uk By e

vy C1(mod Dy)

Ca(mod D3)

where (Cy, Dy) = 1, (C1, D1D; ') = 1, C,C3 = 1(mod Dy) and C,C;f = 1(mod D, D;").
By property 2.6.11, the later sum is zero unless ”2—D1 € Z. On the other hand,
if ”2D L € Z, then the integral [, vanishes for k1 #* ”2A1. This leads to the

ws,b2

result. Applying the same procedure, one can also obtam required expressions

for Kloosterman sums and integrals .J,, in case w = wy, wg.

]
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2.8 SL(3) Kloosterman angles

Let us recall proposition 2.6.6 in case ny = ny = my = mo =1, D1 = p1, Dy = po,

where p; # py are prime numbers.

Proposition 2.8.1. If (p1,p2) = 1, then

S(la 17 17 1;p17p2) = S(an 17p1)S<p17 17p2)7

where S(m,n,c) is a classical Kloosterman sum.

According to Weil’s bound,

|S(p2, 17p1)| < 2\/57

1S(p1, 1, p2)| < 2¢/pa.

Thus, there are unique Kloosterman angles (0, p,,0p, p,) on [0, 7] x [0, 7] such
that

S(p27 17p1) = 2\/])_1003(91027171)

and
S(ph 17p2) = 2\/2)_2608((91717172)’

We associate a couple of angles (6, »,,0p,,,) With SL3(Z) Kloosterman sum
5(17 ]-7 ]-a ]-;pl)p?)’

Conjecture 2.8.2. Let P, P, — 0o, then the set of Kloosterman angles

{(epz D1 91)1 P2 ) }p1 <P

p2<Ps
P17£D2

becomes equidistibuted with respect to Sato-Tate measure on [0, 7] x [0, 7. Equiv-

alently, for any Iy X Iy = [ay,b1] X [ag, bs] € [0, 7] x [0, 7],

limp #{p1 < Pi, po < Py, p1 # p2, 0(p2,p1) € Th, O(p1,p2) € Lo}
P o #{ <P} x (#{p < P} —1)

4 b1 ba
= psr(l1 x Iy) = —2/ / sin?(0,) sin®(6y)d6,db-.
™ a1 as
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2. SL3(Z) Kloosterman sums

Figure 2.1: Cumulative distribution function for Kloosterman angles (red) and
Sato-Tate cumulative distribution function (blue)
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A 1

Figure 2.2: Cumulative distribution function for Kloosterman angles (red) and
Sato-Tate cumulative distribution function (blue) in one plot

79



References

1]

Daniel Bump. Automorphic forms on GL(3,R), volume 1083 of Lecture
Notes in Mathematics. Springer-Verlag, Berlin, 1984.

Daniel Bump, Solomon Friedberg, and Dorian Goldfeld. Poincaré series and
Kloosterman sums for SL(3,Z). Acta Mathematica, 50(1):31-89, 1988. 27

J. B. Conrey. At least two-fifths of the zeros of the Riemann zeta function
are on the critical line. Bull. Amer. Math. Soc. (N.S.), 20(1):79-81, 1989. 1

Fred Diamond and Jerry Shurman. A first course in modular forms, volume
228 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2005.

Jacques Faraut. Analysis on Lie groups, volume 110 of Cambridge Studies
in Advanced Mathematics. Cambridge University Press, Cambridge, 2008.

An introduction.

Dorian Goldfeld.  Automorphic forms and L-functions for the group
GL(n, R), volume 99 of Cambridge Studies in Advanced Mathematics. Cam-
bridge University Press, Cambridge, 2006. With an appendix by Kevin A.
Broughan. 31, 32, 40, 41

[. S. Gradshteyn and 1. M. Ryzhik. Table of Integrals, Series and Products.
Academic Press, London, 1965. 11, 12

R.C. Gunning. Lectures on modular forms. Notes by Armand Brumer. An-
nals of Mathematics Studies. No. 48. Princeton, N.J.: Princeton University
Press, 1962. 9

80



REFERENCES

[9]

[10]

[11]

[12]

[13]

[14]

Henryk Iwaniec. Topics in classical automorphic forms, volume 17 of Grad-

uate Studies in Mathematics. American Mathematical Society, Providence,
RI, 1997. 4

Nicholas M. Katz. Gauss sums, Kloosterman sums, and monodromy groups.
Annals of Mathematics Studies, 116, pages x+246 pp., 1988. 15

H. D Kloosterman. On the representation of numbers in the form az?+by? +
cz® +dt?. Acta Mathematica, 49(1):407-464, 1926. 1

F.W.J. Olver. Asymptotics and Special Functions. Academic Press, New
York, San Fransisco, London, 1974. 25

H. Poincaré. Fonctions modulaires et fonctions fuchsiennes. Ann. Fac. Sci.

Toulouse Sci. Math. Sci. Phys. (3), 3:125-149, 1911. 1

Atle Selberg. On the estimation of Fourier coefficients of modular forms.
In Proc. Sympos. Pure Math., Vol. VIII, pages 1-15. Amer. Math. Soc.,
Providence, R.I., 1965. 12

Jean Pierre Serre. A course in arithmetic. Springer-Verlag, New York, 1973.

A. Weil. On some exponential sums. Proc. Nat. Acad. Sci. U.S.A., 34:204—
207, 1948. 15, 24

81



	Contents
	List of Figures
	1 Classical Kloosterman sums
	1.1 SL(2) modular forms
	1.2 Construction of SL(2) Poincaré series
	1.3 Fourier expansion of Poincaré series
	1.4 Some properties of Kloosterman sums
	1.5 Distribution of Kloosterman angles
	1.6 Numerical computation of Poincaré series
	1.6.1 Poincaré series and fundamental domain reduction algorithm
	1.6.2 Absolute error estimate


	2 SL(3) Kloosterman sums
	2.1 Generalized upper-half space and Iwasawa decomposition
	2.2 Automorphic forms and Fourier expansion
	2.3 SL(3) Poincaré series
	2.4 Bruhat decomposition and Plucker coordinates
	2.5 SL(3) Kloosterman sums
	2.6 Some properties of Kloosterman sums
	2.7 Fourier expansion of Poincaré series
	2.8 SL(3) Kloosterman angles

	References

