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Introduction

The main objects of study in this thesis are constructible functions. A constructible function on
a real analytic manifold X is an integer valued function which is locally constant on every con-
nected component of a subanalytic stratification of X. On the other hand, an R-constructible
sheaf on X is an object of the derived category of sheaves of k-vector spaces (for k a field)
having locally constant cohomologies on every component of a subanalytic stratification. It can
be shown that the Grothendieck group of the category of R-constructible sheaves is generated
by linear combinations of classes of constant sheaves on a locally closed subanalytic sets. Hence
one finds an isomorphism of this group with the category of constructible functions, given by:

km
Z 7→ m.1Z , kZ [1] 7→ (−1).1Z .

Here Z ⊂ X is a compact contractible subanalytic set, m > 0 an integer and 1Z the
characteristic function of Z. This isomorphism allows one to translate the operations and
theorems from sheaf theory to the framework of constructible functions.

Among various operations on constructible sheaves, we will highlight the Radon transform. It
is defined in the following way:
Assume φ is a constructible function on X. Consider the double morphism of real analytic
manifolds:

S
f

����
��

��
�� g

��?
??

??
??

X Y,

the Radon transform of φ with the incidence relation S is defined by:

RS(φ) =
∫

g
f ∗φ.

Where the operation
∫
g plays the same role on consructible functions, as the proper direct

image, Rg!, does on derived category of sheaves.
Given a Radon transform, the question of existence of an inverse naturally arises. P. Schapira
in [8] considered this problem in general. He proved the existence of an inverse under certain
hypotheses. These hypotheses however, are not fulfilled if one looks at the Radon transforms
on Grassmannians.
In [7], Y. Matsui, under some assumptions, obtained an inverse for the Radon transform on
Grassmannians with the inclusion incidence relation. In order to do it, he considered transforms
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associated to different incidence relations and combined them using Cramer’s rule to obtain an
inverse.
In [6], C. Marastoni considered the transversality incidence relation for dual complex Grass-
mannians, in the framework of constructible sheaves. Using microlocal techniques he proved
that the associated Radon transfom is invertible.
In this thesis we consider the transversality incidence relation for general Grassmannians,
in the framework of constructible functions. We have two main results. On one hand, we
show that for dual Grassmannians the transversality incidence relation is self adjoint. On
the other hand, under certain assumptions, we prove that the associated Radon transform
has an inverse. Here, as in Matsui’s, the idea is to consider transforms associated to different
incidence relations. However, in our proof we avoid the use of Schubert calculus. In addition,
our techniques could be adapted to obtain a simplified proof of Matsui’s main result.

The first chapter of this thesis is a brief introduction to the category of R-constructible sheaves,
in which we give the grounds for defining constructible functions, as well as the operations on
them.

In the second chapter, we will introduce a type of integral functor over sheaves. Then, we will
consider the analogue of this integral transform in the framework of constructible functions.
Which is in particular the Radon transform.

The third chapter is concentrated on Radon transforms on Grassmannians. In this chapter we
will prove our results.

The last parts of this thesis are appendix A and appendix B. Appendix A is a collection of du-
ality formulas and theorems related to Euler-Poincaré index with compact support. Theorems
and formulas which are employed in the earlier chapters. Appendix B, contains a definition of
micro-support which is used in the second chapter. Few basic theorems on micro-supports are
also mentioned.

Acknowledgment: I wish to thank ALGANT consortium for providing me with the ALGANT
grant. I would like to thank Prof. Marco Garuti, for providing such a friendly environment
for the ALGANT students in university of Padova: Prof. Bas Edixhoven for the things that
I learned from him, and for the light he shed on certain theorems which I have employed in
this thesis. Finally, I acknowledge my gratitude to Prof. Andrea D’Agnolo for his guidance
throughout this thesis and for his sheer patience in answering my questions.



Chapter 1

Constructible sheaves and
constructible functions

This chapter contains basic definitions and theorems for constructible functions. We will state
definitions of subanalytic stratification, constructible sheaves and finally constructible functions.
Next, we will explain how Euler-Poincaré index provides an isomorphism between Grothendieck
group of category of R-constructible sheaves and constructible functions. This isomorphism
plays a key role in defining the operations on constructible functions motivated by the operations
on constructible sheaves. To justify definitions of operations on constructible functions we will
recall series of theorems from theory of sheaves. The main references for this chapter are [5]
and [3].

1.1 Constructible sheaves

In this section we first introduce subanalytic stratifications. Next, we will define constructible
sheaves which have locally constant cohomology groups and are stable under the Grothendieck
operations.

Notation 1.1.1. Throughout the thesis for an algebraically closed field k and a topological
manifold X, we denote by Db(kX), the derived category of bounded complexes of sheaves of k-
vector spaces. Moreover, kX is the locally constant sheaf on X with stalk k. If F ∈ Ob(Db(kX))
to lighten the notation we will write F ∈ Db(kX).

1.1.1 Subanalytic stratification

Subanalytic sets, are more general objects than semi-analytic sets (those which are locally
defined by inequalities of analytic functions). Family of subanalytic sets is closed under closure,
complement, inverse images and proper direct images. More precisely:

Definition 1.1.2. Let Y be a real analytic manifold and let Z be a subset of Y . One says
Z is subanalytic at y ∈ Y if there exist an open neighborhood U of y, compact manifolds
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X i
j(i = 1, 2, 1 ≥ j ≥ N) and morphisms f i

j : X i
j → Y such that:

Z ∩ U = U ∩
N⋃

j=1

(f 1
j (X1

j )\f 2
j (X2

j )).

If Z is subanalytic at each y ∈ Y , one says Z is subanalytic in Y .

Subanalytic sets carry the following properties (for a proof, see [5], p.327).

Proposition 1.1.3. (i) Assume Z is subanalytic in Y . Then Z and Int(Z) are subanalytic
in Y . Moreover the connected components of Z are locally finite and subanalytic.

(ii) Assume Z1 and Z2 are subanalytic in Y . Then Z1∪Z2, Z1\Z2 and Z1∩Z2 are subanalytic.

(iii) Let f : X → Y be a morphism of manifolds. If Z ⊂ Y is subanalytic in Y then f−1(Z)
is subanalytic in X. If W ⊂ X is subanalytic in X and f is proper on W, then f(W ) is
subanalytic in Y .

(iv) Let Z be a closed subanalytic subset of Y . Then there exists a manifold X and a proper
morphism f : X → Y such that f(X) = Z.

Definition 1.1.4. For a closed subanalytic subset Y of X, a partition Y =
⊔

α∈AXα is called a
subanalytic stratification of Y , if it is locally finite, the Xα’s are subanalytic submanifolds and
for all pairs (α, β) ∈ A × A such that Xα ∩ Xβ 6= ∅ one has Xβ ⊂ Xα. Each Xα is called a
stratum.

1.1.2 Definition of constructible sheaves

Definition 1.1.5. Let F be an object of Db(kX), the derived category of bounded complexes
k-vector spaces. Assume that there exists a locally finite covering X =

⋃
i∈I Xi by subanalytic

subsets such that for all j ∈ Z, all i ∈ I, the sheaves Hj(F )|Xi
are locally constant of finite

rank. Then one says that F is R-constructible. We denote by Db
R−c(kX) the full triangulated

subcategory of Db(kX) consisting of R-constructible objects.

Example 1.1.6. Assume Z is a locally closed subanalytic subset of an analytic manifold X,
and denote by j : Z → X the embedding. Note if X =

⊔
αXα is a subanalytic stratification,

then so is X = (
⊔

αXα ∩ Z) t (
⊔

αXα ∩ (X\Z)). Let F ∈ Db
R−c(kX). For FZ = Rj!j

−1F one
has: ®

FZ |Z = F |Z ;
FZ |X\Z = 0.

As a result FZ locally constant on both types of strata Xα ∩ Z and Xα ∩ (X\Z). Therefore,
FZ ∈ Db

R−c(kX).

Unlike the category locally constant sheaves, the category of constructible sheaves is preserved
under many natural sheaf theoretic operations.

Theorem 1.1.7. (i) Let f : X → Y be an analytic morphism of real analytic spaces. Then
the following holds:
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(a) If G ∈ Db
R−c(kY ) then f−1G ∈ Db

R−c(kX) and f !G ∈ Db
R−c(kX).

(b) If F ∈ Db
R−c(kX) and restriction of f to supp(F ) is proper, then Rf∗(F ) and Rf!(F )

are R-constructible.

(ii) If F,G ∈ Db
R−c(kX) then F

L
⊗ G and RHom(F,G) ∈ Db

R−c(kX).

(iii) Let F ∈ Db(kX). Then F is R-constructible if and only if the dual1 DXF is R-constuctible.
In particular, the dualizing complex ωX = DXkX is R-constructible.

(iv) If F ∈ Db
R−c(kX) then we have the following:

(a) The natural morphism F → DX(DX(F )) is an isomorphism;

(b) For any x ∈ X one has (DXF )x ' RHom(RΓx(X,F ), k).

Example 1.1.8. Let X = C and S = C−{0} and F a sheaf on S with supp(F ) = {xn : n ∈ N},
where xn = 1

n+1
and Fxn = Cn. We see that F is an R-constructible sheaf on S. Yet, the sheaf

i!F is not. Indeed, if i!F was an R-constructible sheaf we would have a subanalytic stratification
of X and the origin would be in a stratum different from each of {xn}. Such a stratification
though, could not be locally finite.

Recall that for a continuous map f : X → Y and sheaf F ∈ Db(AX) and a sheaf G ∈ Db(AY )
we have (i) f !(DG) ' D(f−1G) and (ii) Rf∗(DF ) ' D(Rf!F ). Therefore, by the last theorem
we get:

Corollary 1.1.9. Let f : X → Y be an analytic morphism real analytic spaces. Then,

(i) if F ∈ Db
R−c(AX), then Rf!(DF ) ' D(Rf∗(F )),

(ii) if G ∈ Db
R−c(AY ), then f−1(DG) ' D(f !(G)).

Another lemma will be useful later.

Lemma 1.1.10. Let F ∈ Db
w−R−c(AX) and let φ : X → Rn be a real analytic function.

Assume φ|supp(F ) is proper. Then we have the natural isomorphism:

(i) RΓ(φ−1(Bε);F ) ' RΓ(φ−1(Bε);F ) ' RΓ(φ−1(0);F ), for 0 < ε� 1,

(ii) RΓφ−1(0)(X;F ) ' RΓφ−1(Bε′ )
(X;F ) ' RΓc(φ

−1(Bε);F ), for 0 < ε� 1.

1For a definition of dual see A.6.
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1.2 Constructible functions

Definition 1.2.1. A function φ : X → Z is constructible if:

(i) for all m ∈ Z, φ−1(m) is subanalytic,

(ii) the family {φ−1(m)}m∈Z is locally finite.

We denote by CF (X) the set of constructible functions on X. Which is a ring under usual
operations of addition and multiplication. The presheaf U → CF (U) (U open in X) is a sheaf.
We denote it by CFX .

In the above definition {φ−1(m)}m∈Z gives a subanalytic, locally finite covering of X. Therefore,
by Hardt triangulation theorem([5], Proposition 8.2.5), there exists a locally finite, subanalytic
stratification

⊔
α∈I Kα, such that all Kα’s are compact and contractible. Hence we simplify:

Lemma 1.2.2. A function φ : X → Z is constructible if and only if there exists a locally finite
family of compact subanalytic contractible subsets {Ki}i∈I , such that:

φ =
∑
i∈I

ci1Ki
,

where ci ∈ Z and 1A is characteristic function of the subset A, i.e. 1A(x) =

®
1 if x ∈ A;
0 if x /∈ A.

1.2.1 Euler-Poincaré index

Theory of constructible functions is based on an observation on the local Euler-Poincaré Index
of a constructible sheaf. Recall that for F an object of Db

f (kX), the derived category of finitely
generated k-vector spaces, the local Euler-Poincarè index of F is defined to be:

χ(F ) =
∑
j

(−1)jdimHj(F ).

Definition 1.2.3. Let X be an analytic manifold and F ∈ Db
R−c(kX). For any x ∈ X one sets:

χ(F )(x) = χ(Fx),

χc(F )(x) = χ(RΓx(X;F )) = χ(D(F ))(x).

Moreover, if RΓ(X;F ) (resp. RΓc(X;F )) belongs to Db
f (kX), one sets:

χ(X;F ) = χ(RΓ(X;F ))

(resp. χc(X;F ) = χ(RΓc(X;F ))).

The integer χ(X;F ) is called the Euler-Poincaré index of F and the function χ(F )(x) is called
the local Euler-Poincaré index of F .
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Remark 1.2.4. The equality χc(F )(x) = χ(D(F ))(x) in the preceding definition is implied by
Theorem 1.1.7

Example 1.2.5. (i) If F ∈ Db
R−c(kX), then by definition there exists a subanalytic stratifi-

cation
⊔

αXα such that F |Xα are locally constant, and so for a connected component of
each Xα, say Z, Hj(F )|Z is a constant integer. Therefore χ(F ) is a constructible function.

(ii) It is easy to see that χ(R, k5
[0,1] + k[2,3][+1]) = 51[0,1] − 1[2,3].

(iii) Assume Y is a locally closed subset of X, then:

χ(RΓc(X; kY )) = χ(RΓc(X; i!kY )) = χ(RΓc(Y ; i!i
−1kX)) = χc(Y ).

Recall that χ satisfies:
χ(F ⊕G) = χ(F ) + χ(G)

χ(F ⊗G) = χ(F ).χ(G)

for F,G ∈ Db
R−c(kX). And for a distinguished triangle F ′ → F → F ′′ +1→, we have:

χ(F ) = χ(F ′) + χ(F ′′).

As these properties suggest, it is suitable to look at Grothendieck group of Db
R−c(kX).

Definition 1.2.6. Let C be an abelian (resp. triangulated) category. One denotes by K(C )
the abelian group obtained as the quotient of the free abelian group generated by the objects of
C by the relation X = X ′ +X ′′ if there is an exact sequence 0 → X ′ → X → X ′′ → 0 (resp.

a distinguished triangle X ′ → X → X ′′ +1→ in C ). One calls K(C ) the Grothendieck Group of
C .

Remark 1.2.7. Let C be an abelian category and, Db(C ) the derived category of bounded
complexes of C . Consider the distinguished triangles, (see [5], p.47):

τ≤n(X) → X → τ≥n+1(X)
+1→,

τ≤n−1(X) → τ≤n(X) → Hn(X)[−n]
+1→,

Hn(X)[−n] → τ≥n(X) → τ≥n+1(X)
+1→ .

By induction one can easily see that for an X ∈ Db(C ), class of X, [X] ∈ K(Db(C )), can be
represented by: ∑

j

[Hj(X)[−j]].

Therefore, i : C → Db(C ), X 7→ X, induces a group isomorphism K(C ) ' K(Db(C )), which
its inverse is given by

∑
j(−1)j[Hj(X)].

We will denote the Grothendieck group of Db
R−c(kX) by KR−c(kX).
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Theorem 1.2.8. The map χ induces a group isomorphism from KR−c(kX) to CF (X).

Proof. We explain the proof of this theorem from [5]. The machinery of applying induction on
a subanalytic stratification is often useful.

I. Surjectivity. This is done exactly as in the Example 1.2.5. For a φ ∈ CFX , choose a
subanalytic stratification X =

⊔
α∈AXα such that φ =

∑
α∈Amα1Xα ,m ∈ Z. Let εα = sgn(mα)

for mα 6= 0 and define:

F =
⊕
α∈A′

k
|mα|
Xα

ñ
1− εα

2

ô
where A′ = α ∈ A;mα 6= 0. Clearly F ∈ Db

R−c(kX), and χ(F ) = φ. So the surjectivity follows.

II. Injectivity. To prove the injectivity, first observe that every element u in KR−c(kX), is
represented by a finite sum u =

∑
j aj[Fj], with aj ∈ Z. For any F ∈ Db

R−c(kX), we will set
F n = F ⊕ ... ⊕ F (n times), for n ∈ N and F n = F−n[+1] for n ∈ Z and n < 0. Therefore,
we may rewrite u = [

⊕
j F

aj

j ]. Hence any u ∈ KR−c(kX) is represented by a single object
F = ⊕jF

aj

j ∈ Db
R−c.

Let X =
⊔

α Zα be a subanalytic stratification such that Hj(F )|Zα is constant for all j, all
α. Let Xn denote the union of the n-codimensional strata. Using the distinguished triangle

FX0 → F → FX\X0

+1→, gives:

[F ] = [FX0 ] + [FX\X0 ]

and by induction we get F =
∑

n[FXn ]. Remark 1.2.7 implies:

[F ] =
∑
j,n

(−1)j[Hj(F )Xn ] =
∑
j,n

(−1)j[k
dim(Hj(F )Xn )
Xn

]. (1.1)

Hence χ(F ) = 0 implies that for any α:

dim
⊕

j even

Hj(F )Zα = dim
⊕
j odd

Hj(F )Zα .

Since k is a field, this implies:

⊕
j even

Hj(F )Zα =
⊕
j odd

Hj(F )Zα

and ⊕
j even

Hj(F )Xα =
⊕
j odd

Hj(F )Xα .

This shows [F ] =
∑

j,n(−1)j[Hj(F )Xn ] = 0.

Remark 1.2.9. The Equation 1.1 implies that [kXα ]’s linearly generate KR−c(kX).
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1.2.2 Operations on constructible functions

Having the isomorphism of the Theorem 1.2.8 at hand, we can define many operations on
constructible functions analogous to those of constructible sheaves.

I. External Product
CFX � CFY → CFX×Y

For φ, ψ ∈ CFX , we can find F,G ∈ Db
R−c(kX), such that φ = χ(F ) and ψ = χ(G). We have

φ�ψ = χ(F �G). On the other hand by Künneth formula A.14, χ(F �G) = χ(F )χ(G), which
suggests us to define:

(φ� ψ)(x, y) = φ(x).ψ(y).

II. Inverse Image
Let f : X → Y be morphism of manifolds. Defining:

f ∗ : f−1CFY → CFX

f ∗φ(x) = φ(f(x)),

we readily see that the diagram:

KR−c(AY )

χ

��

f−1
//KR−c(kX)

χ

��
f−1CFY f∗

// CFX

is commutative.

III. Integral
For φ ∈ Γc(X;CFX) we can choose F ∈ Db

R−c(kX) such that supp(F ) = supp(φ) (following the
proof of the Theorem 1.2.8 we see this choice is possible). One sets:∫

X
φ = χ(X;F ).

Additivity of the functor χ(X, .) with respect to distinguished triangles and 1.2.8 show that the
number is only depends on φ. By 1.2.2 we may refine the expression φ =

∑
αmα1Xα ,m ∈ Z,

to the case when {Xα} is a family of locally finite, compact, contractible sets. For which:∫
X
φ =

∑
α

mαχ(X; kXα) =
∑
α

mα.

Note that (
∫
X φ)(x) = χ(X;Fx), for x ∈ X.

IV. Direct Image
Let f : X → Y be a morphism of manifolds, and ψ ∈ CFX . Assume f is proper on supp(ψ).
One defines the direct image of ψ by f :
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(
∫

f
ψ)(y) =

∫
X
ψ.1f−1(y).

Which gives a morphism of sheaves: ∫
f

: f!CFX → CFY .

Note that χ(Rf!G)(y) = χ(Y ;G⊗ kf−1(y)). Since the fibers formula, A.3, gives:

(Rf!G)y ' RΓc(f
−1(y);G|f−1(y)) ' RΓc(f

−1(y); i−1G)

= RΓ(X; i!i
−1G) ' RΓ(Y ;G⊗ kf−1(y)).

Where i : f−1(y) → X is the inclusion. We will therefore have χ(f!G) =
∫
f ψ.

V. Dual

There are two types of dual operators which we will introduce.

(a) For a φ ∈ CFX and F ∈ Db
R−c(kX), such that χ(F ) = φ one defines DX : CFX → CFX by

DX(φ) = χ(DXF ). This definition is well-defined, since DX is a triangulated functor. On
the other hand, by Definition 1.2.3:

(DXφ)(x) = χc(F )(x) = χc(RΓx(X;F )).

Now from Lemma 1.1.10, we can find a chart (U, ξ) in X, containing x, such that ξ(U) ⊂
B(0, ε). Therefore:

RΓx(X;F ) ' RΓc(ξ
−1(B(0, ε));F ) ' RΓ(X;F ⊗ kξ−1(B(0,ε))).

Writing ξ−1(B(0, ε)) as B(x, ε) gives an equivalent definition for the Dual:

(DXφ)(x) =
∫

X
1B(x,ε)φ

for 0 < ε� 1.

(b) Second type of dual2, is a counterpart for D′
X .

If X is an oriented manifold, then by proposition A.7 one has the isomorphism:

ωX ' kX [+n].

Therefore, for a F ∈ Db(kX) :

D′
XF = RHom(F, kX) = RHom(F, ωX [−n]) = RHom(F [+n], ωX) = DX(F [+n]).

Consequently for φ ∈ CFX , let F ∈ Db
R−c(kX) such that φ = χ(F ). Define:

D′
X(φ) = χ(D′

XF ).

Note that D′
X(φ) = χ(DX(F [+n])) = (−1)nDX(φ).

2Refer to Definition A.6.
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We end this chapter by few relations which are followed easily from the Theorem 1.2.8 and
similar formulas for constuctible sheaves.

Proposition 1.2.10. (i) Let φ ∈ CFX . Then

DX ◦DXφ = φ.

(ii) Let f : X → Y be a morphism of manifolds and let ψ ∈ Γ(X; f!CFX). Then∫
f
DXψ = DY

∫
f
ψ.

(iii) Consider a Cartesian square of morphism of real analytic manifolds:

X ′ f ′ //

h
��

�

Y ′

g

��
X

f
// Y

(Recall that this means X ′ ' {(y′, x) ∈ Y ′ ×X : g(y′) = f(x)}.)
Then for ψ ∈ Γ(X; f!CFX) one has:

g∗
∫

f
ψ =

∫
f ′

(h∗ψ).
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Chapter 2

Integral transforms

In the first chapter we defined constructible functions and constructible sheaves and explained
how the isomorphism lead to defining operations on constructible functions analogous to those
of constructible sheaves. In this chapter we introduce certain integral transforms in each setting.
We will introduce a so called Radon transform of constructible functions. We will prove general
properties of Radon transforms.

2.1 Integral transforms of sheaves

We recall the definition of integral transforms for sheaves from [6].

Let X, Y and Z be real analytic manifolds and k be a field. Consider the diagram:

X × Y × Z
q12

wwooooooooooo
q13

��

q23

''NNNNNNNNNNN

X × Y

q1

��
q2

''OOOOOOOOOOOOO X × Z

q′1
wwoooooooooooo

q′2
''OOOOOOOOOOOO Y × Z

q′′1
wwoooooooooooo

q′′2
��

X Y Z.

where all the maps are projections.

Definition 2.1.1. Let X, Y and Z be manifolds, and let K ∈ Db(kX×Y ), K ′ ∈ Db(kY×Z). We
set composition K ◦K ′ to be:

K ◦K ′ = Rq13!(q
−1
12 K ⊗ q−1

23 K
′) ∈ Db(kX×Z).

If in the above definition we put X = {pt}, Y = X and Z = Y then by identification of {pt}×X
with X and {pt} × Y with Y we get the definition of the integral transforms for sheaves.

Definition 2.1.2. For any K ∈ Db(kX×Y ), the integral transform of sheaves from X to Y with
kernel K is given by:

. ◦K : Db(kX) → Db(kY ), F ◦K = Rq2!(q
−1
1 F ⊗K).
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Using the following lemma one can compose integrals.

Lemma 2.1.3. Using the notations in Definitions 2.1.2 and 2.1.1 we have:

(F ◦K) ◦K ′ ' F ◦ (K ◦K ′).

Proof. Since the square:

X × Y × Z
q12

wwooooooooooo
q23

''NNNNNNNNNNN

�X × Y
q2

''OOOOOOOOOOOOO Y × Z
q′′1

wwoooooooooooo

Y .

is Cartesian (see Corollary A.4), therefore:

(F ◦K) ◦K ′ = Rq
′′

2!

Ä
K ′ ⊗ q′−1

2 (Rq2!(K ⊗ q−1
1 F ))

ä
' Rq

′′

2!

Ä
K ′ ⊗Rq23!q

−1
12 (K ⊗ q−1

1 F ))
ä

and

' Rq
′′

2!

Ä
K ′ ⊗Rq23!(q

−1
12 K ⊗ q−1

12 q
−1
1 F ))

ä
= Rq

′′

2!

Ä
K ′ ⊗Rq23!(q

−1
12 K ⊗ (q1q12)

−1F ))
ä

= Rq
′′

2!

Ä
K ′ ⊗Rq23!(q

−1
12 K ⊗ (q′1q13)

−1F ))
ä
.

By projection formula (Proposition A.1.15):

' Rq
′′

2!Rq23!

Ä
q−1
23 K

′ ⊗ (q−1
12 K ⊗ q−1

13 q
′
1
−1
F ))
ä

' R(q
′′

2 q23)!

Ä
q−1
23 K

′ ⊗ (q−1
12 K ⊗ q−1

13 q
′
1
−1
F ))
ä

' Rq
′

2!Rq13!

Ä
q−1
23 K

′ ⊗ (q−1
12 K ⊗ q−1

13 q
′
1
−1
F ))
ä
.

Again by projection formula:

' Rq
′

2!

Ä
Rq13!(q

−1
23 K

′ ⊗ q−1
12 K)⊗ q′1

−1
F )
ä

= F ◦ (K ◦K ′).

Corollary 2.1.4. In the situation of the preceding lemma assume Z = X, K ◦ K ′ ' k∆X
[l]

and K ′ ◦K ' k∆Y
[l′] for some shifts l and l′( ∆X and ∆Y denote the diagonal of X ×X and

Y × Y , respectively). Then l = l′ and . ◦K and . ◦K ′ are equivalences of categories. One calls
. ◦K ′ the inverse of the functor . ◦K.
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Proof. We only need to observe that for an F ∈ Db(AX),

F ◦ k∆X
= Rq2!((q

−1F )∆) = F (2.1)

and use Lemma 2.1.3. Note that the isomorphisms K[l] ' K ◦K ′ ◦K ' K[l′], give l = l′.

Marastoni in [6] puts forward inverses for integral operators of sheaves under certain geometric
conditions1.

Theorem 2.1.5 ([6], Lemma 2.2). Assume X and Y are real analytic compact orientable
manifolds of the same dimension n. Ω an open subanalytic subset of X × Y . Let Ωt be the
image of Ω under the map .t : X × Y → Y × X, (x, y) 7→ (y, x). Denote by j (resp. jt) the
embedding of Ω into X × Y (resp. of Ωt into Y ×X). For any x ∈ X we set:

Ωx = {y ∈ Y : (x, y) ∈ Ω} ⊂ Y,

and similarly for y ∈ Y . Moreover consider the kernels:

KΩ = CΩ = j!j
−1CX×Y ∈ Db

R−c(CX×Y ),

K∗
Ω = D′

X×Y CΩ = Rj∗j
−1CX×Y ∈ Db

R−c(CX×Y ).

Under the hypotheses

(i) X is simply connected,

(ii) RΓ(Ωx; CΩx′
) =

®
0 for x 6= x′

C for x = x′,

(iii) SS(CΩ) ∩ (T ∗XX × T ∗Y ) ⊂ T ∗X×Y (X × Y ),

and similar conditions by interchanging X and Y , one has:

K ◦K∗
Ωt ' C∆X

[−n] and K∗
Ωt ◦K ' C∆Y

[−n].

In particular, the categories Db
R−c(CX) and Db

R−c(CY ) are equivalent.

2.2 Integral transforms of constructible functions

Consider the diagram of morphisms of real analytic manifolds:

X × Y
q1

{{wwwwwwwww
q2

##G
GGGGGGGG

X Y,

1For the definition of micro-support see the Appendix B
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where q1 and q2 are projections. Assume k ∈ CFX×Y . Similar to 2.1.2, an integral transform
from CFX to CFY with kernel k(x, y) is defined by the map:

φ 7→
∫

q2

k(x, y) q∗1φ(x).

Note that by definition of proper image, p2 needs to be proper on supp(k(x, y)), for the integral
to make sense. Since k ∈ CFX×Y , by the Lemma 1.2.2, one writes:

k(x, y) =
∑
α

cα1Sα(x, y),

such that {Sα}α is a locally finite family of subanalytic, compact and contractible subsets of
X×Y. As a consequence, an integral transform of constructible functions can be reduced to the
integral transform with kernels 1S, where S is locally closed subanalytic subset ofX×Y. Namely,
the Radon transform: such that {Sα}α is a locally finite family of subanalytic, compact and
contractible subsets of X×Y. As a consequence, an integral transform of constructible functions
can be reduced to the integral transform with kernels 1S, where S is locally closed subanalytic
subset of X × Y. Namely, the Radon transform:

Definition 2.2.1. Let S be a locally closed subanalytic subset of X × Y . We denote by p1 and
p2 the first and second projections defined on X × Y , and by f and g the restrictions of p1 and
p2 to S.
We assume

p2 is proper on S̄, the closure of S in X × Y. (2.2)

Then, for a φ ∈ CFX , we set:

RS(φ) =
∫

g
f ∗φ =

∫
q2

1S(q∗1φ).

We call Rs(φ) the Radon transform of φ.

Remark 2.2.2. In the situation of the preceding theorem, we have RS(1{x})(y) = 1S(x, y).
Therefore, RS = 0 implies S = ∅. Since Radon transform is additive, we learn that the inverse
of a Radon transform, if it exists, it is unique.

By the same fashion of Lemma 2.1.3 one can prove a similar formula for of Radon transforms.
The following lemma is a part of Theorem 3.1 in [8].

Let S ′ ⊂ Y ×X be a locally closed subanalytic subset, and again denote by p2 and p1 the first
and second projections defined on Y ×X, and by f ′ and g′ the restrictions of p1 and p2 to S ′

and by r the projection S ×Y S
′ → X ×X.

We assume:
p1 is proper on S̄ ′, the closure of S ′ in Y ×X. (2.3)

Lemma 2.2.3. Under assumptions 2.2 and 2.3, for any φ ∈ CFX , we have:

RS′ ◦ RS(φ) =
∫

q2

Å∫
r
1S×Y S′

ã
q∗1φ. (2.4)
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First proof. Denote by h and h′ the projections from S ×Y S
′ to S and S ′ respectively.

The square:

S×Y S
′ h′ //

�h
��

S ′

g′

��
S g

// Y

is Cartesian. Therefore one writes:

RS′ ◦ RS(φ) =
∫

f ′
(g

′∗
∫

g
(f ∗φ)) =

∫
f ′◦h′

((f ◦ h)∗φ).

Considering the diagram:

S×Y S
′

h

{{xxxxxxxxx
r

��

h′

##G
GG

GG
GG

GG

S
f

����
��

��
��

g

##F
FF

FF
FF

FF
F X ×X

q1

vvmmmmmmmmmmmmmmm

q2

((RRRRRRRRRRRRRRR S ′

g′

{{ww
ww

ww
ww

ww f ′

  A
AA

AA
AA

X Y X,

gives:

RS′ ◦ RS(φ) =
∫

q2

∫
r
(r∗q∗1φ) =

∫
q2

Å∫
r
r∗1X×X

ã
q∗1φ.

Note that we have used the fact that for any ψ ∈ CFX×XÅ∫
r
r∗1X×X

ã
ψ =

∫
r
r∗ψ =

Å∫
r
1S×Y S′

ã
ψ.

For the last step (one can prove this by checking on characteristic functions of compact subsets
of X ×X, or by noting that it is followed by projection formula A.13).

Second proof. Let k be a field and in the Lemma 2.1.3, put Z = X, K = kS ∈ Db
R−c(kX×Y ),

K ′ = kS′ ∈ Db
R−c(kY×X) and note that:

χ(q−1
12 kS ⊗ q−1

23 kS′) = 1S×Y S′ ;

Moreover, the map r plays the same role as q13 in 2.1.2.

To go further in the preceding Lemma, Schapira in [8] assumes:

There exists λ 6= µ ∈ Z such that:
∫

r
1S×Y S′ = µ1∆X

+ λ1X×X\∆X
.

Where ∆X is diagonal of X ×X. Differently put,

There exists λ 6= µ ∈ Z such that: χ(r−1(x, x′)) =

®
λ if x 6= x′;
µ if x = x′.

(2.5)

We will refer to condition (2.5) as ∆-condition.

The main theorem in [8] is the following:
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Theorem 2.2.4 ([8], Theorem 3.1). Assume (2.2), (2.3) and (2.5). Then for any φ ∈ CFX ,
we have:

RS′ ◦ RS(φ) = (µ− λ)φ+
Å∫

X
λφ
ã
1X . (2.6)

Proof. Lemma 2.2.3 and (2.5) together with the equalities∫
q2

1∆X
q∗1φ = φ (2.7)

and ∫
q2

1X×X q∗1φ =
∫

X
φ,

offer the statement.

The upcoming lemma and proposition are useful to simplify (2.6) and the ideas in them will
be employed later on.

Definition 2.2.5. For a ψ ∈ CFY , we set

R0(ψ) =
∫

p1

1Y×X(p∗2ψ) =
∫

p1

(p∗2ψ) =
Å∫

Y
ψ
ã
1X .

Lemma 2.2.6 (Proposition 3.1 in [7]). Assume (2.2), (2.3) and (2.5), then for any φ ∈ CFX

we have:
R0 ◦ RS(φ) =

∫
X

(µφ)1X .

Proof. Having proved the equality for characteristic functions of compact subanalytic subsets
K ⊂ X, by linearity of above operations we deduce the assertion.
Since the square

X×Y p2 //

�p1

��

Y

aY

��
X aX

// Y

is Cartesian, we have:

R0 ◦ RS(1K) =
∫

p1

p∗2

∫
p2

(1S.p
∗
11K) = a∗X

∫
aY

∫
p2

(1S.p
∗
11K)

= a∗X

∫
aX

∫
p1

(1S.p
∗
11K).

For any φ ∈ CFX , we write:Ç
a∗X

∫
aX

φ

å
(x) =

Ç∫
aX

φ

å
({pt}) =

∫
X
φ(x′)1a−1

X {pt}(x
′) =

Å∫
X
φ
ã
1X(x).

Since we have set:

µ = χ(({x} × Y ) ∩ S) = χ({y ∈ Y : (x, y) ∈ S}).
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We deduce: Ç∫
p1

1S.p
∗
11K

å
(x) =

∫
X×Y

1(({x}∩K)×Y )∩S(x′, y′) = µ1K .

Which gives the desired result.

Definition 2.2.7. For a ψ ∈ CFY , we set:

R−1(ψ) =
∫

p1

(µ1St − λ1Y×X)(p∗2ψ) = µRSt(ψ)− λR0(ψ).

So the Proposition 3.2 in [7] follows:

Proposition 2.2.8. Assume (2.2), (2.3) and (2.5) and let φ ∈ CFY . Then we have:

R−1 ◦ RS(φ) = µ(µ− λ)φ.

In particular, if µ(µ − λ) is not zero, we can reconstruct the original constructible function φ
from its Radon transform RS(φ) by dividing the last term by this constant µ(µ− λ).

Proof.
R−1 ◦ RS(φ) = µRSt ◦ RS(φ)− λR0 ◦ RS(φ) = µ(µ− λ)φ.
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Chapter 3

Radon transform on Grassmannians

In this chapter we concentrate on the Radon transforms of Grassmannians. In the first section
we apply the theorems from previous chapter to draw basic conclusions on these Radon trans-
forms. In the second section we prove the main results of this thesis and we will try to extract
inversion formulas for the Radon transform with transversality incidence relation.

3.1 Basics

This section is mainly application of the theorems in the second chapter for the Radon
transform on Grassmannians.

We first fix few notations.

Definition 3.1.1. Let V be a vector space of dimention n over R or C (we will discuss the two
cases in parallel).

(i) Gn(p) = set of p-planes in the vector space kn, the Grassmannian of p-planes in n-space

(ii) Sp,q
i = {(x, y) ∈ Gn(p) × Gn(q) : dim(x ∩ y) = i}, for fixed integers 1 ≤ p ≤ q ≤ n and
i = 0, 1, .., p.

(iii) Gn(p, q) = Sp,q
p , the inclusion incidence relation.

(iv) Ωp,q = Sp,q
0 , the transversality relation.

In the above, when p and q are fixed we may drop the superscript p, q.

Remark 3.1.2. Natural action of the group G := SL(n) on each of Gn(p) and Gn(q), induces
an action on Gn(p)×Gn(q) defined by g(x, y) := (gx, gy) for any g ∈ G. Orbits of this action
are clearly Sp,q

i ’s. Each Si is a submanifold of Gn(p) × Gn(q). For 0 ≤ i ≤ p, the closure of
Si, S̄i, is given by

⋃
j≥i Sj. Thus, its complement

⋃j=i
j=0 Sj is open. In particular,

⊔p
i=0 Si gives a

subanalytic stratification for Gn(p)×Gn(q). Moreover, note that Gn(p, q) (resp. Ω) is compact
(resp. open) submanifold of Gn(p)×Gn(q).

Example 3.1.3. For any integers λ0, λ1, . . . , λp, the function
∑p

i=0 λi1Si
is a constructible

function.
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Example 3.1.4 (Inclusion incidence relation). Considering the diagram:

Gn(p, q)
f

yyttttttttt
g

%%KKKKKKKKKK

Gn(p) Gn(q),

we verify ∆-condition for S = Gn(p, q) and S ′ = St. As before, let r : S ×Gn(q) S
′ → Gn(p) ×

Gn(p) be projection. For (x, x′) ∈ Gn(p)×Gn(p) we have:

r−1(x, x′) = {y ∈ Gn(q) : x ⊂ y, x′ ⊂ y} = {y ∈ Gn(q) : x+ x′ ⊂ y}

Suppose dim(x∩x′) = j for any 0 ≤ j ≤ p, then dim(x+x′) = 2p− j. By taking quotient over
x⊕ x′ we get:

r−1(x, x′) ' Gn−2p+j(q − 2p+ j).

We recall that the formulas for Euler-Poincaré Index of Grassmannians are given by

χ(Gn(p)) =


0 if p(n− p) is oddÇ
E(n

2
)

E(p
2
)

å
if p(n− p) is even

for the real Grassmannian, where E(x) is the integer part of x; And

χ(Gn(p)) =

Ç
n
p

å
for the complex Grassmannian. Denote this numbers in both Real and Complex case by µn(p).

Therefore, when p > 1 there is no hope for ∆-condition to hold. On the other hand when p = 1,
j is either 0 or 1. Hence we have ∆-condition:

χ(r−1(x, x′)) =

®
µn−2(q − 2) if x 6= x′;
µn−1(q − 1) if x = x′.

Now by 2.6 we can write:

Proposition 3.1.5 ([8], Proposition 4.1). For any φ ∈ CFGn(1)

RGn(1,q) ◦ RGn(q,1)(φ) = (µn−1(q − 1)− µn−2(q − 2))φ+ [µn−2(q − 2)
∫

Gn(1)
φ]1Gn(1). (3.1)

Remark 3.1.6. The preceding example shows that for p > 1 ∆-condition is not satisfied.
Although we could extract some information by considering different cases for intersections of
x∩x′, these information is not enough for finding an inverse. These cases are the main subject
of [7]. To extract more information, Matsui considers p + 1 cases for S ′ and uses that to find
an inverse (See section 3.3.2 and Remark 3.2.17).
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Example 3.1.7. Let Sn be the n-dimensional sphere Rn − {0}/R>0. We denote by (Sn)∗ the
set (Rn)∗ − {0})/R>0, the dual of Sn. One considers these spaces as oriented Grassmannians.
Let us take X = Sn and Y = (Sn)∗. We set the incidence relation to be:

S = {(x, y) ∈ X × Y : x ⊂ y}.

Let S ′ = St and r the projection S ×Y S ′ → X × X, as before. To verify ∆-condition we
calculate χ(r−1(x, x′)), for x, x′ ∈ X. Assume x 6= x′, then:®

χ({y ∈ (Sn)∗ : x ⊂ y, x′ ⊂ y}) ' (S(n−1))∗;
χ({y ∈ (Sn)∗ : x ⊂ y} ' (S(n−2))∗.

Recalling Cohomology Groups of spheres and using Poincaré Duality (Corollary A.8)

χ(r−1(x, x′)) =

®
2 if x = x′ and n is odd ;
0 if x 6= x′ and n is odd.

For n even, we get the numbers the other way around. Hence we can use (2.6) to get:

Proposition 3.1.8. Suppose n is odd. In the situation of Example 3.1.7, for each φ ∈ CFS

we have:

RS′ ◦ RS(φ) = φ.

This means that for a subanalytic subset K ⊂ Sn, by knowledge of RS(1K) at each point of
(Sn)∗ we can reconstruct K.

Example 3.1.9 ([8], p.8). Let V be an n-dimensional real affine space, Pn its projective com-
pactificaion, i.e. Pn = V t h∞, where h∞ is the hyperplane at infinity. Let P ∗

n be the dual
projective space. Therefore, P ∗

n\{h∞} is the set of hyperplanes of V .
As in Example 3.1.4, consider X = Gn+1(1) = Pn and Y = Gn+1(n) = P ∗

n . Let S = Gn+1(1, n),
the inclusion incidence relation, and K a subanalytic subset of V . For ξ a hyperplane in V one
has:

RS(1K)(ξ) =

Ç∫
q2

1S.q
∗(1K)

å
(ξ) =

∫
X×Y

1S.1{(x,ξ):x∈X,x⊂ξ}.q
∗
11K .

Hence:

RS(1K)(ξ) =
∫

V
1K .1ξ = χ(K ∩ ξ).

By (2.6):

RP ∗
n
◦ RPn(φ) =

®
φ if n is odd ,
−φ+ [

∫
Pn
φ]1Pn if n is even and n > 0 .

The above formula means, that to reconstruct a subanalytic subset K ⊂ V in odd dimensions, it
suffices to know the Euler-Poincaré Index of every section of the set K with hyperplanes. Letting
n = 3, one might consider this result as an application of Radon transforms in tomography.
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3.2 Inversion formulas for RΩ

This section contains the main results of this thesis. We will attempt to find inverses for
the Radon transform on Grassmannians with transversality incidence relation. In addition to
Definition 3.1.1 we fix few others.

Definition 3.2.1. Assume 1 ≤ p ≤ q ≤ n are integers. We set: (Sp,q
i )x = {y ∈ Gn(q) : (x, y) ∈

Sp,q
i }, for a fixed x ∈ Gn(q).

Remark 3.2.2. Assume that l ≤ p ≤ n are integers and z ∈ Gn(l) and x ∈ Gn(p), are given.
Then the set

(Sp,q
0 )x ∩ (Sl,q

0 )z = Ωp,q
x ∩ Ωl,q

z =
¶
y ∈ Gn(q) : y ∩ z = y ∩ x = {0}

©
,

is non-empty if and only if p + q ≤ n. This follows from the fact that if l = p and p + q = n
the set is non-empty, as in preceding section. Having n > p + q or p ≥ l means more freedom
of choice and therefore the set being non-empty. Therefore, we have the sufficiency. Necessity
of the condition is obvious.

In the forthcoming sections we consider the cases when p+q = n and the general case, separately.
The following lemma will be frequently used.

Remark 3.2.3. Using Schubert cell decomposition of Grassmanian (see [4]) one can show that
the Grassmanians as well as objects of our study in the following sections are CW -complexes.
Moreover, as a result of Example 1.2.5, we will only deal with Euler-Poincaré index with compact
support. Therefore, in these sections, by Euler characteristic of a manifod we mean Euler-
Poincaré index with compact support of a constant sheaf with stalk k over that manifold.

Lemma 3.2.4. For an x ∈ Gn(p), the Euler-Poincaré index with compact support of Ωp,q
x =

(Sp,q
0 )x ⊂ Gn(q) is given by:®

(−1)qpχ(Gn−p(q)) in the real case;
χ(Gn−p(q)) in the complex case.

More explicitly, recalling the formulas for Euler-Poincaré indeces of Grassmannians (see Ex-
ample 3.1.4), we have:

χ(Ωp,q
x ) =


0 if q(n− q − p) is odd

(−1)qp

Ç
E(n−p

2
)

E( q
2
)

å
if q(n− q − p) is even

for the real Grassmannian;

χ(Ωp,q
x ) =

Ç
n− p
q

å
for the complex Grassmannian.
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Proof. For simplicity we write Ωx instead of Ωp,q
x . To calculate χc(Ωx), it is convenient to

fix an ordered basis for {e1, e2, ..., en} for kn, such that x = {e1, e2, ..., ep}. Note that if y =
span{v1, ..., vq} is an element of Ωx, then no linear combination of vi’s, 1 ≤ i ≤ q, is entirely
in span{e1, ..., ep}. Therefore, y in matrix form has a non-singular q × q minor in q of the last
n− p columns. Let π : span{e1, e2, ..., en} → span{ep+1, ..., en} be the projection into the n− p
last coordinates. The restriction of π to {y ∈ Gn(q) : y ∩ span{e1, ..., ep} = {0}} induces a
map:

Ωx = {y ∈ Gn(q) : y∩span{e1, ..., ep} = {0}} −→ B = {q-planes in span{ep+1, ..., en}} ' Gn−p(q).

Which we will also denote it by π. We claim that the map π is surjective, furthermore, for each
b in B, the π−1(b) is isomorphic to kqp. To see this, note that a point b ∈ B is q-dimensional.
Hence, by a suitable change of coordinates in span{ep+1, . . . , en}, it can be expressed by:

b =
Ä
1q 0

ä
q×(n−p).

where 1q is q × q identity matrix, and 0 is a q × n− p− q zero matrix. Accordingly, the fiber
of b, π−1(b), is given by:

π−1(b) =
Ä
F 1q 0

ä
q×n

,

where F is a q × p matrix of free variables in k. Inserting these facts into Corollary A.12, for
any b ∈ B we get:

χc(A) = χc(B)χc(π
−1(b)) = χ(Gn−p(q))χc(k

qp).

Replacing k with R and C and using examples A.10 and Example 3.1.4, give the formulas.

Corollary 3.2.5. If p+ q = n, then

χc(Ωx) =

®
(−1)pq in the real case;
1 in the complex case.

3.2.1 Inverses of RΩ when p+ q = n

In this section we will try to find an inverse for the Radon transform RΩ when p + q = n.
This section is motivated by [6]. Marastoni in [6] proves that for the complex Grassmannians
X = Gn(p) and Y = Gn(q), if p + q = n, then Ω ⊂ X × Y fulfills the conditions of Theorem
2.1.5. As a consequence the inverse of the integral functor . ◦ CΩ, is given by . ◦ D′

Y×XCΩt .
Which indicates that the Radon transform with kernel D′

Y×X(1Ωt) (∈ CFY×X), is an inverse
for RΩ. Explicit calculation of D′

Y×X(1Ωt) is not easy. However, we found that RΩt is an
inverse for RΩ. As a result, by uniqueness of inverses for Radon transforms (Remark 2.2.2),
we learn that RΩt is the only inverse and we have 1Ωt = D′

Y×X1Ωt .

We will show that Ω and Ωt, satisfy ∆-condition, (2.5), in the complex case. To do this for
each (x, x′) ∈ Gn(p)×Gn(p), we will calculate:

χc(r
−1(x, x′)) = χc(Ωx ∩ Ωx′) = χc({y ∈ Gq(n) : y ∩ x = y ∩ x′ = {0}}).
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Assume (x, x′) ∈ Zj (recall that this means dim(x ∩ x′) = j). When x = x′ or equivalently
j = p we have:

χc(r
−1(x, x′)) = χc({y ∈ Gq(n) : y ∩ x = {0}}).

Which is already calculated in Corollary 3.2.5, therefore we only need to calculate the cases
when p − j ≥ 1. First, we fix (x, x′) such that dim(x ∩ x′) = j. Then, we find bases for
x = span{e1, ..., ej, ej+1, ..., ep} and for x′ = span{e1, ...ej, ep+1, ..., e2p−j}. We extend x + x′ =
span{e1, ...ej, ej+1, ..., ep, ep+1, ..., e2p−j} to span{e1, e2, ..., en}. Accordingly, in matrix form we
can represent:

x =

Ç
1j 0 0 0
0 1p−j 0 0

å
p×n

and x′ =

Ç
1j 0 0 0
0 0 1p−j 0

å
p×n

,

where 1m is m by m identity matrix.
Moreover to write the elements of Ωx in a matrix form, note that a vector v =

∑n
i=1 λiei ∈ y

cannot be entirely in x = span{e1, ..., ep}, so at least one of the λi’s for i > p is non-zero. As we
are only interested in the span of such vectors, we can assume it is 1. Since we have dim(y) = q
we can choose q = n−p independent vectors in this way. By some elementary operations (again
since the span of such vectors only matters) on the matrix we can get another basis for y in
the matrix form (F | 1q) or:

y =

Ç
[b1]p−j×j [b3]p−j×p−j 1p−j 0p−j×q−p−j

[b2]q−p−j×j [b4]q−p−j×p−j 0q−p−j×p−j 1q−p−j

å
.

Knowing that:
Ωx ∩ Ωx′ = {y ∈ Ωx : x′ ∩ y = {0}},

for (x, x′) ∈ Zj. One has:

y =

Ç
b1 b3 1p−j 0
b2 b4 0 1q−p−j

å
∈ Ωx′

if and only if

det

á
1j 0 0 0
0 0 1p−j 0
b1 b3 1p−j 0
b2 b4 0 1q−p−j

ë
6= 0.

In addition

0 6= det

á
1j 0 0 0
0 0 1p−j 0
b1 b3 1p−j 0
b2 b4 0 1q−p−j

ë
= det

Ö
0 1p−j 0
b3 1p−j 0
b4 0 1q−p−j

è
= det

Ç
0 1p−j

b3 1p−j

å
= ± det b3.
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Therefore, in the real case, considering the projection:

π : Ωx → R(p−j)2 ,

Ç
b1 b3
b2 b4

å
7→ b3

and application of Corollary A.12 and Example A.10, we get:

χc(Ωx ∩ Ωx′) = (−1)dim(b1)+dim(b2)+dim(b4)χc(GLp−j).

When p− j = 1 (in real dimensions), we readily have:

χc(GL(p− j)) = −2.

For p− j > 1 we define the map φ : GL(p− j) → SL(p− j) by z 7→ 1
det(z)

z. Which is obviously

surjective with the fiber k× above each point. Therefore χc(GL(p− j)) = χc(k
×)χc(SL(p− j)),

by Corollary A.12. Since SL(n) is a compact Lie group, by Lemma 3.2.9, we conclude:

χc(GL(p− j)) = 0 for p− j > 1.

Note that the natural real structure to C and considering it as R2, provides the complex case.
We recap:

Proposition 3.2.6. In the real case,

χc(Ωx ∩ Ωx′) =


0 if j < p− 1
2(−1)pq if j = p− 1
(−1)pq if j = p or x = x′.

In the complex case,

χc(Ωx ∩ Ωx′) =

®
0 if j < p or x 6= x′

1 if j = p or x = x′.

The complex case in Proposition 3.2.6, suits fine in ∆-condition (2.5). Using (2.6), we have
shown:

Theorem 3.2.7. The inverse of Radon transform RΩ, when p+ q = n, in the complex Grass-
mannian is RΩt. That is to say, for any φ ∈ CFGn(p) we have:

RΩt ◦ RΩ(φ) = φ

Remark 3.2.8. Using Theorem 3.2.11 below, one can find the inverse also for the real case.

We now give a short proof for the fact about Lie groups which is used in the proof of Proposition
3.2.6.

Lemma 3.2.9. The Euler characteristic of every smooth compact Lie group of dimension
greater than zero is zero.
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Proof. Assume G is a compact Lie group and denote by lx : G→ G, y 7→ xy the left translation
by x ∈ G. Pick a non-zero vector X in the tangent space over the identity element e ∈ G.
Noting that for every x ∈ G, lx is a diffeomorphism implies that V(x) := Te(lx)X is a non-zero
vector field on G. Hence by Poincaré-Hopf theorem χ(G) = 0. Recall that the Poincaré-Hopf
theorem (cf. [2]) states that the Euler characteristic of a compact, orientable and connected
manifold of dimension greater than zero, is sum of the indices of the singularities of a vector
field on it. In particular, the Euler Characteristic a manifold is zero when a vector field on it
has no singularities.

3.2.2 The general case

In the preceding section we found an inverse for RΩ, on complex Grassmannians when
p+ q = n. In this section we consider this problem in a general case for both real and complex
case. Unfortunately, the ideas of last section do not work here. To gain our results, we will
use a method introduced by Matsui in [7]. However, the computations in [7] include Schubert
calculus, and Matsui dealt with one Schubert variety. Our computations brought up the
question of intersection of two Schubert varieties; The problem of finding the intersection of
Schubert varieties is a long standing problem (see [4]). Formulas which have been extracted
to find intersection of two Schubert varieties, solve the question for Schubert cells in the
general position. In our problem, on the other hand, non-general positions might occur and
contribute in the calculations of Euler-Poincaré index. To perform our calculations, we looked
at fibrations1 of the sets. One can easily apply these fibration ideas in the next section to
recover main theorem of [7].

Let X = Gn(p) and Y = Gn(q). We assume p ≤ q, since by taking the dual we can deal with
the cases when p > q. We will use the notation in 3.1.1 and 3.2.1. Therefore Ωp,q ⊂ X × Y and
Sq,p

i ⊂ Y ×X. Moreover, we set:

Zj = Sp,p
j = {(x, x′) ∈ X ×X : dim(x ∩ x′) = j}.

For simplicity we write Ω instead of Ωp,q and Si instead of Sq,p
i . By Remark 3.1.2, Y × X =⊔p

i=0 Si is a subanalytic stratification. For each 0 ≤ i ≤ p we consider the diagram:

Ω×Y Si

h

{{xxxxxxxxx
r

��

h′

##G
GGGGGGGG

Ω
f

����
��

��
��

g

##G
GG

GG
GG

GG
G X ×X

q1

vvmmmmmmmmmmmmmmm

q2

((RRRRRRRRRRRRRRR Si

g′

{{vv
vv

vv
vv

vv f ′

  A
AA

AA
AA

A

X Y X.

In which all the maps are projections. Note that Zp = {(x, x′) ∈ X × X : x = x′}, and as in
(2.7) for a φ ∈ CFX we have

∫
q2

1Zpq
∗
1φ = φ. The key idea here is to use Cramer’s rule and find

a kernel such that
∫
r(kernel) = 1Zp .

1Thanks to Prof. B. Edixhoven for this suggestion.
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One writes:

(
∫

r
1Ω×Y Si

)(x, x′) =
p∑

j=0

(
∫
Ω×Y Si

1r−1(x,x′)∩r−1(Zj))1Zj
. (3.2)

Accordingly, for a fixed pair (x, x′) ∈ Zj,∫
Ω×Y Si

1r−1(x1,x2)∩r−1(Zj) = χc({r−1(x, x′) ∩ Ω×Y Si}).

Note that:

r−1(x, x′) ∩ Ω×Y Si = {y ∈ Gn(q) : x ∩ y = {0}, dim(x′ ∩ y) = i}.

We define the matrix T = (ti,j)(p+1)×(p+1) by:

ti,j = χc(r
−1(x, x′) ∩ Ω×Y Si) for any 0 ≤ i, j ≤ p. (3.3)

These numbers are independent of the choice of a pair (x, x′) ∈ Zj. Moreover, i + j > p
means dim(x′ ∩ x) + dim(x′ ∩ y) > dim(x′) which implies that dim(x′ ∩ (x ∩ y)) ≥ 1 and
dim(x ∩ y) ≥ 1. From which we understand that ti,j = 0 for i + j > p, i.e. the matrix is
anti-triangular. In the section 2.3.2.1 we will provide recursive formulas to calculate all of the
entries of the matrix T in both real and complex cases.

Writing (3.2) in matrix form yields:

T

à
1Z0

1Z1

...
1Zp

í
=

à∫
r 1Ω×Y S0∫
r 1Ω×Y S1

...∫
r 1Ω×Y Sp

í
. (3.4)

Since the matrix T is anti-triangular, its determinant is given by multiplication of entries of
anti-diagonal up to a sign. We will find the elements of anti-diagonal explicitly in Lemma 3.2.15
and in Theorem 3.2.16 we will show when det(T ) 6= 0.

By Cramer’s rule we can solve the equation (3.4) with respect to Zp and write:

det(T )1Zp =



t0,0 t0,1 . . . t0,p−1

∫
r 1Ω×Y S0

t1,0 t1,1 . . . t1,p−1

∫
r 1Ω×Y S1

t2,0 t2,1 . . . 0
∫
r 1Ω×Y S2

...
... . ..

...
tp−1,0 tp−1,1 . . . 0

∫
r 1Ω×Y Sp−1

tp,0 0 . . . 0
∫
r 1Ω×Y Sp


.

This formula yields coefficients for RSi
’s, say µi’s, such that µ0RS0 + · · ·+ µpRSp is an inverse

for RΩ.
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Definition 3.2.10. (i) We set

Kp,q = det



t0,0 t0,1 . . . t0,p−1 1S0

t1,0 t1,1 . . . t1,p−1 1S1

t2,0 t2,1 . . . 0 1S2

...
... . ..

...
tp−1,0 tp−1,1 . . . 0 1Sp−1

tp,0 0 . . . 0 1Sp


∈ CFX×Y .

(ii) We define the map R−1 : CFY → CFX by

ψ 7→
∫

p1

Kp,q(p
∗
2ψ).

The following proposition is an essential part of our main result.

Proposition 3.2.11. For a φ ∈ CFX ,

R−1 ◦ RΩ(φ) = det(T )φ.

In particular, if det(T ) 6= 0, then RΩ is invertible and its inverse is given by det(T )−1R−1.

Proof. By definition

R−1 ◦ RΩ(φ) =
∫

p1

Ç
Kp,q

Ç
p∗2

∫
p2

1Ω.p
∗
1φ

åå
=

∫
q2


det



t0,0 t0,1 . . . t0,p−1

∫
r 1Ω×Y S0

t1,0 t1,1 . . . t1,p−1

∫
r 1Ω×Y S1

t2,0 t2,1 . . . 0
∫
r 1Ω×Y S2

...
... . ..

...
tp−1,0 tp−1,1 . . . 0

∫
r 1Ω×Y Sp−1

tp,0 0 . . . 0
∫
r 1Ω×Y Sp




q∗1φ

=
∫

q2

det(T )1Zpq
∗
1φ

= det(T )φ.

For the second equality we have used Lemma 2.2.3. For the last equality recall that
∫
q2

1Zpq
∗
1φ =

φ.

3.2.2.1 Calculation of the entries of T

In the preceding section we showed how to find the inverse for RΩ when det(T ) 6= 0. Recall
that T = (ti,j) and ti,j = χc(Ω

p,q
x ∩ (Sq,p

i )x′) for a pair (x, x′) ∈ Sp,p
j . In this section we will give

a recursive method for finding entries of T . Next, we will use this method to find the entries
of anti-diagonal. From which, we realize when T has a non-zero determinant.
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Consider the Grassmannians X = Gn(p), Y = Gn(q) and Z = Gn(l), for integers 1 ≤ l ≤ p ≤
q ≤ n. By definition: 

Sp,q
0 ⊂ X × Y,

Sp,l
j ⊂ X × Z,

Sq,l
β ⊂ Y × Z.

Definition 3.2.12. (i) For a x ∈ Gn(p), we set

g(n, q, p) = χ(Ωp,q
x ).

(ii) For given (x, z) ∈ Sp,l
j we set:

fp,j(n, q, l, β) = χc((S
p,q
0 )x ∩ (Sl,q

β )z)

= χc(
¶
y ∈ Gn(q) : y ∩ x = {0}, dim(y ∩ z) = β

©
).

Remark 3.2.13. The values of g(n, q, p) = χc(Ω
p,q
x ) = χc((S

p,q
0 )x), is calculated in the Lemma

3.2.4.

Note that x ∩ y = {0} implies dim(x ∩ z) ≤ dim(z) − dim(y ∩ z), which means that for the
quadruple (n, q, l, β) we must have j ≤ l − β. Moreover l = j, means z ⊂ x and implies β = 0.
Therefore:

fp,j(n, q, j, 0) = g(n, q, p). (3.5)

For an integer β > 0, let:

B =
¶
β − planes in z with zero intersection with (x ∩ z)

©
'
¶
b ∈ Gl(β) : b ∩ (x ∩ z) = {0}

©
.

Therefore
χc(B) = g(l, β, j). (3.6)

Lemma 3.2.14. The map:

φ : A =
¶
y ∈ Gn(q) : y ∩ x = {0}, dim(y ∩ z) = β

©
−→ B

y 7→ y ∩ z,
is surjective. Moreover, for each b ∈ B one has:

χc(φ
−1(b)) = fp,j(n− β, q − β, l − β, 0).

Proof. Let b ∈ B be β-plane. Then, in the quotient space kn/b let z′ = z/b ∈ Gn−β(l − β) and
x′ = x/(x ∩ b) ∈ Gn−β(p). Then the set:

A′ =
¶
y′ ∈ Gn−β(q − β) : y′ ∩ x′ = {0}, y′ ∩ z′ = {0}

©
,

is non-empty. This is followed from Remark 3.2.2 since p + q ≤ n and l ≤ p. Moreover, for
y′ ∈ A′, we have y′ ⊕ b ∈ A and φ(y′ ⊕ b) = (y′ ⊕ b) ∩ (z′ ⊕ b) = b. Second part is proved by
taking quotient and noting that φ−1(b) ' A′.
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By Lemma 3.2.14 and (3.6) and application of the Corollary A.12 we derive:

fp,j(n, q, l, β) = fp,j(n− β, q − β, l − β, 0).g(l, β, j) for β > 0. (3.7)

Using the equality of sets:¶
y ∈ Gn(q) : y ∩ x = {0}, dim(y ∩ z) = 0

©
=
¶
y ∈ Gn(q) : y∩x = {0}

©
−

l⊔
α=1

¶
y ∈ Gn(q) : y∩x = {0}, dim(y∩z) = α

©
(l = dim(z))

and additivity of χc, we deduce:

fp,j(n, q, l, 0) = g(n, q, p)−
l∑

α=1

fp,j(n, q, l, α).

Obviously we only need to consider 0 < α < l − j. So we can refine the formula to:

fp,j(n, q, l, 0) = g(n, q, p)−
l−j∑
α=1

fp,j(n, q, l, α). (3.8)

In the above recursive formulas we have two steps. In the first step (3.7) the third and fourth
coordinates of the quadruple (n, q, l, β) are reduced by β. On the other hand, if β is zero at
one stage then in the second step (3.8), α ≥ 1 will replace β. Hence, at each time, running
the two steps will make the quadruple closer some (♣,♠, j, 0), which its f is known by (3.5).
This implies that the procedure will end in finite number of steps and that it can calculate the
desired number.

We apply the recursive formulas (3.7) and (3.8) to find the entries of anti-diagonal.

Lemma 3.2.15. Elements of the anti-diagonal of T are given by:

ti,j = ti,p−i =


0 if (n− i)(n− q − p) is odd

(−1)p2−i2
Ç
E(n−p−i

2
)

E( q−i
2

)

å
if (n− i)(n− q − p) is even

in the real case. For the complex case:

ti,j = ti,p−i =

Ç
n− p− i
q − i

å
.

Proof. By our notations ti,j = f(n, q, p, i). By (3.7) for i = p − j > 0 we have f(n, q, p, i) =
f(n− i, q− i, j, 0).g(n, p, j) by Lemma 3.2.4 and (3.5) both numbers on the right hand side are
known. If i = 0 then j = p or equivalently x = x′, then by definition f(n, q, p, i) = g(n, p, j).
Recalling the values g from Lemma 3.2.4 gives the assertion.

Now we can extract the key to the existence problem, and prove the main result of this thesis.

Theorem 3.2.16. If
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(i) p+ q ≤ n in the complex Grassmannian.

(ii) p+ q ≤ n and n− p− q is even in the real Grassmannian.

Then determinant of T in (3.4) is not zero. Moreover, RΩ is invertible and its inverse is given
by det(T )−1R−1.

Proof. By Lemma 3.2.15 and Proposition 3.2.11.

Remark 3.2.17. Matsui in [7] proves that RG(p,q), the Radon transform with inclusion inci-
dence relation, has an inverse in the following cases:

(i) p+ q ≤ n in the complex Grassmannian,

(ii) p+ q ≤ n and q − p is even, in the real Grassmannian.
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Appendix A

Duality formulas and Euler-Poincaré
index with compact support

Here we state some theorems which were used in the preceding chapters. The references for
this chapter are [1], [3], [5] and [9].

Let k be a field and f : X → Y be a continuous map of manifolds. Let F be a sheaf on X.
Recall that the proper direct image of F by f is defined by:

(f!F )(U) = {s ∈ Γ(f−1(U);F ) : f |supp(s) : supp(s) → U is proper}.

This functor is left exact and injective with respect to the family of c-soft sheaves (those sheaves,
for which Γ(X; .) → Γ(K; .), for any compact K ⊂ X, is surjective). Therefore f! has a right
derived functor Rf! : D+(kX) → D+(kY ). Note that if we consider direct proper image by the
map aX : X → {pt}, we get:

RaX!(F ) ' RΓc(X;F ).

Proposition A.1. Let g : Y → Z be another continuous map of locally compact spaces. Then,
there are canonical isomorphisms.

(g ◦ f)! ' g! ◦ f! and R(g ◦ f)! ' Rg! ◦Rf!. (A.1)

In particular the diagram:

X
f //

aX ""D
DD

DD
DD

D Y

aY}}zz
zz

zz
zz

{pt},
gives

RΓc(Y ;Rf!F ) ' RΓc(X;F ).

Remark A.2. The formula RΓ(Y ;Rf∗(F )) = RΓ(X;F ) might be considered as replacement
of Leray-Serre spectral sequence in the framework of derived categories. By the same token,
the formula RΓc(Y ;Rf!F ) ' RΓc(X;F ) might be seen as Leray-Serre sequence with compact
supports.
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Proposition A.3 (Fibers formula, [9] Proposition 1.11.4). For any F ∈ D+(kX), we have a
canonical isomorphism:

[Rf!(F )]y ' RΓc(f
−1(y);F |f−1(y)).

Corollary A.4 (Cartesian square formula, [9] Proposition 1.11.6). Assume:

Y ′ f ′ //

�h
��

X ′

g

��
Y

f
// X

is a Cartesian square of locally compact spaces (i.e. Y ′ ' {(x′, y) ∈ X ′ × Y : g(x′) = f(x)}).
Then, we have canonical isomorphisms:

f!g
−1 ' h−1f ′! and Rf!g

−1 ' h−1Rf ′!

Theorem A.5 (Poincaré-Verdier duality, [5] Theorem 3.1.5). Let f : X → Y be a continuous
map of locally compact spaces that f! has finite cohomological dimension(i.e. there exists a
non-negative integer such that Rjf! = 0 for j > r). Then there exist a functor of triangulated
categories f ! : Db(kY ) → Db(kX) and an isomorphism of bifunctors on Db(kX)×Db(kY ) :

HomDb(kY )(Rf!(.), .) ' HomDb(kX)(., f
!(.)).

Namely, f ! is a right adjoint to Rf!.

Definition A.6. (i) Let aX : X → {pt}, and F ∈ Db(k{pt}). The dualizing complex on X,
denoted by ωX is:

ωX = a!
XF ∈ Db(kX).

(ii) Assume X has a finite c-soft dimension and let F ∈ Db(kX). One sets:

DXF = RHom(F, ωX) , D′
XF = RHom(F, kX).

We call DXF , the dual of F . When there is no risk of confusion we might write D instead
of DX . Note that ωX = DXkX .

(iii) The orientation sheaf over X, OrX , with field coefficients is defined by:

U → Hom(Hn
c (U ; k), k).

(iv) An orientation of the manifold M relative to k, the field, is an isomorphism:

OrX → kX .

If such an orientation exists, we will call the manifold orientable.

Proposition A.7 ([1] Proposition 3.5.1). Let X be an n-dimensional topological manifold with
boundary and OrX be the orientation sheaf on X. Then there is a canonical isomorphism:

ωX ' OrX [+n],

in Db(kX).
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Corollary A.8 (Classical Poincaré duality, [1] p.70). Let k be a field and X an n-dimensional
orientable manifold without boundary. We have the isomorphism:

Hn−i(X; k) ' Hom(H i
c(X; k), k)

Proof. I. By definition of orientable manifold and Proposition A.7, we have:

Hn−i(X; kX) ' Hn−i(X;OrX) = H−i(X;OrX [+n]) ' H−i(X;ωX).

II. For a manifold M , A ∈ Db(kM) and U ⊂M open, and each i ∈ Z, there exists a short exact
sequence (For more general case see Theorem 3.4.4 in [1]):

0 → Ext(H i+1
c (U ;A), k) → H−i(U ;DXA) → Hom(H i

c(U ;A), k) → 0.

III. Since a field is an injective object of the category of k-vector spaces, Hom(., k) is an exact
functor. Therefore, for any A ∈ Db(kM), we have:

Ext(H i+1
c (M,A), k) = 0

IV. By definition and II, III it follows:

H−i(X;ωX) ' H−i(X;DXkX) ' Hom(H i
c(X; kX), k).

Composing IV and I yields the assertion.

By Classical Poincaré duality it follows that:

Corollary A.9 ([3] Exercise 3.3.13). Let k be a field and X be an orientable n-dimensional
topological manifold. Then for a locally constant k-vector space L on X we have:

χc(X,L) = (−1)nχ(X,L).

In particular χc(X,L) is invariant under homotopy equivalence up to a sign.

Example A.10. (i) Using Corollary A.9 we see that χc(Rn,R) = (−1)nχ(Rn; R). Since
χ(Rn; R) is invariant under homotopy equivalence we have χ(Rn,R) = χ({pt}; R) = 1.
Since Cn endows a real analytic structure of R2n, in particular we have χc(Cn,R) = 1.

(ii) One should be cautious that in the preceding corollary L is a locally constant sheaf. For
instance RΓc(R,R[0,∞)) = 0, and therefore χc(R,R[0,∞)) = 0. Yet, R is homotopic to the
origin. Hence χc in general is not invariant by homotopy, even up to a sign.

We state a proposition which is used in Chapter 3 for manifolds which are homotopy equivalent
to compact manifolds.

Proposition A.11 ([3] Corollary 2.5.5). Let F → E → B be a locally trivial fibration such
that he base B and the fiber F are homotopy equivalent to finite CW -complexes. Then the three
Euler characteristics χ(B), χ(F ) and χ(E) are defined and:

χ(E) = χ(B)χ(F ).
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Corollary A.12. In the situation of the preceding proposition, one has:

χc(E) = χc(B)χc(F ).

where χc(X) = χc(X; k). We read χc(X) the Euler Characteristic with compact support of X.

Proof. By Proposition A.11 and Corollary A.9. Note that the signs cancel out.

The following formula is used in the second chapter.

Proposition A.13 (Projection formula, [9] Proposition 1.13.4). Let f : X → Y be a continuous
map between locally compact spaces. Then, for any F ∈ D+(kX) and any G ∈ D+(kY ), there
is a canonical isomorphism

G
L
⊗ Rf!F ' Rf!(f

−1G
L
⊗ F ).

We end the appendix by mentioning the Künneth formula with compact support.

Corollary A.14 (Künneth formula with compact support,[3] Corollary 2.3.30). Let X1 and X2

be two topological spaces, pi : X1×X2 → Xi for i = 1, 2 be the two projections. Let Fi ∈ Db(kXi
)

for i = 1, 2. Then:

RΓc(X1 ×X2; p
−1
1 F1

L
⊗ p−1

2 F2) = RΓc(X1;F1)
L
⊗ RΓc(X2;F2).



Appendix B

Micro-support of a sheaf

In this section we introduce the notion of micro-support of a sheaf. Micro-support measures
how far a sheaf is from being locally constant. It is also a tool for realizing constructible sheaves.
For equivalent definitions see [5] p.221.

Definition B.1. Let X be a real analytic manifold, and denote by π : T ∗X → X. Let
F ∈ Db(kX) be a bounded complex. For a point p = (x0, ξ0) ∈ T ∗X, the micro-support (or
characteristic variety) of complex F , denoted by SS(F ) is the subset of cotangent bundle T ∗X
consisting of all the points p = (x0, ξ0) such that the condition (C) is failed.

(C) There is an open neighborhood U of the point p such that for any point x1 ∈ X and any
real smooth function f defined in a neighborhood of x1 and satisfying f(x1) = 0 and df(x1) ∈ U
we have:

(RΓ{x:f(x)≥0}F )x1 = 0.

Definition B.2. (i) Let (E, σ) be a symplectic vector space and V a linear subspace of E.
We set:

V ⊥ = {x ∈ E : σ(x, V ) = 0}.

V is called isotropic (resp. Lagrangian, resp. involutive) if V ⊂ V ⊥ (resp. V = V ⊥, resp.
V ⊃ V ⊥).

(ii) Assume1 Λ is a conic subanalytic subset of T ∗X. One says that Λ is isotropic (resp.
Lagrangian, resp. involutive), if at each regular point p ∈ Λ, the tangent space of Λ at
p, TpΛ, has the corresponding property in TpT

∗X, with respect to the natural symplectic
form on T ∗X.

Following proposition yields some properties of micro-support.

Proposition B.3. (i) The micro-support SS(F) is a closed conic subset of T ∗X and SS(F )∩
T ∗XX ' supp(F ), where T ∗XX is the zero section of the cotangent bundle of X;

(ii) SS(F ) = SS(F [1]);

1If Λ is a subset, see [5] for the definition.
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(iii) Let F1 → F2 → F3
+1→ be a distinguished triangle in Db(kX). Then SS(Fi) ⊂ SS(Fj) ∪

SS(Fk) and (SS(Fi)\SS(Fj))∪ (SS(Fj)\SS(Fi)) ⊂ SS(Fk) for any permutation (i,j,k)
of (1,2,3);

(iv) SS(F ) ⊂ ⋃
j SS(Hj(F ));

(v) Let M be a closed submanifold in X amd consider its conormal space in X given by:

T ∗MX = {(x, ξ) ∈ T ∗X; ξ|TxM = 0}.

Then SS(i!L) = T ∗MX where i : M → X is the inclusion and L is any non-zero locally constant
sheaf on M .

We end this appendix with a theorem which relates constructible sheaves to micro-support.

Theorem B.4. Let F ∈ Db(kX). Then the following conditions are equivalent:

(i) There exists a locally finite covering X =
⋃

i∈I Xi by subanalytic subsets such that for all
j ∈ Z, all i ∈ I, the sheaves Hj(F )|Xi

are locally constant.

(ii) SS(F ) is contained in a closed conic subanalytic isotropic subset of T ∗X.

(iii) SS(F ) is a closed conic subanalytic Lagrangian subset of T ∗X.
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