
UNIVERSITÀ DEGLI STUDI DI PADOVA
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Introduction

In this thesis we work over a field of char. p. As it is well known elliptic curves are characterized
by their j-invariant up to isomorphism and the j-line is a coarse moduli space for elliptic curves.
We consider the extension problems for group schemes associated with an pn kernel E[pn], of
an elliptic curve over j-line for every n. Let U be the ordinary locus of the j-line. The étale
quotient of E[pn] gives rise to representation χ : π1(U) → (Z/pnZ)× of algebraic fundamental
group. We will show that χ extends over ∞. We also show that the representation χ is
surjective, this is obtained by studying the action of inertia at the supersingular points.

The restriction of E[pn] to U is an extension of an étale group scheme G = E[pn]et by a
local group scheme E[pn]0, these two are Cartier duals to each other. The fact that χ extends
to infinity is equivalent to the fact that G (and by duality GD) extends to infinity. It is natural
to ask whether E[pn] extends. We show that this is not the case. We reduce the problem
to computation of the extension classes in flat cohomology and finally we give a solution by
Kummer theory.

In first chapter we collect some material back-ground that are necessary to approach to the
main problems of this thesis: étale covers, the algebraic fundamental group, finite group schemes
over henselian local ring, Frobenius and Verschiebung, and the Tate curve. In the 5th section
of this chapter we shall briefly describe how the algebraic fundamental group makes it possible
to generalize Galois descent over general base schemes. Together with the Tate uniformization
theorem, this will be our main tools in the next chapter to deal with the monodromy of an
étale (resp. local) group scheme G (resp. GD) over the j-line.
In chapter §2 we will show that the representation χ : π1(U) → (Z/pnZ)× extends over ∞.
Using some properties of the formal group of an elliptic curve, we will also prove that χ is
surjective
The third chapter gives cohomological tools for handling the last problem.
Finally in last chapter we show that the extension of G by GD can be parameterized by the
cocycles in H1(R,µpn), i.e. H1(R,µpn) ∼= Ext1R(G′′, G′). Afterward we reduce the problem
to the case of extending a group scheme over field K to a group scheme over a henselian ring
R. Ultimately by computing the extension class [E[pn]] explicitly, we prove that there is no
extension of E[pn] over ∞.

Acknowledgments: I am very grateful to Prof.Edixhoven, indeed without the materials that
I learned from him during my first year ALGANT program, it would have been impossible
for me to work on this subject. I would like to thank Valentina Di Proietto who arranged
this thesis systematically and also for her mathematical helps and comments. I would like to
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thank Giovanni Di Matteo for his patience in editing the drafts of this thesis. Finally and most
importantly I gratefully acknowledge my advisor Prof.M.Garuti, who did manage this master
thesis step by step.



Chapter 1

Preliminaries

1.1 Étale Coverings

In this section we recall some basic definitions and properties of étale coverings.

Let X be a connected locally noetherian scheme. We would like to define the notion of algebraic
covering. If X is of finite type over C, it admits an analytic structure. Thus we like that the
étale map Y → X induces an étale analytic morphism, which is local analytic isomorphism.
Thus, we require that our covering satisfy the hypotheses of the implicit function theorem,
motivating the following general definition.

Definition 1.1.1 A morphism of of finite type f : Y → X is said to be étale if for every
y ∈ Y , there exist open affine neighborhoods V = SpecB of y and U = SpecA of x = f(y)
such that f(U) ⊆ V and B = A[x1, ..., xn]/(P1, ..., Pn), with det(∂Pi/∂xj) invertible in OX,x.

Remark 1.1.2 Some authors prefer to define the étale morphism to be an unramified and flat
morphism. 1. Note that these two definitions are equivalent, (c.f. [6], chapter I, corollary 3.16.)

Proposition 1.1.3 Let f : Y → X be a morphism of finite type of locally noetherian schemes.
Then f is unramified if and only if Ω1

Y/X = 0.

Proof. c.f. [5], corollary 6.2.3.

Proposition 1.1.4 The following properties hold:

1(f is said to be unramified at x if the homomorphism OY,y → OX,x verifies OX,x/myOX,x = k(x), and if
the finite extension of residue fields k(y) → k(x) is separable, moreover f is called unramifed if it is unramified
at every point of X)
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a) Any open immersion is étale.

b) Étale morphisms are stable under base change, composition, and fibered products.

Proof. c.f. [5], proposition 4.3.22. or [6], chapter I, proposition 3.3.

1.2 Algebraic Fundamental Group

Let X be a topological space which is connected and locally contractible with a fixed base
point x0 ∈ X. The topological fundamental group can be defined as the group of homotopy
classes of paths γ : [0, 1] → X with γ(0) = γ(1) = x0. We would like to define an analog
of the fundamental group of a scheme X. Working with the usual definition does not give a
reasonable answer, because the above topological approach does not have an algebraic analogue.
Fortunately there is a more intrinsic description of π1(X, x0) that works well, that is to define
the algebraic fundamental group as the automorphism group of the universal covering. Notice
that, since X is a locally contractible space, the universal covering X̃ exists. But in general
such a cover does not exist in the algebraic situation. This problem can be solved by passing
to the projective limit of all étale covers.

Definition 1.2.1 Let X be a scheme, Ω an algebraic closed field and x0 ∈ X(Ω) a geometric
point of X. Let FEtX be the category of finite étale covers Y → X of X. Notice that the
morphisms in FEtX are automatically finite étale morphisms ([6], chap.I, Corollary 3.6.). We
define a functor Fx0 : FEtX → Sets, by setting Fx0(Y ) = HomX(x0, Y ).

Thus to give an element of Fx0(Y ) is to give a point y ∈ Y that lies over x and a k(x)-
homomorphism k(y) → k(x0).

Definition 1.2.2 Let X be a connected locally noetherian scheme. The fundamental group
π1(x0, X) of X at the geometric point x0 is the group of automorphisms of the functor Fx0.

Let X be a variety over C and choose a point x0 ∈ X(C). Let us denote the topological
fundamental group of X(C) by πtop1 (X, x0). The étale covering Y → X induces a finite analytic
covering Y (C) → X(C). Since πtop1 (X, x0) acts naturally on the fiber of Y (C), we get a homo-
morphism πtop1 (X, x0) → π1(X, x0). It can be proven that this map induces an isomorphism

̂πtop1 (X, x0)
∼−−−→ π1(X, x0)

where the left hand side is the pro-finite completion of πt1(X, x0).

It can be shown that there exist a projective system (Xi, ϕij)i,j∈I of Galois objects of FEtX and

a pro-étale integral scheme X̃ = projlimi∈IXi such that π1(x0, X) ∼= Aut(X̃/X). Moreover, up
to isomorphism, the algebraic fundamental group of the connected scheme X does not depend
on the choice of a base point (for more details we refer to [1], Exp. V.
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Theorem 1.2.3 Let X be locally noetherian and connected, and let x0 be a geometric point of
X. Then Fxo induces an equivalence of categories between FEtX and (finite π1(x0, X)-sets),
where the second category is the category of finite sets with a continuous action of π1(x0, X).

Proof. [1], Exp. V.

For any X-scheme Y , we write AutX(Y ) for the group of X-automorphisms of Y . For any
Y ∈ FEtX , AutX(Y ) acts on Fx0(Y ). If AutX(Y ) acts faithfully and transitively on Fx0(Y )
(that is if for any P ∈ Fx0(Y ) AutX(Y ) → Fx0 , α 7→ α(P ) is bijective) then Y is said to be
Galois. Notice that for connected Y , this action is automatically faithful (see for instance [6],
chap.I, corollary 3.13.).

Let us now compute the algebraic fundamental group for the simplest cases,

a) Let X = Spec k be the spectrum of a field. The geometric point of X corresponds to the
embedding σ : k → k̄. It would be enough that we consider the connected coverings of X,
that are of the form SpecL, where L/k is finite separable extension. For such a covering
f : Y = SpecL→ X, we have:

Fx0(Y ) = {ϕ : L ↪→ k̄ : ϕ|k = σ}

in other words, Fx0(Y ) consists of the embeddings ϕ : L ↪→ k̄ making the diagram

k
x0−−−→ k̄

f

y ∥∥∥
L

ϕ−−−→ k̄

commutative.

Clearly every element of Gal(ksep/k) gives an automorphism of Fx0 . Conversely, take
α ∈ ksep and let γ ∈ π(X, x0) and set ϕ : L = k(α) → k̄. γ gives an automorphism of
L, let’s call it γϕ . Sending α to γϕ(α) giving an element of Gal(ksep/k). One can verify
easily that these two constructions are inverse to each other, so we have that

π(X, x0) ∼= Gal(ksep/k)

b) Let X = P1
k with k separably closed. If k = C, then X is topologically a sphere, and

therefore π1(X, xo) = {1}. Let us verify this in general case. Consider the differential dt
on P1, having double pole at infinity and no other zeros or poles. Let f : Y → X be an
étale cover of degree n. Then f ∗(dt) has 2n poles and no zero, while the Riemann-Hurwitz
formula shows −2n = 2g − 2, so we deduce that n = 1 and f is an isomorphism.
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Remark 1.2.4 (Theorem of the purity of branch locus) For a regular scheme X, and an
open subscheme U with complement of codimension greater than 1, we have π(X, x0) ∼=
π(U, x0), where x0 is a geometric point of U . [1], Exp. X, Theorem 3.1.

c) Let X = E, where E is an elliptic curve over an algebraic closed field k.Let f : Y → X be
an étale covering of E of degree d. Again by Riemann-Hurwitz we get g(Y ) = 1. Thus Y
is an elliptic curve too. Hence f : (Y, y) → (X, f(y)) is an isogeny, so Aut(Y/E) = ker f .
Now let g be the dual isogeny of f , then f ◦ g = [d], hence [d] dominates f and

π(X, x0) ∼= projlimnX[n](ksep)

The right hand side is the product of Tate modules Tl(E), l ranges over all prime integers.

Remark 1.2.5 Using Lang-Serre theorem one can prove that the above isomorphism also
holds more generally for any abelian variety over field k, see for example [3], corollary
(10.37).

1.3 Finite Group Schemes and Cartier Duality

A group functor over S is a cofunctor, F , from the category of schemes over S to the category
of groups. Let us give a few famous ones. For each scheme X over S, we put

a) Ga(X) is the additive group of Γ(X,OX),

b) GLn(X), the set of invertible n × n matrices with entries in Γ(X,OX). GL1 is denoted
by the special symbol Gm.

c) The n-th roots of unity, µn(X) = {x ∈ Gm(X) : xn = 1},

d) For S a scheme of characteristic p > 0, αpn = {x ∈ Ga(X) : xp
n

= 0}.

Let us assume that F is a representable functor, and let G be a group scheme that represents F .
Yoneda’s lemma tells us that the group axioms can be translated into the following commutative
diagrams.

1. (Associativity Law) There exists an S-morphism m : G×S G→ G such that

G×S G×S G
id×m−−−→ G×S G

m×id
y ym

G×S G
m−−−→ G

commutes, where m is the group multiplication.
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2. (Identity Element)There exist a section of the structure morphism G→ S, such that

S ×S G
id−−−→ G

id×ε
y yid

G×S G
m−−−→ G

and

G×S S
id−−−→ G

ε×id
y yid

G×S G
m−−−→ G

commute.

3. (The inverse element) Let ∆ : G → G ×S G be the diagonal morphism, there exist an
S-morphism i : G→ G, so that the diagrams

G
(id×i)◦∆−−−−−→ G×S Gy ym

S
ε−−−→ G

and

G
(id×i)◦∆−−−−−→ G×S Gy y

S
ε−−−→ G

commute.

The homomorphism of group schemes are trivial to formulate. Let us now restrict ourselves
to the category of affine group schemes. As is well known the assignment R 7→ SpecR is an
anti-equivalence of categories. So let G be a group functor from the category of schemes over
S = SpecR to the category of groups, and suppose that G can be represented by A. The
morphisms associated with the group scheme G correspond to the following homomorphisms
of R-modules:

m] : A→ A⊗R A

ε] : A→ R

i] : A→ A

and those morphisms which carry out the algebraic structure:
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e : R→ A (giving the R-algebra structure)

∆] : A⊗ A→ A (giving the ring multiplication)

If no confusion is possible we omit the symbol ]. The axioms for a commutative group scheme
translate to the certain axioms for the above morphisms. A together with these maps satisfying
these axioms is called a Hopf algebra.
Now assume G = SpecR is commutative, finite and flat over R. Let AD = Hom(A,R).
Identifying R ' RD and (A⊗RA)D ' AD⊗RA

D, we get the following collection of morphisms:

∆D : AD → AD ⊗ AD

eD : AD → R

iD : AD → AD

and those morphisms which carry out the algebraic structure:

mD : AD ⊗R A
D → AD

εD : R→ AD

One easily verifies that AD and the above morphisms constitute a Hopf algebra over R.
GD = SpecAD is then a finite flat group scheme over SpecR which is called the Cartier dual
of G. Note that the canonical evaluation isomorphism induces the group scheme isomorphism
(GD)D ' G.

We finish this section by giving some explicit examples.
Let Γ be a finite abelian group. The finite constant group scheme associated to Γ over SpecR
is the group scheme ΓR (or simply Γ if no confusion is possible), whose underlying scheme is∐

γ∈Γ SpecR, and mapping the component SpecR of Γ×Γ indexed by (γ, γ′) identically to the
component SpecR of Γ indexed by γ + γ′, gives the multiplication. Let us mention that the
associated ring of regular functions on Γ is RΓ. The comultiplication map m : RΓ → RΓ×Γ, is
defined by m(f)(γ, γ′) = f(γ, γ′), and the co-inverse map i : RΓ → RΓ by i(f)(γ) = f(−γ) and
finally ε : RΓ → RΓ takes f 7→ f(1). If {eγ}γ∈γ is the canonical basis of RΓ, then {êγ}γ∈γ is
the basis of (RΓ)D. The dual maps are then given by the following formulas:

∆D(êγ) = êγ ⊗ êγ

eD(êγ) = 1

iD(êγ) = ê−γ

and those morphisms which carry out the algebraic structure are

mD(êγ ⊗ êγ) = eγ+γ′

εD(1) = ê0

The last two morphism show that (RΓ)D ∼= R[Γ]. For example set Γ = Z/nZ, then (RΓ)D ∼=
R[Z/nZ] ∼= R[x]/(xn − 1), where x = ê1, and multiplication is given by ∆D(x) = x ⊗ x.
Therefore (Z/nZ

R
)D ∼= µn,R. Similarly for R with prime characteristic p one could verify that

αp,R ∼= (αp,R)D.
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1.4 The local-étale exact sequence over a Henselian local

ring.

Let S be a locally noetherian base scheme. We say that X is finite flat over S iff OX is locally
free of finite rank as an OS-module. This rank is a locally constant function that we call the
order of X over S and denoted by Ord(X/S). Let us first state the following theorem

Theorem 1.4.1 Let H be a finite flat S-group scheme over S and let X be a scheme of finite
type over S. Suppose H acts on X via φ : H ×S X → X. Moreover suppose this action is free;
i.e. id× φ : X ×H → X ×X is a closed immersion and every orbit is contained in an affine
open set. Then there exists an S-group scheme Y and a morphism π : X → Y constant on
orbits such that every morphism X → Y which is constant on orbits factors uniquely through
π. We denote it by π : X → X/H. The morphism π has the following properties:

i) X is finite flat over X/H and Ord(X/(X/H)) = Ord(H/S)

ii) For every S-scheme T the map X(T )/H(T ) → (X/Y )(T ) is injective.

Proof. This is a special case of results of Grothendieck ([2], I, Exp.V).

Let us mention that in the affine case S = Spec (R), H = Spec (B) and X = Spec (A),
X/H = Spec (AH) where AH = {a ∈ A : φ](a) = a⊗ 1}.

As is well known every finite group scheme over a perfect field k is an extension of étale group
scheme with local group scheme ([10] Theorem 6.8). But we will need this in a more general
context, namely over henselian rings.

Theorem 1.4.2 Let G be a flat S-group scheme where S = Spec(R) is the spectrum of a local
henselian ring R. Let m be the maximal ideal of R, k = R/m the residue field. Let G0 be the
connected component of the identity in G, then G0 is a flat closed subgroup scheme of G such
that the quotient Get := G/G0 is étale.

Proof. Let G = Spec (A) with A a finite R-algebra. Since R is a henselian ring we have a
decomposition A =

∏n
0 Ai with each Ai a local henselian ring. So we see that G =

∐n
0 Gi

where each Gi is the spectrum of the local henselian ring Ai, so they are connected components
of G. For each i, let ti be the closed point of Gi. Let G0 be the connected component which
contains the image of ε : S → G. Then S is a closed subscheme of G0 therefore k(t0) = k.
Notice that Gs = ((Gs)k̄)

π where π = Gal(ksep/k). So we see that Gi×G0 is connected, indeed
since k̄ valued point of Gs are

Gs(k̄) = Hom(A⊗ k(s), k̄) =
n∐
0

Homk(k(ti), k̄) =
n∐
0

(Gi)s(k̄)
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we have in particular ](Gi)s(k̄) = degsep(k(ti)/k). Now precisely (Gi)s(k̄) are the orbits for the
action of π, thus Gi×SGj is connected if and only if π acts transitively on (Gi)s(k̄)×S (Gj)s(k̄)
if and only if (Gi)s(k̄) or (Gj)s(k̄) contains just one element if and only if either k(ti) or k(tj)
is purely inseparable over k.

From the discussion above we may conclude that Gi×SG
0 is connected and therefore its image

GiG
0 via m : G ×G G → G and since that contains Gi we have GiG

0 = Gi and in particular
G0G0 = G0. The following diagram shows that the inverse morphism i : G→ G preserves G0.

S
ε−−−→ G∥∥∥ yi

S
ε−−−→ G

Hence G0 is a subgroup of G. Note that G0 is normal, since for every i the image of Gi × G0

under the morphism m ◦ (m × i ◦ π1) contains S and moreover that is connected, so that is
contained in G0. Since Ord(G0/S) = m is a positive constant therefore by part (i) of Theorem
1.4.1 Ord(G/G0) = m is constant thus G → G/G0 is faithfully flat. Hence the fact that G is
flat implies that G/G0 is flat. Up to now we have deduced that G0 is a flat normal subgroup

scheme of G. According to Theorem 1.4.1 we can form the quotient S-group scheme G/G0.
The fact that G0 is open in G implies that G0/G0 = S is open in G/G0, i.e. Spec (OG/G0/I) is
open in G/G0, where I is the related augmentation ideal. Therefore I = I2 and hence G/G0 is
étale.�

We call the the exact sequence

0 −→ G0 −→ G −→ Get −→ 0

the local- étale sequence for G. Notice that it can be characterized by the fact that every
homomorphism from G to an étale S-group scheme factors through G → Get, and G0 is the
kernel of that homomorphism.

1.5 Étale group schemes

Let S be a base scheme. Let us first restrict to the case S = SpecK, where K is a field and
let L/K be a finite Galois extension of fields with Galois group Gal(L/K). It can be shown
that the base change functor X 7→ X ×K L induces an equivalence from the category of affine
schemes over K to the category of affine schemes over L together with covering action by
Gal(L/K). This is called Galois descent. Notice that passing to the limit over finite Galois
extensions we see that the above statement also holds for any infinite Galois extension with a
continuous action of pro-finite Galois group. Using this result and the well known fact that a
finite group scheme G over a field K is étale if and only if GKsep ∼= G(Ksep) is constant group
scheme, one can prove that the functor G 7→ GKsep defines an equivalence from the category of
finite étale group schemes over K to the category of continues finite Z[Gal(Ksep/K)]-modules.
In this section we shall briefly describe the situation over general base scheme.
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Proposition 1.5.1 Let X be a scheme over a field k and G/X a commutative étale group
scheme. Then there exists an étale covering Y → X such that G×X Y ∼= Γ×k Y , where Γ is a
constant group scheme.

Proof. Easily follows from Theorem 1.2.3.

Let us take an étale group scheme G over X, then the above theorem shows that there exists
an étale covering Y → X of X, such that G becomes a constant group scheme over Y , meaning
that G ×X Y ∼= Γ, for some abstract group Γ. Let H = Aut(Y/X) and suppose G = SpecA.
It gives an action of H on ΓY , in other words, we have a morphism H → Aut(Γ). Indeed,
G×X Y ∼= SpecA⊗OX

OY
∼= Spec (A⊗k OY ), where A is the ring of functions of Γ. H acts on

(A⊗OOX)OY , we get an action of H on A⊗kOY , which gives the desired action H → Aut(Γ).
So we get an action π(X, x0) → Aut(Γ).
Conversely let H be a quotient of π(X, x0) that acts on Γ, then (A⊗kOY )H is a Hopf algebra on
X and defines a group scheme on X. We summarize this discussion in the following Corollary.

Corollary 1.5.2 Let X be a k-scheme. Let Y → X be a Galois cover of of X with H =
Aut(Y/X) There is an equivalence between:

1. Actions of H on the abstract group Γ.

2. Group schemes on X that become isomorphic to Γ over Y .

1.6 Frobenius and Veschiebung

Let S be a scheme of characteristic p > 0. We denote by FS : S → S the absolute Frobenius
morphism (which is the identity on the topological space while F ]

S : OS → OS is F ]
S(a) = ap).

If X is an S-scheme, denote by X(p/S) (or simply X(p) if no confusion is possible) the fibred
product:

X(p) −−−→ Xy y
S

FS−−−→ S

The universal property of the fibre product gives a factorization of the map FX :

X
FX/S−−−→ X(p) −−−→ X

where FX/S is a morphism of S-schemes, called the relative Frobenius morphism. See [5], section
3.2.4 for more details.

Proposition 1.6.1 Let X be an S-scheme of finite type.

a) If FX/S is an isomorphism then X is unramified over S.
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b) If X is étale over S then FX/S is an isomorphism.

Proof. (a)Let us first show that F ∗X/SΩ
1
X(p)/S

→ Ω1
X/S is the zero map. Clearly it suffices to

prove in the affine case, so let X = SpecB and S = SpecA then the morphism FX : X → X(p)

corresponds to the A-algebra homomorphism:

B(p) = A[T1,...,Tn]

I(p) −−−→ B = A[U1,...,Un]
I

,

which takes Ti 7→ Up
i . Thus F ∗XΩ1

B(p)/A
→ Ω1

B/A takes b ⊗ dTi to b.dUp
i = 0 Now consider the

exact sequence:

F ∗X/SΩX(p)/S
α−−−→ ΩX/S

β−−−→ ΩX/X(p) → 0

As we have just seen im(α) = 0 and since FX/S is an isomorphism ΩX/X(p) = 0 hence Ω1
X/S = 0

so by Proposition 1.1.3, X is unramified over S.

(b) Since étale morphisms are stable under base change, X(p) is also étale over S. Therefore
FX/S : X → X(p) because the morphism between étale scheme is étale (see forward [6], chapter1,
corollary 3.6). Notice that also FX is finite, because in affine charts {Ua1

1 , ..., Uan
n }0≤ai≤p−1

generate B over B(p). Using Theorem 1.2.3 we could conclude that FX is an isomorphism.
Notice that FX is a homeomorphism.

Corollary 1.6.2 If X is a flat S-scheme of finite type then X is étale over S if and only if
FX/S is an isomorphism.

Proof. Obviously follows from the above theorem.

Notice that FX/S is functorial and commutes with products of S-schemes. Therefore, if G is an
S-group scheme, FG/S : G→ G(p) is a group morphism.

LetG be a finite, commutative, S-group scheme. Assume that it is locally free i.e. OG is a locally
free as a sheaf of OS-modules. As we mention in the section 1.3. the Cartier dual GD of G is
the group scheme whose Hopf algebra is HomOS

(OG,OS). Notice that GD represents the group
schemeHom(G,Gm). Let us take an affine cover for S. For an affine chart U ⊆ S, GU is an affine
group scheme because G is finite over S. So we may assume that G = SpecB and S = SpecR
where B is a free R-module. We have the following isomorphisms: (B⊗FS

R)D ∼= BD⊗FS
RD ∼=

BD⊗FS
R. Indeed we could define the morphisms ϕ : BD⊗FS

R→ (B ⊗FS
R)D which takes ι to

ι⊗1 and ψ : (B ⊗FS
R)D → BD⊗FS

R that takes γ⊗r to γ ⊗ r : m⊗1 7→ rp ·γ(m). Clearly we
see that these morphisms are mutually inverse. Notice that multiplication in (G(p))D is given
by (∆(p))D where ∆] is the ring multiplication of B. The commutativity of the diagram
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B ⊗FS
R

(∆](p)
)D

−−−−−→ (B ⊗R B ⊗FS
R)Dy y

BD ⊗FS
R

(∆]D
)(p)

−−−−−→ BD ⊗R B
D ⊗FS

R

shows that it is an isomorphism of group schemes. Note that the vertical arrows are the
isomorphisms described above. Now dualizing the morphism FGD/S : GD → (GD)(p) gives

VG/S : ((GD)(p)))D → G, where the former is isomorphic to G(p), so indeed we have VG/S :
(G(p) → G, this morphism is called the Verschiebung morphism.

Theorem 1.6.3 Let G be a finite commutative group scheme,

a) VG/S ◦ FG/S = p · idG

b) FG/S ◦ VG/S = p · idG(p).

Proof. Let us mention that for schemes X and Y , the Frobenius FX/S is functorial, i.e. for
every morphism ρ : X → Y , the diagram

X
FX−−−→ X(p)

ρ

y yρ⊗id

Y
FY−−−→ Y (p)

commutes.
Put ρ = VG, we get the following commutative diagram :

G(p)
F

G(p)/S−−−−→ G(p2)

VG

y yVG/S⊗id

G
FG−−−→ G(p)

Since the Frobenius morphism is compatible with base change, its dual Verschiebung i.e. VG/S⊗
id ∼= VG(p)/S hence FG/S ◦ VG/S = FG(p)/S ◦ VG(p)/S = p · idG(p) . So it would be enough that we
prove (a). Notice also that we may reduce to the affine case. So we may take S = SpecA affine
and G = SpecB with B free A-module.

We now consider the morphism ∆]⊗p : B⊗p → B induced by ring multiplication, which is
stable under switching. Hence this morphism factors through SympB, thus we get a morphism
Symp(B) � B. We also define the morphism B ⊗FR

R → SympB, induced by a ⊗ x 7→
xa⊗ a . . .⊗ a. Clearly the composition of these morphisms is the relative Frobenius. Note that
the last morphism is R-linear:

x(a+ b)⊗ . . .⊗ (a+ b) = x ·
∑
r

ap,r · a⊗p−r ⊗ b⊗r
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where ap,r are the coefficients of the expansion of (a + b)p. Since all of these coefficients are
divisible by p except for r = 1 and r = p, the expression simplifies to

x(a+ b)⊗ . . .⊗ (a+ b) = (x · a⊗ a⊗ . . .) + (x · b⊗ b . . .⊗ b)

Thus we have:
FB : B ⊗FR

R � Symp(B) � B

Now since B is an R-module of finite rank, we may take the above diagram for BD and dualize
to get:

VB : B
µ]

−−−→ TSp(B)
υB−−−→ B(p)

where µ] is the morphism induced by the comultiplication µ]. By definition of υB, we have the
following commutative diagram:

TSp(B)
νB−−−→ B(p)y yFA

B⊗p
∆]⊗p

−−−→ B

Composing with the morphism µ], we get the following commutative diagram of group schemes:

G
∆−−−→ G×p

FG

y yµ

G(p)
VG/S−−−→ G

which shows VG/S ◦ FG/S = p · idG.�

1.7 The Tate Curve

In this section we describe a particular scheme Tate(q) over Z[[q]], called the Tate Curve. The
motivation of constructing this curve comes from analytic theory of elliptic curves, where an
elementary result says that every complex elliptic curve is isomorphic to C/Λ for a lattice Λ,
moreover Λ can be chosen to be of the normalized form Λ = Z + Zτ , for some number τ in the
complex upper half plane. Conversely, any such a lattice Λ determines an elliptic curve. This
is a very useful characterization, indeed because the group law in C/Λ is very simple. Now
suppose we replace C with some p-adic field K and endeavor to parameterize elliptic curves
over K by groups of the form K/Λ. This approach immediately fails, since such a field can have
no non-trivial discrete subgroup. For example if K = Qp and Λ ⊂ Qp is a nonzero subgroup,
then for any nonzero t ∈ Λ, limn→∞ p

nt = 0, therefore 0 is an accumulation point of Λ.
Tate’s idea is based on alternative description of the normalization. That is, the exponential
map e : z 7→ e2πiz induces an isomorphism
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C/Λ e−−−→ C∗/qZ

where qZ denotes the free multiplicative group generated by q = e(τ). Then from the above
correspondence we see that a complex elliptic curve is isomorphic to C∗/qZ for some nonzero
complex number q with |q| < 1, and every such q gives an elliptic curve. Thus we get a family
of elliptic curves

E → D∗

over the punctured unit disk, the fiber over q is C∗/qZ. We can construct an embedding of E in
the projective space in a way that the fiber above q is the elliptic curve given by the Weierstrass
equation, whose coefficients depend holomorphically on the parameter q. Then we can expand
the associative values j, ∆, as Laurent series in the parameter q. For example this gives the
well known expansion:

j(q) =
1

q
+ 744 + 196884q + . . . =

1

q
(1 + 744q + 196884q2 + . . .)

and it can be shown that the Weierestrass equation can be written as

Eq : y2 + xy = x3 + a4(q)x+ a6(q).

Tate regarded the coeficients a4(q) and a6(q) just as formal series in q, he observed that this
is not just an elliptic curve in P2

C[[q]], but in fact lies in P2
Z[[q]]. Tate’s construction perform

the same trick over local fields, requiring only |q| < 1 for convergence. Here we state “Tate’s
Uniformization Theorem”.

Theorem 1.7.1 Let K be a local field with absolute value | · |, let q ∈ K∗ such that |q| < 1,
and let

sk(q) =
∑
n≥1

nk.qn

1− qn
.

Set a4(q) = −s3(q) and a6(q) = −5s3(q)+7s5(q)
12

. Then

a) The series a4(q) and a6(q) converge in K.

b) The discriminant and j-invariant of the Tate curve Eq are as follows:

∆ = q
∏
n≥1

(1− qn)24

and

j(q) =
1

q
+ 744 + 196884q + ... =

1

q
(1 + 744q + 196884q2 + ...).
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c) Let L be an algebraic extension of K. The series

X(u, q) =
∑
n∈Z

qnu

(1− qnu)2
− 2s1(q),

X(u, q) =
∑
n∈Z

(qnu)2

(1− qnu)3
+ s1(q),

converge for all u ∈ Lr qZ. They define the surjective homomorphism

φ : L∗ −−−→ Eq(L)

which takes u 7→ (X(u, q), Y (u, q)) if u ∈ Lr qZ and u 7→ 0 otherwise, with kernel qZ.

For the proof we refer to [8] ,chapter V, theorem 3.1.

Remark 1.7.2 For further applications we also give the following alternative expressions for
X(u, q) and Y (u, q):

X(u, q) =
u

(1− u)2
+

∑
n≥1

(
qnu

(1− qnu)2
+

qnu−1

(1− qnu−1)2
− 2

qn

(1− qn)2

)

Y (u, q) =
u2

(1− u)3
+

∑
n≥1

(
(qnu)2

(1− qnu)3
− qnu−1

(1− qnu−1)3
+

qn

(1− qn)2

)
.

These expressions also can be found in [8], page 425.



Chapter 2

p-Adic Monodromy

From now on, we will work over a perfect field k of characteristic p > 0. Let S be the set
of supersingular values of j ∈ k and put U = A1 − S and U = P1 − S. Let E → U be the
restriction of the elliptic curve over the j-line, F : E → E(p) and V : E(p) → E the Frobenius
and Verschiebung morphisms. Using Theorem 1.6.3, for every n we get the following diagram,
whose first row is exact:

0 −−−→ kerF n −−−→ E[pn] −−−→ kerV n −−−→ 0∥∥∥ y y y
kerF n −−−→ E

Fn

−−−→ E(pn) V n

−−−→ E.

(2.1)

So for every n we have the exact sequence:

0 −−−→ kerF n −−−→ E[pn] −−−→ kerV n −−−→ 0 (2.2)

Notice that kerV n (resp. kerF n) is an étale (resp. a local) group scheme over U . Indeed we
only need to consider the fibers. So now we assume that we are working with an ordinary
elliptic curve E over the field k. A finite commutative group scheme over a perfect field can be
decomposed as a product of connected group scheme and étale group scheme. Let us consider
the case n = 1, general case is similar. Since E is ordinary, we have that E[p](ksep) consists of
p points. As E[p] is a finite group scheme of order p2 over k we have that the connected part
and étale part of E[p] are both of order p. By proposition 1.6.1 F is an isomorphism on the
étale part of E[p] and it also vanishes on the local part(for example see [10], Theorem 14.4) so
we see that the kerF has to be the local part of E[p] hence the kerV is the étale part of E[p].

The étale group scheme kerV n defines a character

χ : π1(U) → (Z/pnZ)× . (2.3)

Theorem 2.0.1 χ extends to a character π1(U) → (Z/pnZ)×.
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Proof. Let us take n = 1, in general one easily sees that the same arguments hold for an
arbitrary n. Let K = k(j) be the fraction field of U .

Assume that the action of π1(U) factors through the automorphism of étale covering imχ :
W → U . Set L = Frac(W ) and Γ = (Z/pZ) . Since the character χ factors through the action
of the automorphism group of the étale covering W of U , so kerV n ×U W ∼= Γ ×k W . So we
have the following commutative diagram:

Γ×k W −−−→ KerV ny y
W −−−→ U

Taking the generic fiber, we have:

Γ×k L −−−→ (KerV n)Ky y
SpecL −−−→ SpecK

which clearly gives the character χ : Gal(Ksep/K) → (Z/pnZ)×.
Let W be the normalization of W inside L. Now considering the following diagram

W −−−→ Wy y
U −−−→ U

we see that it suffices to prove L/K is unramified at ∞, which is equivalent to saying that for
the prime ideals of L above infinity the inertia group is trivial.

Let K̂ = k((j)) be the completion of K at ∞. Write K̂ = k((q)), where j = 1
q
+744+196884q+

· · ·, hence the pullback of E to K̂ is isomorphic to the Tate curve

Eq : y2 + xy = x3 + a4(q)x+ a6(q)

Since we are working over a field of characteristic p we see that raising the partial sums of a4(q)
or a6(q) to the power p is the same as rising q to the p in a4(q) or a6(q). So the same holds

for the limit. Therefore E
(p)
q = Eqp . Now since V is the dual of F , we have V (Q) = [degF ] · P

where Q = F (P ). Now, Tate uniformization gives us the following diagram :

K∗/qZ
'−−−→ Eq(K

sep)

F̂

y yF

K∗/(qp)Z
'−−−→ Eqp(Ksep)

V̂

y yV

K∗/qZ
'−−−→ Eq(K

sep)
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Note that F̂ : K∗/qZ → K∗/(qp)Z takes u 7→ up and therefore V̂ : K∗/(qp)Z → K∗/qZ takes
t 7→ t̄. We see that ker V̂ is generated by q, this in particular shows that kerV consists of p
distinct points (similarly kerV n consists of pn points). Moreover, as we have just seen, the
points lying in kerV are rational, so the decomposition group acts trivially on this set and
therefore the inertia group acts trivially.�

Corollary 2.0.2 The group scheme kerV n (resp. kerF n) extends to an étale (resp. local)
group scheme over U .

Proof. We apply Corollary 1.5.2 for X = U to get the desired scheme over U lets call it G.
Indeed χ : π1(U) → (Z/pnZ)× factors through the automorphism group of some étale cover W
of U , so we get:

Γ×k W −−−→ Gy y
W −−−→ U

Notice that in fact G ∼= (Γ ×k W )H where H = Aut(W/U), and it is then clear that if we
restrict to U we get:

Γ×k W −−−→ (kerV n)y y
W −−−→ U

Hence we may conclude that G is the extension of kerV n.

Theorem 2.0.3 χ is surjective.

Proof. Let s ∈ S be a supersingular point and z a local coordinate at s. Then E defines an
elliptic curve over R = k[[z]] with ordinary generic fibre and good supersingular reduction.

It is sufficient to show that the image of a subgroup of the fundamental group maps sur-
jectively. As in the proof of the above theorem we can replace U by the generic point of U
and even by the spectrum of the completion Ks of K = k(j) at some point s outside U , then
E defines an elliptic curve over R = k[[z]] (where z is a local coordinate at s), with ordinary
generic fibre and good supersingular reduction. In which case the fundamental group becomes
the Galois group Gal(Ksep

s /Ks). This action factors through the Galois group of L, where L is
the cyclic extension of k((z)) obtained by adjoining the points of kerV n. Let I be the inertia
subgroup at s it is enough to prove that χ maps I = Gal(Ksep

s /Kunr
s ) surjectively, and therefore

it is enough to show that Gal(LKunr
s /Kunr

s ) → (Z/pnZ)× is surjective. This would mean that
the cyclic, totally ramified extension L/Kunr

s has degree Φ(pn) = pn−1(p− 1).
Now consider the n-th iterates of Verschiebung, that is the composite homomorphism

E(pn)
V

E(pn−1)−−−−−→ E(pn−1) −−−→ ...E(p2)
V

E(p)−−−→ E(p) VE−−−→ E
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Let P1 ∈ E(p) be a point which maps to 0 via VE. We now take an inductive series of points
{Pi} where Pi ∈ E(pi)(Ksep

s ) and such that VE(pi+1)(Pi+1) = Pi = (xi, yi). We claim that
ν(xi) = 1

pi−1(p−1)
, where ν is the valuation of Ks extended to a valuation of Ksep

s . Note that as
we mentioned above, then this claim implies theorem. We are going to prove it inductively.
The formal power series corresponds to the multiplication by p, is given by [p](T ) = g(T p) =
α′T p + βT p

2
+ . . .. The fact that s is a supersingular point implies that the reduction of Ê

modulo z has height 2 (c.f. [8], chapter V, Theorem 3.1), thus:

[p](T ) = αzT p + βT p
2

+ . . .

with α,β ∈ k[[z]]×. Since V ◦ F = [p] and the formal power series associated to the Frobenius
morphism is F (T ) = T p, we realize that

V̂ = αzT + βT p + . . .

with α and β in k[[z]]×. Raising the coefficients of the equation of E : y2 + a1xy + a3y − x3 −
a2x

2 − a4x− a6 to pi, we see that the coefficients of formal group scheme associated to E (c.f
[8], chapter.IV, §1)

F (z1, z2) = i(z3(z1, z2)) = z1 + z2 − a1z1Z2 − a2(z
2
1z2 + z1z

3
2)− . . .

raise to pi and thus the coefficients of p-th iterate [p](T ) = F (...(F (F (0, T ), T ), T ))...), hence

V̂E(pi) = αp
i

zp
i

T + βp
i

T p + . . .

Let i = 1, we have

0 = V̂(E(p))(x1) = αzx1 + βxp1 + . . .

canceling factor x1 we get 0 = αz+βxp−1
1 + . . .. Clearly ν(x1) can not be bigger than 1/(p−1),

because then every term with higher order has a valuation bigger than 1/(p−1), therefore they
can not cancel the first term αz. So we have ν(x1) ≤ 1

p−1
. Suppose ν(x1) <

1
p−1

, then the term

βxp−1
1 has the lowest valuation among all terms, and the value of all other terms are strictly

bigger than that, it then can not cancel. This contradiction shows ν(x1) = 1
p−1

. Assume now

that it is true for i− 1, so we have ν(xi−1) = 1
pi−2(p−1)

.

xi−1 = V̂(E(pi))(xi) = αp
i

zp
i

xi + βp
i

xi
p + . . .

Now if ν(xi) >
1

pi−1(p−1)
then value of xi−1 is strictly less than every value of every term in right

hand side, and if ν(xi) <
1

pi−1(p−1)
then the value of βp

i
xi
p is strictly smaller than the values of

other terms in both sides of the above equation. We may deduce that ν(xi) = 1
pi−1(p−1)

. So in

particular ν(xn) = 1
pn−1(p−1)

. �



Chapter 3

Extensions and Flat Cohomology

3.1 Twisted Forms and Cohomology

Let F be an abelian group functor and R → S a flat morphism of rings. Let di :
⊗n S →⊗n+1 S insert a 1 in i-th place. Let’s define d : F(

⊗n S) → F(
⊗n+1 S) by d =

∑
(−1)kdk.

One can verify easily that d ◦ d = 0, so that the groups Hm(S/R,F) can be defined as a kernel
modulo image at m-th stage. From sheaf point of view this cohomology is Cech cohomology
for the covering SpecS → SpecR.
Hm(R,F) is defined to be lim→ Hm(S/R,F) where the limit is taken over all over all flat coverings

R→ S.

Suppose M is given R-module, possibly with some additional algebraic structure(for example
a bilinear multiplication or whole Hopf algebra structure). An S/R-form of M , or twist form
splits by S, is another R-module with the same type of structure becomes isomorphic to M
after tensoring with S.

Let us consider the functor Aut(M), that takes any R-algebra S to the automorphism of
M ⊗R S preserving the given structure. If M is a Hopf algebra representing a finite group
scheme G, then we also denote this functor by Aut(G).

Theorem 3.1.1 There is a one to one correspondence between the isomorphism class of S/R-
forms of M and H1(S/R,Aut(M))

Proof. c.f [10], Theorem 17.6.

3.2 Kummer Theory

Let S be a base scheme. Let µn be the subsheaf ofGm defined by the group scheme Spec Z[T ]/(T n − 1).
Let n : Gm → Gm be the map Gm → Gm which takes u 7→ un. The sequence

0 → µn → Gm
n−−−→ Gm
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is clearly exact. However the morphism n : Gm → Gm need not to an be epimorphism in
general, because Γ(U,OU)∗ might have an element which is not n-th power locally. But the flat
topology is fine enough that

0 → µn −−−→ Gm
n−−−→ Gm → 0

becomes exact. To prove this, let U → S be a flat morphism of schemes, and let a ∈ Γ(U,OU)∗.
We may assume that U is affine. Let V = Spec (A[T ]/(T n − a)). Then clearly V → U is a flat
covering of U , and the restriction of a to V is in the image of n : Gm(V ) → Gm(V ).

The following result paves the road for computing H1(X,µn).

Theorem 3.2.1 Let U = SpecR, where R is a local ring, then H1(U,GLn) is trivial.

Proof. Take α ∈ H1(U,GLn) then there is a faithfully flat affine U -scheme V = SpecB of finite
type such that α ∈ H1(V/U,GLn). Let M be the R-module Bn with no other structure. Thus,
we have GLn = Aut(M). A twist form of M is some other R-module M ′ with M ⊗R B ∼=
M ′ ⊗R B. Since M ⊗R B is flat and finitely generated as a B-module and B is a faithfully flat
over R, M ′ is flat and finitely generate over R. Now since R is local, M ′ should be free of rank
n. Thus the isomorphism class of B/R-forms is trivial, so α is a coboundary. �

Remark 3.2.2 The above theorem shows in particular that for the local affine scheme X,
H1(X,Gm) is trivial. This is the special case of more general statement namely Hilbert’s Theo-
rem 90, that is the canonical map Pic(X) = H1(Xzar,O∗

X) → H1(Xfl,Gm) is an isomorphism.
The proof involves some techniques in spectral sequences, see for example [6], chapter III,
Proposition 4.9.

Corollary 3.2.3 Let X be a local affine scheme. Then H1(X,µn)
∼= Γ(X,OX)∗/(Γ(X,OX)∗)n.

Proof. As we have seen above, H1(X,Gm) is trivial for every local affine scheme X, therefore
the exact sequence

0 → µn −−−→ Gm
n−−−→ Gm → 0

gives rise to the cohomological sequence

0 → µn(X) → Γ(X,OX)∗
n−−−→ Γ(X,OX)∗ → H1(X,µn) → 0.

and so H1(X,µn)
∼= Γ(X,OX)∗/(Γ(X,OX)∗)n.�



Chapter 4

There is No Extension of E[pn] to Ū

If G′ and G′′ are finite locally free group schemes over SpecR, we consider the group functor
Hom(G′′, G′) defined for any R-algebra S by

Hom(G′′, G′)(S) = HomS(G
′′
S, G

′
S) (group scheme homomorphisms).

We shall say that a group scheme G is an extension of G′′ by G′ if G sits in a short exact
sequence

1 −−−→ G′ −−−→ G −−−→ G′′ −−−→ 1. (4.1)

An extension is trivial if it admits a splitting G′′ → G. A morphism between two extensions G
and G̃ of G′′ by G′ is a homomorphism α : G→ G̃ such that

1 −−−→ G′ −−−→ G −−−→ G′′ −−−→ 1∥∥∥ α

y ∥∥∥
1 −−−→ G′ −−−→ G̃ −−−→ G′′ −−−→ 1.

Notice that a morphism of extensions is always an isomorphism. We show the set of isomorphism
classes of extensions of G′ by G′′ with Ext1(G′′, G′).

Theorem 4.1 There is a morphism H1 (R,Hom(G′′, G′)) → Ext1(G′′, G′). Moreover if R has
characteristic p > 0, G′ is an infinitesimal group scheme, and G′ is a finite étale group scheme,
then this morphism is a bijection.

Proof. Let S be a faithfully flat R-algebra. Set H = G′′S×S × G′S×S, by the universal property
of fiber product morphisms G′′S×S → G′S×S and idG′′ give a section ϕ′ : G′′S×S → H. This
morphism and the section σ : G′S×S → H, which is identity on the second factor, give a
morphism H → H ×S×SH. Composing with the multiplication of H, we get an automorphism
of H. One can easily see that for any R-algebra B, this morphism can be described as follows:

ψ(ϕ)(B) : G′′S×S(B)×G′S×S(B) → G′S×S(B)×G′S×S(B)
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taking (g, x) 7→ (g, ϕ(g).x).
So we get a morphism of group functors ψ : Hom(G′′, G′) → Aut(G′′ ×G′), but we need to
verify that this morphism takes cocycles to cocycles and cohomologus elements to cohomologus
ones.

Assume that ϕ is a cocycle, i.e. ϕ satisfies d1ϕ = d0ϕd2ϕ. Let us write ρ = ψ(ϕ) then clearly
d1ρ(g, x) = (g, x·d1ϕ) = (g, x·d0(ϕ)d2(ϕ)(g)) = d0ρd2ρ, notice that diρ = ψ(diϕ). Now suppose
that ϕ̃ is cohomologous to ϕ, so there is a λ ∈ Hom(G′′, G′)(S) such that ϕ̃ = d0λϕ(d1λ)−1

and therefore ψ(ϕ̃) = ψ(d0λϕ(d1λ)−1), hence ψ(ϕ̃)(g, x) = (g, d0λϕ(d1λ)−1). Thus we have
ψ(ϕ̃) = d0ψ(λ)(ψ(ϕ))(d1ψ(λ))−1, so we may deduce that ψ(ϕ̃) ∼ ψ(ϕ). Finally we deduce
that for a cocycle ϕ ∈ H1 (S/R,Hom(G′′, G′)), ψ(ϕ) is a cocycle in H1 (S/R,Aut(G′′ ×G′)).
Hence by Theorem 3.1.1 we can conclude that ψ(ϕ) represents a twisted form Gϕ of G′′ × G′

which is an extension of G′′ by G′. We now define H1 (S/R,Hom(G′′, G′)) → Ext1(G′′, G′) by
mapping ϕ to the class [Gϕ].

Set G′′ = SpecA′′ and G′ = SpecA′. Let G = SpecA be an extension of G′′ by G′. Write M ′′,
M ′ and M for the respective augmentation ideals. Consider the following exact sequence:

0 −−−→ M ′ −−−→ A′
ε−−−→ R −−−→ 0

which admits a splitting e : R→ A′, therefore we have A′ ∼= R⊕M ′ as R-modules. Since M ′ is
direct summand of A′ which is locally free, M is locally projective which is the same as locally
free. Similarly we see that M ′′ is locally free. The exact sequence:

0 −−−→ M ′ −−−→ M −−−→ M ′′ −−−→ 0

shows that M is also projective. Now consider the decomposition A = R ⊕M , restricting the
morphism Fm

A to M gives us a morphism Fm : M ⊗ R→ M . Then composing with σm-linear
morphism M → M ⊗σm R which takes m 7→ m ⊗ 1. Conversely having such a morphism
M →M ⊗σm R we get a factorization through M ⊗σm R. Hence the data of Fm

G/R : G→ G(pm)

is equivalent to the data of an additive map ψ : M → M which is σm-linear. Clearly we have
the similar arguments for M ′and M ′′. Note that Fm

A′′ is an isomorphim because G′′ is étale and
note also that G′ is a finite infinitesimal group scheme so we may take m enough big such that
the induced morphism Fm

A′ vanishes. So we deduce:

0 −−−→ M ′′ i−−−→ M
h−−−→ M ′ −−−→ 0

f

y ψ

y 0

y
0 −−−→ M ′′ i−−−→ M

h−−−→ M ′ −−−→ 0

Lemma 4.2 The extension (4.1) splits if and only if the canonical map of R-modules kerψ →
M ′ is surjective.

Proof. Suppose that the extension (4.1) splits, so we have a morphism τ : M ′ → M such that
h ◦ τ = idM ′ . Take m′ ∈M ′ then ψ ◦ τ(m′) = 0, thus ψ ◦ τ(m′) ∈ Im(i), let ψ ◦ τ(m′) = i(m′′).
Set m = τ(m′ − i(m′′)) then clearly h(m) = m′ and ψ(m) = 0 so kerψ →M ′ is surjective.

Conversely suppose kerψ → M ′ is surjective. Take m′ ∈ M ′ and assume that there are two
elements m1 and m2 in kerψ such that ψ(m1) = ψ(m2) = m′, therefore m1 −m2 maps to zero
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via h and ψ, so it comes from z ∈M ′′ which should map to zero by f . But f is an isomorphism
because G′′ is étale therefore z is zero itself, and thus m1 = m2. Hence kerψ → M ′ is an
isomorphism and therefore (4.1) splits.�

Using Corollary 1.5.2 we see that there is a finite R-algebra R′ such that G′ becomes constant
group scheme over R′. Then M ′′ is isomorphic to R′n for some n > 0, and clearly ψ takes the
canonical basis of R′n to itself.

0 −−−→ M ′′ =
⊕n

1 Rzi
i−−−→ M

h−−−→ M ′ =
⊕m

1 Rei −−−→ 0

f

y ψ

y 0

y
0 −−−→ M ′′ =

⊕n
1 Rzi

i−−−→ M
h−−−→ M ′ =

⊕m
1 Rei −−−→ 0

Let M ′ =
⊕m

1 Rei and M ′′ =
⊕n

1 Rzi. Put l = pm. Take {xj} such that ψ(xj) = ei. Since
h ◦ ψ(xj) = 0, ψ(xj) = g(Σs

1rizi) for some ri’s in R. Set S = R[x1, ..., xs]/(x
l
1 − r1, ..., x

l
s − rs)

and let us write 1 ⊗ xi = r
(1/l)
i . Hence ψ(xj) = g(Σs

1rizi) = g(f(Σr
(1/l)
i zi)) = ψ ◦ g(Σr(1/l)

i zi).

Note that ψ(xj)−Σr
(1/l)
i g(zi) = 0 and h((xj)−Σr

(1/l)
i · g(zi)) = ei. Therefore the restriction of

h to kerψ is surjective and therefore (4.1) splits by the above lemma. Hence the class [G] of G
in Ext1(G′′, G′) is determined by a cocycle ϕ ∈ H1 (S/R,Hom(G′′, G′)).�

Let us return to the case in which we considered the extension of G′′ = kerV n by its dual
G′ = kerF n). As an application of Proposition 1.5.1 we saw that we can base change in way
that the étale group scheme G′′ becomes isomorphic to the constant group scheme(Z/pnZ) and
therefore its dual G′ becomes isomorphic to µpn . So the above theorem tells us that these exten-

sions correspond to cocycles in H1 (S/R,Hom(G′′, G′)) = H1
(
S/R,Hom((Z/pnZ),µpn)

)
=

H1
(
S/R,µpn

)
. Recall that in section §2 we have shown that in exact sequence:

1 −−−→ kerF n −−−→ E[pn] −−−→ kerV n −−−→ 1

the étale (resp.local) group scheme kerV n(resp. kerF n) over U can be extend to the étale
(resp. local) group scheme kerV n (resp. kerF n) over Ū . One might naturally ask that whether
E[pn] does extend too? I.e. whether E[pn] extend to the group scheme E[pn] sitting in short
exact sequence

1 −−−→ kerF n −−−→ E[pn] −−−→ kerV n −−−→ 1

Theorem 4.3 There is no extension for E[pn] over U = P1 − S, where S is the set of super-
singular values of j ∈ k.

Proof. We keep the notation of Theorem 4.1. Meanwhile, we essentially follow the procedure
involved in the last part of Theorem 4.1 to determine the class [E[pn]] ∈ H1

(
S/K,µpn

)
ex-

plicitly, where K = k((j)). So B(pn) = K[x, y]/(f
(pn)
q ) and therefore B(pn) = K[x, y]/(f

(pn)
q ),

where fq is the equation of Tate curve Eq. As we have seen in §2, kerV n corresponds to

{qi}0,...,pn−1 ⊂ K∗/(qp
n
)Z ∼= E

(pn)
q . Let qi = (xi, yi) = (X(qi, q(pn)), Y (qi, q(pn))). One can verify
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easily that yi’s are distinct. The morphism of algebras corresponding to the closed immersion
ker(V n) → E(pn) can be described as follows:
It is the map B(pn) →

⊕
K(qi), which takes a 7→ (a(qi)), where a(qi) is the evaluation of a at

qi.

Let us take elements bi ∈ B(pn) lifting the canonical basis {zi} of
⊕

K(qi) by setting bi =∏
j 6=i(y−yj)∏
j 6=i(yi−yj)

. Clearly we have bi(qj) = δij. Note that F n
B : B(pn) → B takes bi 7→ ci =

∏
j 6=i(y

(pn)−yj)∏
j 6=i(yi−yj)

,

so the induced morphism F̃ n : E[pn] → kerV n gives the algebra morphism:⊕
K(qi) −−−→ B ⊗V ◦F K(e),

zi 7→ c̄i = ci ⊗ 1

Notice that we have c̄i · c̄j = δij. Let e′ be the zero element of E(pn). One also easily verifies
that the morphism B(Pn) ⊗K(e′) → K[y]/(yp

n − 1) sending y ⊗ 1 to y is an isomorphism. So
we have the following diagram of algebras analogous to the diagram (2.1).

B(pn) −−−→ B −−−→ B ⊗K(e′)y y ∥∥∥
B(pn) ⊗K(e) −−−→ B ⊗K(e) −−−→ B ⊗K(e′)y∼= ∥∥∥ ∼=

y⊕
K(qi) −−−→ B ⊗K(e) −−−→ K[y]/(yp

n − 1)

Clearly y comes from y ⊗ 1 via h and we have yp
n

=
∑

i yi · ci ⊗ 1. This gives us the system of
equations {T pn

= yi}. Similarly for y2 we have

(y2)p
n ⊗ 1 = (

∑
i

yi · ci)2 ⊗ 1 =
∑
i

y2
i · ci ⊗ 1

so we get the equations {T pn
= y2

i } so we may reduce to the previous case {T pn
= yi} where

yi = Y (qi, qp
n
). As we mentioned in Remark 1.7.2 there is an alternative expression of Y (u, q):

Y (u, q) =
u2

(1− u)3
+

∑
n≥1

(
(qnu)2

(1− qnu)3
− qnu−1

(1− qnu−1)3
+

qn

(1− qn)2

)
we realize that we only need to add the pn-th root of q. Therefore we may reduce to the
equation T p

n
= q.

Suppose now that there exist a finite flat group scheme G, extending E[pn] over U . Changing
the base to Y = Spec k[[q]], we get a group scheme over Y , meanwhile we denote it again
by G, extending E[pn]/K, where K = k((q)). As remarked at the end of section 1.3, such
a G over henselian base scheme is an extension of a local group scheme by an étale group
scheme and it then gives an extension of kerV n by kerF n. Theorem 4.1 and the discussion
before the proposition imply that it would be enough to show that there does not exist a class
[G] ∈ H1(S/R,µpn) for every S/R that mapping to [E[pn]] via the canonical morphism

H1(S/R,µpn) −−−→ H1(S ⊗K/K,µpn)
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As it did turn out from the above computations, the class [E[pn]] is represented by the equation
T p

n
= q, but this is not a µpn-torsor over R, since q is not invertible. Note that if there is an

f ∈ R∗ which represents the same class, then Corollary 3.2.3 asserts that there is an element
g ∈ K∗ such that q = gp

n ·f , meaning q ∈ R∗, which is a contradiction. Hence we may conclude
that there is not such a class that lifts [E[pn]] and therefore there is no extension for E[pn] over
U .�
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